covid
Buscar en
Seminarios de la Fundación Española de Reumatología
Toda la web
Inicio Seminarios de la Fundación Española de Reumatología Papel patogénico de las interacciones entre linfocitos b y sinoviocitos tipo fi...
Información de la revista
Vol. 7. Núm. 2.
Páginas 84-90 (junio 2006)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Vol. 7. Núm. 2.
Páginas 84-90 (junio 2006)
Acceso a texto completo
Papel patogénico de las interacciones entre linfocitos b y sinoviocitos tipo fibroblasto en la artritis reumatoide
Visitas
5701
María Eugenia Miranda Carús
Servicio de Reumatología. Hospital La Paz. Madrid. España
Este artículo ha recibido
Información del artículo
Resumen

El éxito del rituximab en el tratamiento de pacientes con artritis reumatoide (AR) ha favorecido la reevaluación del papel de los linfocitos B en la patogenia de esta enfermedad. En la membrana sinovial inflamada de pacientes con AR se observa una acumulación y expansión clonal de linfocitos B, formación ectópica de centros germinales, acumulación de células plasmáticas, producción local de autoanticuerpos y depósito de inmunocomplejos. Además, en modelos animals de artritis inflamatoria se ha demostrado que las células B son necesarias para que se produzca el daño mediado por linfocitos T. Todo ello indica que los linfocitos B son importantes en la patogenia de la AR. Varios estudios han demostrado que el contacto con fibroblastos sinoviales es esencial para la acumulación y la supervivencia de los linfocitos B en la articulación reumatoidea, así como para su diferenciación hacia células plasmáticas.

Palabras clave:
Artritis reumatoide
Linfocito B
inoviocito tipo fibroblasto
Abstract

The success of rituximab in the treatment of patients with RA has led investigators to reassess the role of B cells in RA pathogenesis. In the RA synovium there is B-lymphocyte accumulation and clonal expansion, formation of ectopic germinal centers, plasma cell accumulation, and deposits of immune complexes, suggesting that B cells and their products participate in disease progression. Moreover, a recently described animal model that simulates RA demonstrates a critical need for B cells in the transition of T-cell autoreactivity to immunoglobulin-mediated joint destruction. Prior in vitro studies of requirements for B-cell survival in the synovial membrane and local differentiation into plasma cells concluded that cell contact between synovial fibroblasts and B cells is essential.

Key words:
Rheumatoid arthritis
B lymphocyte
Fibroblastlike synoviocyte
El Texto completo está disponible en PDF
Bibliografía
[1.]
J.C. Edwards, L. Szczepanski, J. Szechinski, et al.
Efficacy of B-cell-targeted therapy with rituximab in patients with rheumatoid arthritis.
N Engl J Med, 350 (2004), pp. 2572-2581
[2.]
J. Dechanet, P. Merville, I. Durand, et al.
The ability of synoviocytes to support terminal differentiation of activated B cells may explain plasma cell accumulation in rheumatoid synovium.
J Clin Invest, 95 (1995), pp. 456-463
[3.]
S. Takemura, P.A. Klimiuk, A. Braun, et al.
T cell activation in rheumatoid synovium is B cell dependent.
J Immunol, 167 (2001), pp. 4710-4718
[4.]
N.J. Zvaifler, D. Boyle, G.S. Firestein.
Early synovitis-synoviocytes and mononuclear cells.
Semin Arthritis Rheum, 23 (1994), pp. 11-16
[5.]
M. Feldmann, F.M. Brennan, R.N. Maini.
Role of cytokines in rheumatoid arthritis.
Ann Rev Immunol, 14 (1996), pp. 397-440
[6.]
R.W. Kinne, R. Brauer, B. Stuhlmuller, et al.
Macrophages in rheumatoid arthritis.
Arthritis Res, 2 (2000), pp. 189-202
[7.]
G.S. Firestein, N.J. Zvaifler.
Peripheral blood and synovial fluid monocyte activation in inflammatory arthritis. I. A cytofluorographic study of monocyte differentiation antigens and class II antigens and their regulation by gamma-interferon.
Arthritis Rheum, 30 (1987), pp. 857-863
[8.]
