covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Laser Scanner Como Sistema de Detección de Entornos Viales
Información de la revista
Vol. 8. Núm. 1.
Páginas 44-53 (enero 2010)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 8. Núm. 1.
Páginas 44-53 (enero 2010)
Open Access
Laser Scanner Como Sistema de Detección de Entornos Viales
Visitas
3090
F. García
, F. Jiménez**, J.E. Naranjo***, J.G. Zato***, F. Aparicio**, A. de la Escalera
* Universidad Carlos III de Madrid. Laboratorio de Sistemas Inteligentes. Avda. de La Universidad 30, 28911 Leganés (Madrid). Spain
** Universidad Politécnica de Madrid. INSIA. Carretera de Valencia, km.7, 28031 Madrid. Spain
*** Universidad Politécnica de Madrid. E.U. de Informática. Carretera de Valencia, km.7, 28031 Madrid. Spain
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen

Los últimos avances en seguridad vial, con sistemas cada vez más complejos, requieren de los más modernos sistemas de adquisición de información. La naturaleza misma del problema requiere sensores capaces de proveer información fiable para tareas complejas y exigentes. Los escáneres láser (LIDAR) han demostrado ser una familia de sensores altamente fiable, por lo que durante los últimos años los esfuerzos dedicados a investigar posibles aplicaciones viales han ido en aumento. De esta forma, es cada vez más frecuente observar sistemas de ayuda a la conducción (ADAS) con este tipo de dispositivos que proveen de información del entorno necesaria para realizar tareas complejas como deteccián y prediccián de situaciones peligrosas. En el presente trabajo, dos sistemas LIDAR han sido probados para comprobar sus capacidades reales en entornos viales. En segundo término, se propone una aplicación que hace uso de las capacidades de dichos sensores para la detección y clasificación de obstaculos en entornos viarios.

Palabras clave:
sensores
procesamiento de senales
sistemas reales
vehiculos
algoritmos de deteccion
El Texto completo está disponible en PDF
Referencias
[Ahn et al., 2003]
S.J. Ahn, I. Effenberger, S. Roth-Koch, E. Westkämper.
Geometric segmentation and object recognition in unordered and incomplete point cloud.
DAGM-Symposium, pp. 450-457
[Bar-Shalom, 1978]
Y. Bar-Shalom.
Tracking methods in a multitarget environment.
IEEE Trans. On Automatic Control, Vol 23 (1978),
[Bar-Shalom and Li, 1995]
Y. Bar-Shalom, X.-R. Li.
Multitarget-multisensor tracking: principles and techniques.
YBS, Danvers, MA, (1995),
[Blackman and Popoli, 1999]
S. Blackman, R. Popoli.
Design and analysis of modern tracking systems.
Artech House, MA, (1999),
[Broggi et al., 2008a]
A. Broggi, A. Cappalunga, C. Caraffi, S. Cattani, S. Ghidoni, P. Grisleri, P.P. Porta, M. Posterli, P. Zani, J. Beck.
The passive sensing suite of the TerraMax autonomous vehicle.
[Broggi et al., 2008b]
A. Broggi, P. Cerri, S. Ghidoni, P. Grisleri, Ho Gi Jung.
Localization and analysis of critical areas in urban scenarios.
Intelligent Vehicles Symposium, 2008 IEEE, (2008),
[Fanping and Ching-Yao, 2005]
Bu Fanping, Chan Ching-Yao.
Pedestrian detection in transit bus application: Sensing technologies and safety solution.
Proc Of IEEE Int. Conf. on Intelligent Vehicles,
[Fod et al., 2002]
A. Fod, A. Howard, M. Mataric.
A laser-based people tracker.
International Conference on Robotics, Automation IEEE, (2002), pp. 3024-3029
[Füerstenberg et al., 2000]
K.Ch. Füerstenberg, J. Hipp, A. Liebram.
A laserscanner for detailed traffic data collection and traffic control.
[Füerstenberg et al., 2002a]
K.Ch. Füerstenberg, K.C.J. Dietmayer, V. Willhoeft.
Pedestrian recognition in urban traffic using a vehicle based multilayer laserscanner.
Intelligent Vehicle Symposium, (2002), pp. 31-35
[Füerstenberg et al., 2002b]
K.Ch. Füerstenberg, K.C.J. Dietmayer, S. Eisenlauer, V. Willhoeft.
