Las aleaciones metálicas que exhiben una propiedad conocida como efecto de memoria de forma, pertenecen a la clase de materiales inteligentes cuya aplicación más notable en el campo de la robótica se refleja en el uso de actuadores musculares artificiales, ó músculos inteligentes. Estos materiales tienen una estructura cristalina uniforme que cambia radicalmente en función de su temperatura de transición, causando su deformación. Se les denomina materiales inteligentes por la capacidad de recordar su configuración inicial después de recibir dicho estímulo térmico. Este artículo presenta la implementación de un actuador muscular inteligente aplicado en un micro-robot aéreo bio-inspirado tipo murciélago. Esto mamíferos voladores desarrollaron poderosos músculos que se extienden a lo largo de la estructura ósea de las alas, adquiriendo una asombrosa capacidad de maniobra gracias a la capacidad de cambiar la forma del ala durante el vuelo. Replicar este tipo de alas mórficas en un prototipo robótico requiere el análisis de nuevas tecnologías de actuación, abordando los problemas de modelado y control que garanticen la aplicabilidad de este actuador compuesto por fibras musculares de SMAs.
Información de la revista
Vol. 8. Núm. 4.
Páginas 385-396 (octubre - diciembre 2011)
Vol. 8. Núm. 4.
Páginas 385-396 (octubre - diciembre 2011)
Open Access
Músculos Inteligentes en Robots Biológicamente Inspirados: Modelado, Control y Actuación
Visitas
15162
J. Colorado
, A. Barrientos, C. Rossi
Autor para correspondencia
Centro de Automática y Robótica UPM-CSIC. Grupo de Robótica y Cibernética, Universidad Politécnica de Madrid, Spain
Este artículo ha recibido
Información del artículo
Resumen
Palabras clave:
Aleación con Memoria de Forma (SMA)
Robots bio-inspirados
Alas mórficas
El Texto completo está disponible en PDF
Referencias
[Aldridge, 1986]
H. Aldridge.
Kinematics and aerodynamics of the greater horseshoe bat, rhinolophus ferrumequinum, in horizontal flight at various flight speeds.
Journal of Experimental Biology, 126 (1986), pp. 479-497
[Bar-Cohen, 2004]
Y. Bar-Cohen.
Electroactive Polymer (EAP) Actuators as Artificial Muscles.
Second edition, SPIE Press, (2004),
[Brinson, 1993]
L. Brinson.
One-dimensional constitutive behavior of shape memory alloys: Thermomechanical derivation with non-constant material functions and redefined martensite internal variable.
Journal of Intelligent Material Systems and Structures, 4 (1993), pp. 229-242
[Choon et al., 2007]
T. Choon, A. Salleh, J. Saifulnizan, M. Ghazali.
Phase transformation temperatures for shape memory alloy wire.
World Academy of Science, Engineering and Technology, pp. 304-307
[Colorado et al., 2011]
J. Colorado, A. Barrientos, C. Rossi.
Biomechanics of morphing wings in a bat-robot actuated by sma muscles.
International Workshop on bioinspired robots, Nantes, France, pp. 1-3
[Deng et al., 2006]
X. Deng, L. Schenato, W. Wu.
Flapping flight for biomimetic robotic insects: Part i - system modeling.
IEEE Transactions on Robotics, 22 (2006), pp. 776-788
[Elahinia, 2002]
Elahinia, M., 2002. Nonlinear control of a shape memory alloy actuated manipulator. Ph.D. thesis, Villanova University.
[Elahinia et al., 2004]
M. Elahinia, T. Seigler, D. Leo, M. Ahmadian.
Nonlinear stress-based control of a rotary sma-actuated manipulator.
J. Intell. Mater. Syst. Struct, 15 (2004), pp. 495-508
[Hirose, 1993]
S. Hirose.
Biologically Inspired Robots: Snake-like Locomotors and Manipulators.
Oxford University Press, (1993),
[Je-Sung and Kyu-Jin, 2010]
K. Je-Sung, C. Kyu-Jin.
Omegabot: Crawling robot inspired by ascotis selenaria.
Proc. of the IEEE International Conference on Robotics and Automation, pp. 109-114
[Johnson et al., 2001]
Ê.A. Johnson, Ê Martynov, D. Gupta, V. Vikas.
Applications of shape memory alloys: advantages, disadvantages, and limitations.
Proc. of Micromachining and Microfabrication Process Technology VII., pp. 341-351
[Kyu-Jin et al., 2008]
C. Kyu-Jin, E. Hawkes, C. Quinn, R. Wood.
Design, fabrication and analysis of a body-caudal fin propulsion system for a microrobotic fish.
Proc. of the IEEE International Conference on Robotics and Automation, pp. 706-711
[Landau and Lifshitz, 1986]
L. Landau, E. Lifshitz.
Theory of Elasticity. Theoretical Physics Volume 7.
Third ed., Butterworth Heinemann, (1986),
[Ma and Song, 2003]
N. Ma, G. Song.
Control of shape memory alloy actuator using pulse width modulation.
Smart Mater. Struct, 12 (2003), pp. 712-719
[Madden et al., 2004]
J. Madden, N. Vandesteeg, P. Anquetil, A. Madden, A. Takashi, R. Pytel, S. Lafontaine, P. Wieringa, I. Hunter.
Artificial muscle technology: Physical principles and naval prospects.
IEEE Journal of oceanic engineering, 29 (2004),
[Manzo and Garcia, 2008]
J. Manzo, E. Garcia.
Optimization and implementation of the smart joint actuator.
Proc. of Active and Passive Smart Structures and Integrated Systems, pp. 692810
[Norberg et al., 2000]
L. Norberg, A. Brooke, W. Trewhella.
Soaring and non-soaring bats of the family pteropodidae (fying foxes, pteropus spp.): wing morphology and flight performance.
Journal of Experimental Biology, 203 (2000), pp. 651-664
[Pons, 2007]
J. Pons.
Emerging Actuator Technologies.
John Wiley and Son, (2007),
[Riskin et al., 2008]
D. Riskin, D. Willis, J. Iriarte-Diaz, T. Hedrick, M. Kostandov, J. Chen, D. Laidlaw, K. Breuer, S. Swartz.
Quantifying the complexity of bat wing kinematics.
Journal of Theoretical Biology, 254 (2008), pp. 604-615
[Rossi et al., 2011]
C. Rossi, W. Coral, J. Colorado, A. Barrientos.
A motor-less and gearless bio-mimetic robotic fish design.
Proc. of the IEEE International Conference on Robotics and Automation, pp. 1-6
[Sane, 2003]
S. Sane.
The aerodynamics of insect flight.
Journal of Experimental Biology, 206 (2003), pp. 4191-4208
[Shin et al., 2008]
B. Shin, K. Ho-Young, C. Kyu-Jin.
Towards a biologically inspired small-scale water jumping robot.
Proc. of the International Conference on Biomedical Robotics and Biomechatronics, pp. 127-131
[Shrivastava, 2006]
S. Shrivastava.
Simulation for thermomechanical behavior of shape memory alloy (sma) using comsol multiphysics.
Proc. of the COMSOL Users Conference, pp. 1-5
[Song et al., 2000]
G. Song, B. Kelly, B. Agrawal.
Active position control of a shape memory alloy wire actuated composite beam.
Smart Mater. Struct, 9 (2000), pp. 755-766
[Stefan et al., 2010]
B. Stefan, O. Williams, M. Jody, J. Robin, M. Ian, J.C.L.T. Matthew.
Autonomous underwater vehicle-assisted surveying of drowned reefs on the shelf edge of the great barrier reef, australia.
Journal of Field Robotics, 27 (2010), pp. 675-697
[Strelec and Lagoudas, 2002]
J. Strelec, D. Lagoudas.
Fabrication and testing of a shape memory alloy actuated reconfigurable wing.
in Proc. of Int. Symp. on Smart Structures and Materials, pp. 267-280
[Swartz et al., 1996]
S. Swartz, M. Groves, H. Kim, W. Walsh.
Mechanical properties of bat wing membrane skin.
J. Zool, 239 (1996), pp. 357-378
[Tanaka, 1986]
K. Tanaka.
A thermomechanical sketch of shape memory effect: Onedimensional tensile behaviour.
International Journal of Structural Mechanics and Materials Science, 18 (1986), pp. 251-263
[Teh and Featherstone, 2007]
Y. Teh, R. Featherstone.
Accurate force control and motion disturbance rejection for shape memory alloy actuators.
Proc. of the IEEE International Conference on Robotics and Automation, pp. 4454-4459
[Vitiello et al., 2005]
A. Vitiello, G. Giorleo, E. Renata.
Analysis of thermomechanical behaviour of nitinol wires with high strain rates.
Smart Mater. Struct, 14 (2005), pp. 215-221
[Wood, 2007]
R. Wood.
Design, fabrication, and analysis of a 3dof, 3cm flapping-wing mav.
Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1576-1581
[Xiu et al., 2010]
F. Xiu, N. Ya, X. Shu, D. Yu.
Driving mechanism of a new jellyfish-like microrobot.
Proc. of the IEEE International Conference on Mechatronics and Automation, pp. 563-568
[Yang and Seelecke, 2009]
S. Yang, S. Seelecke.
Fe analysis of sma-based bio-inspired bone joint system.
Smart Mater. Struct, 18 (2009), pp. 104020
[Zaki et al., 2010]
W. Zaki, C. Morin, Z. Moumni.
A simple 1d model with thermomechanical coupling for superelastic smas.
IOP Conf. Series: Materials Science and Engineering, (2010), pp. 1-7