I.B. McInnes, F.Y. Liew.
Interleukin 15: a proinflammatory role in rheumatoid arthritis synovitis.
Immunol Today, 19 (1998), pp. 75-79
[9.]
C.M. Weyand, J.J. Goronzy.
Ectopic germinal center formation in rheumatoid synovitis.
Ann N Y Acad Sci, 987 (2003), pp. 140-149
[10.]
N.J. Zvaifler.
Rheumatoid synovitis. An extravascular immune complex disease.
Arthritis Rheum, 17 (1974), pp. 297-305
[11.]
T. Dorner, G.R. Burmester.
The role of B cells in rheumatoid arthritis: mechanisms and therapeutic targets.
Curr Opin Rheumatol, 15 (2003), pp. 246-252
[12.]
E. Lindhout, M. Van Eijk, M. Van Pel, et al.
Fibroblast-like synoviocytes from rheumatoid arthritis patients have intrinsic properties of follicular dendritic cells.
J Immunol, 162 (1999), pp. 5949-5956
[13.]
J.A. Burger, N.J. Zvaifler, N. Tsukada, et al.
Fibroblast-like synoviocytes support B-cell pseudoemperipolesis via a stromal cell-derived factor-1- and CD106 (VCAM-1)-dependent mechanism.
J Clin Invest, 107 (2001), pp. 305-315
[14.]
K. Shi, K. Hayashida, M. Kaneko, et al.
Lymphoid chemokine B cell-attracting chemokine-1 (CXCL13) is expressed in germinal center of ectopic lymphoid follicles within the synovium of chronic arthritis patients.
J Immunol, 166 (2001), pp. 650-655
[15.]
S. Takemura, A. Braun, C. Crowson, et al.
Lymphoid neogenesis in rheumatoid synovitis.
J Immunol, 167 (2001), pp. 1072-1080
[16.]
J. Morales-Ducret, E. Wayner, M.J. Elices, et al.
Alpha 4/beta 1 integrin (VLA-4) ligands in arthritis. Vascular cell adhesion molecule-1 expression in synovium and on fibroblast-like synoviocytes.
J Immunol, 149 (1992), pp. 1424-1431
[17.]
J. Ohata, N.J. Zvaifler, M. Nishio, et al.
Fibroblast-like synoviocytes of mesenchymal origin express functional B cell-activating factor of the TNF family in response to proinflammatory cytokines.
J Immunol, 174 (2005), pp. 864-870
[18.]
A.N. Akbar, M. Salmon.
Cellular environments and apoptosis: tissue microenvironments control activated T-cell death.
Immunol Today, 18 (1997), pp. 72-76
[19.]
C.D. Buckley, D. Pilling, J.M. Lord, et al.
Fibroblasts regulate the switch from acute resolving to chronic persistent inflammation.
Trends Immunol, 22 (2001), pp. 199-204
[20.]
T. Komuro.
Re-evaluation of fibroblasts and fibroblast-like cells.
Anat. Embryol, 182 (1990), pp. 103-112
[21.]
J.J. Owen, D.E. McLoughlin, R.K. Suniara, et al.
The role of mesenchyme in thymus development.
Curr Top Microbiol Immunol, 251 (2000), pp. 133-137
[22.]
R.K. Suniara, E.J. Jenkinson, J.J. Owen.
An essential role for thymic mesenchyme in early T cell development.
J Exp Med, 191 (2000), pp. 1051-1056
[23.]
K.M. Fries, T. Blieden, R.J. Looney, et al.
Evidence of fibroblast heterogeneity and the role of fibroblast subpopulations in fibrosis.
Clin Immunol Immunopathol, 72 (1994), pp. 283-292
[24.]
D. Brouty-Boye, C. Pottin-Clemenceau, C. Doucet, et al.
Chemokines and CD40 expression in human fibroblasts.
[25.]
L. Marinova-Mutafchieva, P. Taylor, K. Funa, et al.
Mesenchymal cells expressing bone morphogenetic protein receptors are present in the rheumatoid arthritis joint.
[26.]
J. Harris, et al.
Differentiated cells and the maintenance of tissues.