Multilayer laserscanner for robust object tracking and classification in urban traffic scenes.
Proceedings of ITS 2002, (2002),
[Füerstenberg and Lages, 2003]
K.Ch. Füerstenberg, U. Lages.
Pedestrian detection and classification by laserscanners.
9th EAEC International Congress,
[Gandhi ans and Trivedi, 2007]
T. Gandhi ans, M.M. Trivedi.
Pedestrian protection systems: issues, survey, and challenges.
Intelligent Transportation Systems 2007 IEEE Transactions on, 8, (2007), pp. 413-430
[Garcia et al., 2009]
F. Garcia, P. Cerri, A. Broggi, J.M. Amingol, A. de la Escalera.
Vehicle detection based on laser radar.
Lecture Notes in Computer Science, 2009, (2009), pp. 391-397
[Gate and Nashashibi, 2008]
G. Gate, F. Nashashibi.
Using targets appearance to improve pedestrian classification with a laser scanner.
Intelligent Vehicles Symposium, 2008 IEEE, (2008), pp. 571-576
[Gate and Nashashibi, 2009]
G. Gate, F. Nashashibi.
Centralized fusion for fast people detection in dense environment.
Robotics and Automation, 2009. ICRA 09. IEEE International Conference on, (2009), pp. 76-81
[Gavrila et al., 2001]
D.M. Gavrila, M. Kunert, U. Lages.
A multi-sensor approach for the protection of vulnerable traffic participants the PROTECTOR project.
Instrumentation and Measurement Technology Conference, 2001. IMTC 2001, pp. 2044-2048
[Gidel et al., 2009]
S. Gidel, C. Blanc, T. Chateau, P. Checchin, L. Trassoudaine.
A method based on multilayer laserscanner to detect and track pedestrians in urban environment.
Intelligent Vehicles Symposium, 2009 IEEE, (2009), pp. 157-162
[Hofmann et al., 2001]
U. Hofmann, A. Rieder, E.D. Dickmanns.
Radar and vision data fusion for hybrid adaptive cruise control on highways.
Proc. Int. Conf. Comput. Vis. Syst., pp. 125-138
[Hwang et al., 2007]
J.P. Hwang, S.E. Cho, K.J. Ryu, S. Park, E. Kim.
Multi- Classifier based LIDAR and camera fusion.
Procs. IEEE Intl. Conf. on Intelligent Transportation Systems 2007, pp. 467-472
[Kaempchen et al., 2005]
N. Kaempchen, M. Buehler, K. Dietmayer.
Feature-level fusion for free-form object tracking using laserscanner and video.
Intelligent Vehicles Symposium, 2005, (2005), pp. 453-458
[Kammel et al., 2007]
S. Kammel, J. Ziegler, B. Pitzer, M. Werling, T. Gindele, D. Jagzent, J. Schröder, M. Thuy, M. Goebl, F. von Hundelshausen, O. Pink, C. Frese, C. Stiller.
Team AnnieWAY's autonomous system for the 2007 DARPA Urban Challenge,.
Journal of Field Robotics,, 25 (2008), pp. 615-639
[Koller et al., 1994]
D. Koller, J. Weber, J. Malik.
Robust multiple car tracking with occlusion reasoning.
Proc. Third European Conference onComputer Vision, Stockholm, pp. 189-196
[Langheim et al., 2001]
J. Langheim, A. Buchanan, U. Lages, M. Wahl.
CARSENSE-New environment sensing for advanced driver assistance systems.
the Int. Conf. of Intelligent Transportation Systems (ITSC 2001), pp. 796-801
[MacLachlan and Mertz, 2006]
R.A. MacLachlan, C. Mertz.
Tracking of moving objects from a moving vehicle using a scanning laser rangefinder.
Intelligent Transportation Systems, pp. 301-306
[Mendes et al., 2004]
A. Mendes, L.C. Bento, U. Nunes.
Multi-target detection and tracking with a laser scanner.
Intelligent Vehicles Symposium, 2004 IEEE, (2004), pp. 796-801
[Milch and Behrens, 2001]
S. Milch, M. Behrens.
Pedestrian detection with radar and computer vision,.
