covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Control Estable de Formación Basado en Visión Omnidireccional para Robots Móv...
Información de la revista
Vol. 8. Núm. 1.
Páginas 29-37 (enero 2010)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 8. Núm. 1.
Páginas 29-37 (enero 2010)
Open Access
Control Estable de Formación Basado en Visión Omnidireccional para Robots Móviles No Holonómicos
Visitas
2728
Flavio Roberti
, Juan Marcos Toibero*, Raquel Frizera Vassallo**, Ricardo Carelli*
* Instituto de Automática, Universidad Nacional de San Juan, Av. San Martín Oeste 1109, J5400ARL, San Juan, Argentina
** Dpto. de Engenharia Elétrica, Universidade Federal do Espírito Santo, Vitória (ES) –Brasil
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen

Este trabajo presenta un algoritmo de control basado en seguimiento de líderes para la navegación autónoma de un equipo de robots móviles no holonómicos manteniendo una formación deseada. Los errores de control se definen en términos de las posiciones instantáneas de cada robot y de su posición deseada dentro de la formación, relativa al robot líder del grupo. Para el sensado de las posiciones relativas, solo el robot líder está equipado con un sistema de visión omnidireccional. Se prueba la estabilidad del sistema propuesto según la teoría de Lyapunov y se realiza un análisis de robustez ante ciertos errores de estima. Resultados experimentales ilustran el buen desempeño del algoritmo de control propuesto.

Palabras Clave:
Control de formación
Robótica móvil
Sistemas no lineales
Análisis de estabilidad y robustez
El Texto completo está disponible en PDF
Referencias
[Antonelli et al., 2006]
G. Antonelli, F. Arrichiello, S. Chiaverini.
Experiments of formation control with collision avoidance using the null-space-based behavioral control.
Proceedings of IEEE Mediterranean Conference on Control and Automation, pp. 1-6
[Baker and Nayar., 1998]
S. Baker, S.K. Nayar.
A Theory of Catadioptric Image Formation.
Proceedings of the 6th International Conference on Computer Vision, pp. 35-42
[Balch and Arkin., 1998]
T. Balch, R.C. Arkin.
Behavior-based formation control for multirobot teams.
IEEE Transactions on Robotics and Automation, 14 (1998), pp. 926-939
[Belta and Kumar., 2002]
C. Belta, V. Kumar.
Trajectory design for formations of robots by kinetic energy shaping.
Proceedings of IEEE International Conference on Robotics and Automation, pp. 2593-2598
[Brooks, 1986]
R.A. Brooks.
A robust layered control system for a mobile robot.
IEEE Transactions on Robotics and Automation, 2 (1986), pp. 14-23
[Carelli et al., 2006a]
R. Carelli, C. De la Cruz, F. Roberti.
Centralized formation control of non-holonomic mobile robots.
Latin American Applied Research, 36 (2006), pp. 63-69
[Carelli et al., 2006b]
R. Carelli, J. Santos-Victor, F. Roberti, S. Tosetti.
Direct visual tracking control of remote cellular robots.
Robotics and Autonomous Systems, 54 (2006), pp. 805-814
[Das et al., 2002]
A.K. Das, R. Fierro, V. Kumar, J.P. Ostrowski, J. Spletzer, C.J. Taylor.
A vision-based formation control framework.
IEEE Transactions on Robotics and Automation, 18 (2002), pp. 813-825
[De la Cruz and Carelli, 2008]
C. De la Cruz, R. Carelli.
Dynamic model based formation control and obstacle avoidance of multi-robot systems.
Robotica, 26 (2008), pp. 345-356
[Desai et al., 1998]
J.P. Desai, J. Ostrowski, V. Kumar.
Controlling formations of multiple mobile robots.
Proceedings of IEEE International Conference of Robotics and Automation, pp. 2864-2869
[Do, 2007]
K.D. Do.
Formation tracking control of unicycle-type mobile robots.
Proceedings of IEEE International Conference on Robotics and Automation, pp. 2391-2396
[Fierro et al., 2002]
R. Fierro, P. Song, A. Das, V. Kumar.
Cooperative control of robot formations.
Cooperative Control and Optimization, pp. 73-93
[Fredslund and Mataric., 2001]
J. Fredslund, M.J. Mataric.
Robot formations using only local sensing and control.
Proceedings of IEEE International Symposium on Computational Intelligence in Robotics and Automation, pp. 308-313
[Gava et al., 2007]
C. Gava, R. Vassallo, F. Roberti, R. Carelli, T. Freire, Bastos.
Nonlinear control techniques and omnidirectional vision for team formation on cooperative robotics.
Proceedings of IEEE International Conference on Robotics and Automation, pp. 2409-2414
[Kalata, 1994]
P. Kalata.
The tracking index: A generalized parameter for α - β and α – β - γ target trackers.
IEEE Transactions on Aerospace and Electronic Systems, 20 (1994), pp. 174-182
[Kelly et al., 2004]
R. Kelly, R. Carelli, J.M. Ibarra Zannatha, C. Monroy.
Control de una pandilla de robots móviles para el seguimiento de una constelación de puntos objetivo.
Proceedings of VI Congreso Mexicano de Robótica, pp. 83-89
[Leonard and Fiorelli., 2001]
N.E. Leonard, E. Fiorelli.
Virtual leaders, artificial potentials and coordinated control of groups.
Proceedings of IEEE Conference on Decision and Control, pp. 2968-2973
[Lewis and Tan., 1997]
M.A. Lewis, K.H. Tan.
High precision formation control of mobile robots using virtual structures.
Autonomous Robots, 4 (1997), pp. 387-403
[Mariottini et al., 2007]
G. Mariottini, F. Morbidi, D. Prattichizzo, G. Pappas, K. Daniilidis.
Leader-follower formation: uncalibrated vision-based localization and control.
Proceedings of IEEE International Conference on Robotics and Automation, pp. 2403-2408
[Mastellone et al., 2007]
S. Mastellone, D. Stipanovic, M. Spong.
Remote formation control and collision avoidance for multi-agent non-holonomic systems.
Proceedings of IEEE International Conference on Robotics and Automation, pp. 1062-1067
[Monteiro et al., 2004]
S. Monteiro, M. Vaz, E. Bicho.
Attractor dynamics generates robot formations: from theory to implementation.
Proceedings of IEEE International Conference on Robotics and Automation, pp. 2582-2587
[Shao et al., 2005]
J. Shao, G. Xie, J. Yu, L. Wang.
Leader-following formation control of multiple mobile robots.
Proceedings of IEEE International Symposium on Intelligent Control, pp. 808-813
[Slotine and Li., 1991]
J.J. Slotine, W. Li.
Applied non linear control.
Prentice-Hall Inc, (1991),
[Stipanovica et al., 2004]
D.M. Stipanovica, G. Inalhana, R. Teo, C.J. Tomlina.
Decentralized overlapping control of a formation of unmanned aerial vehicles.
Automatica, 40 (2004), pp. 1285-1296
[Tanner and Kumar., 2005a]
H.G. Tanner, A. Kumar.
Formation Stabilization of Multiple Agents Using Decentralized Navigation Functions.
Robotics: Science and Systems, pp. 49-56
[Tanner and Kumar, 2005b]
H.G. Tanner, A. Kumar.
Towards decentralization of multi-robot navigation functions.
Proceedings of IEEE International Conference on Robotics and Automation, pp. 4143-4148
[Toibero et al., 2008a]
J.M. Toibero, F. Roberti, R. Carelli, P. Fiorini.
Hybrid Formation Control for Non-Holonomic Wheeled Mobile Robots.
pp. 21-34
[Toibero et al., 2008b]
J.M. Toibero, F. Roberti, R. Carelli, P. Fiorini.
Formation Control for Non-Holonomic Mobile Robots: A Hybrid Approach.
Recent Advances in Multi-Robot Systems, ch.12, pp. 233-248
[Yamaguchi et al., 2001]
H. Yamaguchi, T. Arai, G. Beni.
A distributed control scheme for multiple robotic vehicles to make group formations.
Robotics and Autonomous Systems, 36 (2001), pp. 125-147
[Zhu et al., 2002]
Z. Zhu, K.D. Rajasekar, E.M. Riseman, A.R. Hanson.
Panoramic Virtual Stereo Vision of Cooperative Mobile Robots for Localizing 3D Moving Objects.
Proceedings of IEEE Workshop on Omnidirectional Vision, pp. 29-36
Copyright © 2011. Comité Español de Automática
Descargar PDF
Opciones de artículo