Molecular Biology of the Cell, pp. 1139-1193
[27.]
N.J. Zvaifler, L. Marinova-Mutafchieva, G. Adams, et al.
Mesenchymal precursor cells in the blood of normal individuals.
Arthritis Res, 2 (2000), pp. 477-488
[28.]
P. Bianco, P. Gehron Robey.
Marrow stromal stem cells.
J Clin Invest, 105 (2000), pp. 1663-1668
[29.]
A.D. Whetton, G.J. Graham.
Homing and mobilization in the stem cell niche.
Trends Cell Biol, 9 (1999), pp. 233-238
[30.]
G. Parsonage, F. Falciani, A. Burman, et al.
Global gene expression profiles in fibroblasts from synovial, skin and lymphoid tissue reveals distinct cytokine and chemokine expression patterns.
Thromb Haemost, 90 (2003), pp. 688-697
[31.]
H.Y. Chang, J.T. Chi, S. Dudoit, et al.
Diversity, topographic differentiation, and positional memory in human fibroblasts.
Proc Natl Acad Sci U S A, 99 (2002), pp. 12877-12882
[32.]
S.F. Gilbert.
The genetics of axis specification in Drosophila.
Developmental Biology, 4.a ed., pp. 531-574
[33.]
J.T. Chi, H.Y. Chang, G. Haraldsen, et al.
Endothelial cell diversity revealed by global expression profiling.
Proc Natl Acad Sci U S A, 100 (2003), pp. 10623-10628
[34.]
P. Oh, Y. Li, J. Yu, et al.
Subtractive proteomic mapping of the endothelial surface in lung and solid tumours for tissuespecific therapy.
Nature, 429 (2004), pp. 629-635
[35.]
S. Podgrabinska, P. Braun, P. Velasco, et al.
Molecular characterization of lymphatic endothelial cells.
Proc Natl Acad Sci U S A, 99 (2002), pp. 16069-16074
[36.]
T. Pap, U. Muller-Ladner, R.E. Gay, et al.
Fibroblast biology. Role of synovial fibroblasts in the pathogenesis of rheumatoid arthritis.
Arthritis Res, 2 (2000), pp. 361-367
[37.]
C.M. Hogaboam, C.L. Bone-Larson, S. Lipinski, et al.
Differential monocyte chemoattractant protein-1 and chemokine receptor 2 expression by murine lung fibroblasts derived from Th1- and Th2-type pulmonary granuloma models.
J Immunol, 163 (1999), pp. 2193-2201
[38.]
Z. Zhu, R.J. Homer, Z. Wang, et al.
Pulmonary expression of interleukin-13 causes inflammation, mucus hypersecretion, subepithelial fibrosis, physiologic abnormalities, and eotaxin production.
J Clin Invest, 103 (1999), pp. 779-788
[39.]
M.M. Hitt, J. Gauldie.
Gene vectors for cytokine expression in vivo.
Curr Pharm Des, 6 (2000), pp. 613-632
[40.]
A.V. Miagkov, D.V. Kovalenko, C.E. Brown, et al.
NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint.
Proc Natl Acad Sci U S A, 95 (1998), pp. 13859-13864
[41.]
R. Bucala, C. Ritchlin, R. Winchester, et al.
Constitutive production of inflammatory and mitogenic cytokines by rheumatoid synovial fibroblasts.
J Exp Med, 173 (1991), pp. 569-574
[42.]
T. Seki, J. Selby, T. Haupl, et al.
Use of differential subtraction method to identify genes that characterize the phenotype of cultured rheumatoid arthritis synoviocytes.
[43.]
U. Müller-Ladner, J. Kriegsmann, B.N. Franklin, et al.
Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice.
Am J Pathol, 5 (1996), pp. 1607
[44.]
Y. Shimaoka, J.F. Attrep, T. Hirano, et al.
Nurse-like cells from bone marrow and synovium of patients with rheumatoid arthritis promote survival and enhance function of human B cells.
J Clin Invest, 102 (1998), pp. 606-618
[45.]
I.C.M. MacLennan.
Germinal centers.