Proc. Conf. on Progress in Automobile Lighting, Darmstadt,
[Montemerlo et al., 2008]
M. Montemerlo, J. Becker, S. Bhat, H. Dahlkamp, D. Dolgov, S. Ettinger, D. Haehnel, T. Hilden, G. Hoffmann, B. Huhnke, D. Johnston, S. Klumpp, D. Langer, A. Levandowski, J. Levinson, J. Marcil, D. Orenstein, J. Paefgen, I. Penny, A. Petrovskaya, M. Pflueger, G. Stanek, D. Stavens, A. Vogt, S. Thrun.
Junior: the Stanford entry in the Urban Challenge.
Journal of Field Robotics, 25 (2008), pp. 569-597
[Nashashibi and Bargeton, 2008]
K.F. Nashashibi, A. Bargeton.
Laser-based vehicles tracking and classification using occlusion reasoning and confidence estimation,.
Intelligent Vehicles Symposium, 2008 IEEE, (2008), pp. 847-852
[Ogawa and Takagi, 2006]
T. Ogawa, K. Takagi.
Lane recognition using on-vehicle LIDAR.
Intelligent Vehicles Symposium, 2006 IEEE, (2006), pp. 540-545
[Premebida and Nunes, 2006]
C. Premebida, U. Nunes.
A multi-target tracking and GMMClassifier for intelligent vehicles.
Proc. of the IEEE Intelligent Transportation Systems Conference,
[Premebida et al., 2009]
C. Premebida, O. Ludwing, U. Nunes.
LIDAR and vision-based pedestrian detection system,.
Procs Journalof Field Robotics, 26 (2009), pp. 696-711
[Reid, 1979]
D.B. Reid.
An algorithm for tracking multiple targets.
IEEE Trans. On Automatic Control, 24 (1979),
[Rabbani and van den, 2005]
T. Rabbani, F. van den Heuvel.
Efficient hough transform for automatic detection of cylinders in point clouds,.
Proceedings of the 11th Annual Conference of the Advanced School for Computing and Imaging (ASCI05), Het Heijderbos, Heijen,
[Schulz et al., 2001]
D. Schulz, W. Burgard, D. Fox, A.B. Cremers.
Tracking multiple moving targets with a mobile robot using particle filters and statistical data association.
Robotics and Automation, 2 (2001), pp. 1665-1670
[Shearman et al., 1998]
E.D.R. Shearman, E.G. Hoare, A. Hutton.
Trials of automotive radar and lidar performance in road spray.
IEE - The Institution of Electrical Engineers., (1998),
[Spies and Spies., 2006]
M. Spies, H. Spies.
Automobile lidar sensorik: stand, trends und zukunftige herausforderungen.
Advances in Radio Science, 4 (2006), pp. 99-104
[Sparbert et al., 2001]
J. Sparbert, K. Dietmayer, D. Streller.
Lane detection and street type vlassification using laser range images.
2001 IEEE Intelligent Transportation Systems Conference Proceedings - Oakland (CA), pp. 25-29
[Streller et al., 2002]
D. Streller, K. Furstenberg, K. Dietmayer.
Vehicle and object models for robust tracking in traffic scenes using laser range images.
Intelligent Transportation Systems, (2002), pp. 118-123
[Tay, 2007]
M. Tay.
An efficient formulation of the Bayesian occupation filter for target tracking in dynamic environments,.
International Journal of Vehicle Autonomous Systems, 6 (2007), pp. 155-171
[Thrun, 2003]
S. Thrun.
Learning occupancy grid maps with forward sensor models.
Auton. Robots, 15 (2003), pp. 111-127
[Urmson et al., 2008]
C. Urmson, et al.
Autonomous driving in urban environments: Boss and the Urban Challenge, (2008).
Journal of Field Robotics, 25 (2008), pp. 425-466
[Wang et al., 2003]
C. Wang, C. Thorpe, S. Thrun.
Online simultaneous localization and mapping with detection and tracking of moving objects: theory and results from a ground vehicle in crowded urban areas.
International Conference on Robotics and Automation, IEEE, (2003), pp. 842-849
[Widmann et al., 2000]
G. Widmann, M. Daniels, L. Hamilton, L. Humm,B. Riley,J. K. Schiffmann, D.E. Schnelkery, W. H. Wishon, (2000) “Comparison of lidar-based and radar-based adaptive cruise control systems”. SAE Technical paper Series. SAE 2000 World Congress, paper n° 2000-01-0345. Detroit Michigan, 6–9 March.
Copyright © 2011. Comité Español de Automática
Descargar PDF
Opciones de artículo