Ann Rev Immunol, 12 (1994), pp. 117-139
[46.]
J.C. Edwards, R.D. Leigh, G. Cambridge.
Expression of molecules involved in B lymphocyte survival and differentiation by synovial fibroblasts.
Clin Exp Immunol, 108 (1997), pp. 407-414
[47.]
I. Randen, O.J. Mellbye, O. Forre, et al.
The identification of germinal centres and follicular dendritic cell networks in rheumatoid synovial tissue.
Scand J Immunol, 41 (1995), pp. 481-486
[48.]
J.C. Edwards, L.S. Wilkinson, P. Speight, et al.
Vascular cell adhesion molecule 1 and alpha 4 and beta 1 integrins in lymphocyte aggregates in Sjogren's syndrome and rheumatoidarthritis.
Ann Rheum Dis, 52 (1993), pp. 806-811
[49.]
G.S. Firestein, et al.
Etiology of rheumatoid arthritis.
Textbook of Rheumatology, 5.a ed., pp. 851
[50.]
E. Lindhout, C. De Groot.
Follicular dendritic cells and apoptosis: life and death in the germinal center.
Histochem J, 27 (1995), pp. 167-183
[51.]
A. Villena, A. Zapata, J.M. Rivera-Pomar, et al.
Structure of the non-lymphoid cells during the postnatal development of the rat lymph nodes. Fibroblastic reticulum cells and interdigitating cells.
Cell Tissue Res, 229 (1983), pp. 219-232
[52.]
A. Cerny, R.M. Zinkernagel, P. Groscurth.
Development of follicular dendritic cells in lymph nodes of B-cell-depleted mice.
Cell Tissue Res, 254 (1988), pp. 449-454
[53.]
R. Abe, S.C. Donnelly, T. Peng, et al.
ipheral blood fibrocytes: differentiation pathway and migration to wound sites.
J Immunol, 166 (2001), pp. 7556-7562
[54.]
M. Sen, K. Lauterbach, H. El-Gabalawy, et al.
Expression and function of wingless and frizzled homologs in rheumatoid arthritis.
Proc Natl Acad Sci U S A, 97 (2000), pp. 2791-2796
[55.]
H. Wekerle, U.P. Ketelsen.
Thymic nurse cells: Ia-bearing epithelium involved in T-lymphocyte differentiation?.
Nature, 283 (1980), pp. 402-404
[56.]
R. Tsunoda, M. Nakayama, E. Heinen, et al.
Emperipolesis of lymphoid cells by human follicular dendritic cells in vitro.
Virchows Arch B Cell Pathol Incl Mol Pathol, 62 (1992), pp. 69-78
[57.]
E.A. Clark, K.H. Grabstein, G.L. Shu.
Cultured human follicular dendritic cells. Growth characteristics and interactions with B lymphocytes.
J Immunol, 148 (1992), pp. 3327-3335
[58.]
J.H. Humphrey, D. Grennan, V. Sundaram.
The origin of follicular dendritic cells in the mouse and the mechanism of trapping of immune complexes on them.
Eur J Immunol, 14 (1984), pp. 859-864
[59.]
F. Mackay, P. Schneider, P. Rennert, et al.
BAFF AND APRIL: a tutorial on B cell survival.
Ann Rev Immunol, 21 (2003), pp. 231-264
[60.]
H. Hase, Y. Kanno, M. Kojima, et al.
BAFF/BLyS can potentiate B-cell selection with the B-cell coreceptor complex.
Blood, 103 (2004), pp. 2257-2265
[61.]
S.M. Tan, D. Xu, V. Roschke, et al.
Local production of B lymphocyte stimulator protein and APRIL in arthritic joints of patients with inflammatory arthritis.
Arthritis Rheum, 48 (2003), pp. 982-992
[62.]
C.S. Goodyear, D.L. Boyle, G.J. Silverman.
Secretion of BAFF by fibroblast-like synoviocytes from rheumatoid arthritis biopsies attenuates B-cell depletion by rituximab.
Athritis Rheum, 52 (2005), pp. S290
Copyright © 2006. Sociedad Española de Reumatología
Descargar PDF
Opciones de artículo
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos