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Resumen

Se tomaron en consideración distintos aspectos 
de algunas técnicas computacionales para 
el análisis AVOA (Amplitud Versus Offset y 
Azimut), para la composición de fracturas, en 
particular: utilizando amplitudes en lugar de 
eqgÝekgpvgu"fg"tghgeek„p."uwcxk¦cpfq"nqu"fcvqu"
sísmicos y el método de la estimación numérica 
para calcular la dirección. Se estimó un nuevo 
método de cálculo y se indica un nuevo método 
suavizado. Se compararan distintos métodos 
fg"eƒnewnq"gp"nqu"fcvqu"ukpvfivkequ"fg"uwrgtÝekg"
fg" tgÞgeek„p." eqp" {" ukp" twkfq0" Ug" qdvwxkgtqp""
propiedades de los métodos numéricos, 
dependientes de conjuntos distintos de los 
azimut y los offset. Se muestra una superioridad 
del nuevo método.

Palabras clave: AVOA, medio HTI, anisotropía 
sísmica, caracterización de yacimientos 
fracturados.

Abstract

Different aspects of computational techniques 
for AVOA analysis (Amplitude Versus Offset 
and Azimuth) for fracture characterization are 
considered, in particular: using amplitudes 
kpuvgcf" qh" tgÞgevkqp" eqghÝekgpvu." uoqqvjkpi"
seismic data, and numerical methods for 
estimation of fracture directions. A new 
eqorwvcvkqpcn" ogvjqf" cpf" c" pgy" Ýnvgt" hqt"
smoothing are suggested. The different 
computational methods are compared in 
u{pvjgvke" tgÞgevkqp" uwthceg" fcvc" ykvj" pqkug."
and without noise. Properties of the numerical 
methods in dependence on different sets of 
azimuths and offsets are obtained. It is shown 
a superiority of the new method.

Key words: AVOA, HTI medium, seismic 
anisotropy, fracture-reservoir characterization.
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Introduction

Vjg"cpcn{uku"qh"c¦kowvjcn"xctkcvkqp"kp"tgÞgevkqp"
eqghÝekgpvu." qt" CXQC" cpcn{uku" *Cornkvwfg"
Versus Offset and Azimuth), is widely applied 
for detecting and mapping highly fractured 
zones with azimuthally-oriented vertical cracks 
(Mallik et al., 1998; Jenner, 2002; Sabinin & 
Chichinina, 2008). The AVOA techniques are 
based on the Rüger (1998) approximation 
hqt" vjg" tgÞgevkqp" eqghÝekgpvu" kp"JVK"ogfkwo."
and give principal symmetry directions of HTI 
medium.

Here, the computational aspects of AVOA 
techniques are considered, namely, applying 
cornkvwfgu" kpuvgcf" qh" tgÞgevkqp" eqghÝekgpvu."
smoothing the amplitudes, an incidence 
angle estimation, methods for obtaining the 
symmetry-axis angle, synthetic data for testing 
techniques, and a numerical experiment for 
investigating properties of the techniques. 
A new computational method for obtaining 
vjg" u{oogvt{/czku" cping" cpf" c" pgy" Ýnvgt"
for smoothing are suggested. All considered 
techniques are compared in synthetic 
anisotropic seismic data with noise, and 
without noise. The suggested new technique 
proved better than the others.

Background

The methodology of AVOA analysis is based on 
the concept of azimuthal anisotropy caused for 
the most part by parallel vertical fractures. It 
leads to the azimuthal anisotropy of amplitudes, 
kp"rctvkewnct."vq"c¦kowvjcn"xctkcvkqp"kp"tgÞgevkqp"
eqghÝekgpvu0" Ngv" c" htcevwtgf" tgugtxqkt" dg"
represented by a model of a transversely 
isotropic medium with horizontal symmetry 
czku" *JVK" ogfkwo+0" Vjg" RR/ycxg" tgÞgevkqp"
eqghÝekgpv"R"cv"vjg"kpvgthceg"*qt"cv"vjg"tgÞgevkpi"
boundary) between weakly anisotropic HTI 
media (or between an isotropic medium and 
cp"cpkuqvtqrke"JVK"ogfkwo+"ku"fgÝpgf"d{"vjg"
approximate formula (Rüger, 1998):

 R(s,"h)= A + B (h)sin2 s"+ C(h)sin2s"tan2s,  
  (1)

where s" is the incidence angle, and h is the 
source-receiver-line azimuth with respect to 
the coordinate axis x. The term A is the normal-
kpekfgpeg"tgÞgevkqp"eqghÝekgpv

 A Z Z= ( )2Δ  (2)

where Z VP≡ ρ | |
 is the vertical P-wave 

impedance, VP
||
 is the vertical velocity (or 

velocity in the isotropy plane) of the P-wave, 

t"is density, F"denotes the difference between 
the values of a parameter below and above the 
tgÞgevkpi" dqwpfct{." cpf" vjg" dct" 000" kpfkecvgu"
average of these values. V VP P

| | :  in the 
isotropic media.

Vjg" eqghÝekgpv" B(h) is a so-called AVO 
gradient, which can be written (Rüger, 1998) 
as

 B(h) = B
iso

 + B
ani

 cos2(h/h
0
), (3)

where h
0
 is the angle of the symmetry axis with 

the x--axis. The term B
iso

 is the AVO-gradient 
isotropic part (equal to the AVO gradient for 
isotropic media), and B

ani
 is the anisotropic part 

of the AVO gradient.

Vjg"eqghÝekgpv"C(h) can be written (Rüger, 
1998) as,

 C(h) = c+d cos4(h/h
0
) + i"sin2(h/h

0
)cos2(h/h

0
), 

  (4)

where α ≡ V VP P

|| ||
/ ( )2Δ , β ε= 1

2

( )V
Δ , and 

γ δ= 1

2

( )V
Δ .

Above, Thomsen-style anisotropy parame-
ters g(V), and f(V) are negative for HTI media, 
and they are equal to zero for isotropic media.

The main problem of AVOA analysis is to 
estimate the symmetry-axis angle h

0
 from 

surface seismic data of amplitudes using 
numerical techniques.

The techniques of AVOA are based on 
equations (1) - (4). Note that equation (1) 
ku" kpvgpfgf" hqt" ecnewncvkqp" qh" tgÞgevkqp" eqg/
hÝekgpvu." yjkng" kp" tgcn" fcvc." qpg" qrgtcvgu"
ykvj" cornkvwfgu" qh" tgÞgevgf" ycxgu." pqv" ykvj"
tgÞgevkqp" eqghÝekgpvu0" Vjku" dtkpiu" uqog" rtq/
blems which are discussed in the next section.

Wukpi" cornkvwfgu" kpuvgcf" qh" tgÞgevkqp"
eqghÝekgpvu

While the background of AVOA analysis is 
dcugf" qp" T¯igtÓu" gswcvkqp" hqt" vjg" tgÞgevkqp"
eqghÝekgpv" *3+." kp" tgcn" fcvc." CXQC" cpcn{uku"
should use signal amplitudes. It is true that 
vjg" cornkvwfg" ku" pqv" gswcn" vq" vjg" tgÞgevkqp"
eqghÝekgpv0"Oqtgqxgt."pq"rkemgf"kpuvcpvcpgqwu"
amplitude (sample) in the signal can be used 
kpuvgcf"qh"vjg"tgÞgevkqp"eqghÝekgpv"dgecwug"vjg"
signal changes its form during propagation for 
many reasons. It seems that one should use an 
integral amplitude characteristic of the signal 
yjkej"cfgswcvgn{"eqttgurqpfu"vq"vjg"tgÞgevkqp"
eqghÝekgpv0"NgvÓu"ecnn"vjku"ejctcevgtkuvke"ukorn{"
by amplitude and denote it as P.
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The estimated value of h
0 
is very sensitive 

vq"vjg"fgÝpkvkqp"qh"P, especially for data with 
noise. I suggest the following procedure for 
fgÝpkvkqp" qh" P which gives good and stable 
results. The procedure calculates an average 
value of a signal envelope in a time window. 
In calculating the envelope, the Fourier 
transform of this signal is used: F = F

+
+ F/, 

where F is spectrum, F
+
 is the part of spectrum 

corresponding to positive frequencies (yœ0), 
and F/"is the part of negative frequencies. The 
envelope of the signal is given by the absolute 
value of inverse Fourier transform of the 
spectrum with double F

+
, and F/»2 (Sheriff & 

Geldart, 1983).

The sign of envelope is positive; therefore 
this approach is applicable only to seismograms 
ykvj"vjg"eqpuvcpv"ukip"qh"tgÞgevkqp"eqghÝekgpv"
in dependence on offset.

For data with noise, the envelope is noisy, 
too (see Figure 1). Therefore, smoothing is 
necessary.

For smoothing, an algorithm of discrete 
vtcpuhqtocvkqpu"qh"ycxgngv"d{"Ýnvgtu"ku"crrnkgf0"
Hqwt" u{oogvtke" Ýnvgtu" ctg" eqpuvtwevgf" hqt" kv<"
the low-pass (h

0
) and high-pass (h

1
) analysis 

Ýnvgtu." cpf" vjg" nqy/rcuu" *h
2
) and high-pass 

(h
3
+"u{pvjguku"Ýnvgtu0"Vjg"tkijv/jcpf"rctv"qh"h

0 

eqpukuvu" htqo" vjg" Ýnvgt" fgtkxgf" d{" Cdfgnpqwt"
& Selesnick (2004). The left-hand part of h

0
 is 

symmetric to it. That is

    h
0
({/n,...,n})={b,b,/a,a,b,b,a,/a,c,

                           /a,a,b,b,a,/a,b,b}, (5)

where a M M b a: : :/ , / ,32 2 2 4 , and 
n = 8. The central value is c = 1/M.

Vjg"jkij/rcuu"cpcn{uku"Ýnvgt"ku"eqpuvtwevgf"
by formula h

1 
(i) = (/1)i h

0
 (n/i+1) for i ら"2, and 

h
1 

(0) = 00" Vjg" u{pvjguku" Ýnvgtu" ctg" ecnewncvgf"
by formula h

2 
(i) = (/1)i h

1
 (i), h

3 
(i) = (/1)i h

0
 (i), 

see (Abdelnour & Selesnick, 2005). The central 
values are h

2 
(0) = c and h

3 
(0) = 0.

The smoothed signal is obtained by the 
decomposition algorithm; see Figure 2 (WSBP, 
2012).

Figure 1. A signal with noise (thin line) in time, and 
its envelope.

Figure 2. The 3-stage decomposition algorithm.

The input signal is x(j), j=1,…,m, m>>2n. It 
is decomposed into low and high components 
lo

1
(j) and hi

1
(j)"kp"vjg"Ýtuv"uvcig<

 lo j h i x i j
i n

n

1 0( ) ( ) ( ),= +
=−

∑  

          

hi j h i x i j
i n

1 1( ) ( ) ( )= +
=−

nn

∑ ,

           j m= ,...,1  .

In the next stages (s = 2,…, S), the each low 
component lo

s-1
(j) is decomposed by the same 

cpcn{uku"Ýnvgtu0

Chvgt"cnn"uvcigu"qh"fgeqorqukvkqp"Ýpkujkpi."
vjg"uvcigu"qh"crrn{kpi"vjg"u{pvjguku"Ýnvgtu"ctg"
hwnÝnngf"kp"tgxgtug"qtfgt"(s=S, S-1,…,1):

 lo j h i lo i js s

i n

n

−

=−

= +∑1 2( ) ( ) ( ) 

              

h i hi i js

i n

n

=−

+ +3( ) ( )∑∑ ,

            = ,...,j m1 .

The output signal y (j)"ku"qdvckpgf"Ýpcnn{<

 y(j) = lo
0
(j)p, 

yjgtg" vjg" Ývvkpi" cornkvwfg" eqghÝekgpv" p can 
be approximately estimated by the formula p 
= 1+0.057S, where S is the number of stages.

The advantage of this variant of discrete 
transformation algorithm in comparison with 
(WSBP, 2012) is the absence of shift functions 
kp"kv"fwg"vq"crrn{kpi"vjg"hwnn{"u{oogvtke"Ýnvgtu"
(i=-n,…,n).
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It must be noted that the algorithm gives 
unsatisfactory results at the edges of the signal 
dgecwug" qh" vtwpecvkpi" vjg" Ýnvgtu" kp" 2n edge 
points. Therefore, it is necessary m>>2n.

The result of smoothing the signal of Figure 
1 by the 3-stage algorithm is presented in 
Figure 3. The smoothness of resulting curve 
increases with increasing S. Also with increasing 
S, the algorithm slightly deforms the resulting 
impulse in comparison with the parent impulse 
without noise. Optimum in the smoothness and 
in the conservation of form is observed at the 
value S = 3.

The limits of time window for calculating P 
with the help of envelope can be chosen by 
different ways. I use the following way. From 
the envelope of signal e(t), the maximum e

m
 and 

nearest local minimums, left e
l
 and right e

r
, are 

calculated. The left limit of the time window is 
set in the point where e = e

l
 + 0.15(e

m
/e

l
), and 

the right limit – where e = e
r
 + 0.15(e

m
/e

l
), see 

vertical lines in Figures 1, 3. Obviously, this 
algorithm correctly works only with smoothed 
signals.

Equation (1) should be rewritten for using 
the amplitudes. If the source and the receivers 
are at the earth surface, then the amplitude of 
tgÞgevgf"RR/ycxg"ecp"dg"gzrtguugf"cu"

 P c RPg ini: 2
,

where c
g
" ku" vjg" eqghÝekgpv" qh" igqogvtkecn"

spreading (divergence) from source to 
tgÞgevkqp" rqkpv" hqt" vjku" ycxg." c

g
= c

g 
(s, h), 

P
ini
 is the amplitude of the source (the initial 

amplitude), and R"ku"vjg"tgÞgevkqp"eqghÝekgpv."
R = R

 
(s, h) in the equation (1).

The amplitude for the normal-incidence 
wave can be written as 

 P c APg ini0 0

2: ,

where c
g0
" ku" vjg" pqtocn/kpekfgpeg" eqghÝekgpv"

of geometrical spreading, which does not 
depend on (s, h), and A is the normal-incidence 
tgÞgevkqp"eqghÝekgpv."A = const, see equations 
*3+"/"*4+0"Vjgp"vjg"tgÞgevkqp"eqghÝekgpv"ecp"dg"
expressed as 

 R A
c P

c P

g

g

: 0

2

2

0

.

Vjgtghqtg"vjg"gswcvkqp"*3+"hqt"vjg"tgÞgevkqp"
eqghÝekgpv" R transforms into the following 
equation for the amplitude P:

 r
g
P(s, h) = P

0
 + mB(h)sin2 s"+ mC(h)sin2s"tan2s,  

  (6)

where m = P
0
/A, and r

g
 －"(c

g0
 / c

g
)2. This equation 

should be used in the AVOA techniques instead 
of (1).

Note that c
g
 can be expressed as c

g
 = c(s, h)/r in 3D space, where r is a half of travel 

path from source to receiver, and c depends 
on the direction of wave propagation (for 
isotropic media, c = const). In assuming a 
weak anisotropy, one may assume a weak 
dependence of geometrical spreading on 
incidence angle: c が"const for a given source-
to-receiver line with azimuth h. Then, for a 
jqoqigpgqwu" ogfkwo" cdqxg" vjg" tgÞgevkpi"
boundary,

 r
c

c

r

z
g

g

g

= = =
0

2

2

2

2 2

1

cos θ
, (7)

where z is the normal-incidence ray path, and 
c

g0
 －" c / z. It is the approximate formula for 

divergent correction.

Also for multilayered media, the expressions 
for divergence correction can be found from 
Newman (1973). A practical methodology for 
the P-wave geometrical-spreading correction 
in layered azimuthally anisotropic media can 
be found from Xu & Tsvankin (2004).

The incidence angle estimation

In the case of n isotropic layers above the 
tgÞgevkpi" dqwpfct{." qpg" ecp" qdvckp" vjg"
incidence angle s"= s

n
" from a solution of the 

following non-linear equation for a:

Figure 3. The signal with noise (thin line), the 
smoothed signal (thick line), and the envelope of 

smoothed signal.
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 x a
zV

a V

i i

ii

n

0
2 2

1 1
=

−=

∑ , (8)

where x
0
 is the half of offset, z

i
 is the thickness 

of i-th layer, V
i
 is the velocity in i-th layer, and 

sin (s
n
) = aV

n
. For calculating the geometrical 

spreading, the travel path r
z

a V

i

ii

n

=
−=

∑
1

2 2
1

.

Kp"vjg"ecug"qh"vjg"tgÞgevkpi"dqwpfct{"dgkpi"
the lower boundary of anisotropic layer, the 
problem is more complicated because the last 
layer is anisotropic, and the velocity V

n
 depends 

on s
n
 in it and is not known beforehand.

The problem can be solved by Sabinin 
(2012). An advantage of his method is that the 
value V

n
 in the anisotropic layer is unnecessary 

for calculating angle s
n
 and path r. However, it 

uses additionally the impulse from the upper 
boundary of anisotropic layer what complicates 
vjg"vgejpkswg0"Kv"ikxgu"tguwnvu"pqv"uwhÝekgpvn{"
better than the method (8). Therefore, I use 
the simple method (8) here with setting an 
approximate value of V

n
.

The methods for estimation of symmetry 
axis angle by AVOA

Usually, 3D seismic data used in AVOA analysis 
are received from a system of receivers and 
sources spacing in nodes of a rectangle grid 
at the surface. The symmetry axis angle 
is calculated for a small square (for a bin) 
including a node of the grid, by using seismic 
traces which have the Common Middle Point 
(CMP) located in this bin. If such traces are 
few, then neighbor bins are combined into 
a superbin, and calculations are made for 
it. Therefore, a preliminary stage of the 
estimation is an extraction of seismic traces of 
the superbin from the seismic data for taking 
them into consideration.

For numerical methods of estimation of 
symmetry axis angle, one can use equation (6) 
as in Rüger’s form:

 T
*
 = a + (b

*
 + ct)s + (d

*
 + e

*
t + ft2)s2/(1/s), (9a)

as in the power form:

 T = a + s(b + ct)+s2 (d + et + ft2), (9b)

where T
*
 = r

g
 P (s, h), T = (1/s)T

*
, s = sin2s, t = cos2 

(h/h
0
), a = P

0
, b

*
 = mB

iso
, b = b

*
/a, c = mB

ani
, d

*
 = 

mc, d = d
*
/b

*
, e

*
 = mFf(V)/2, e = e

*
/c, f=mFg"(V)/2/e

*
 

and m = P
0
/A.

The methods vary by simplifying ways 
applied, and can be separated into Sectored 
methods (S and SR), Linear methods (L and 
LR), and General method (G), where the letter 
‘R’ denotes that the Rüger’s form (9a) is used 
instead of (9b).

Sectored methods

The method SR was suggested by Mallik et 
al. (1998) for the case of three azimuths with 
using equations (1), and (3). It took its perfect 
form in the work by Sabinin & Chichinina (2008) 
who used equations (6), (3), and (4). For this 
method, the traces of superbin are sorted by n 
azimuthal sectors. It is adopted that all traces 
of the sector have the same value of azimuth 
equal to the middle azimuth of the sector. 
Because of this, sectored methods introduce 
in h

0
 an own error no more than a half of the 

sector size.

Here, the method S applied to equation (9b) 

is presented. If in the sector of azimuth h
j
 (j = 1, 

..., n), there are k
j
 traces with incidence angles s

j
 (i = 1, ..., k

j
) in the last layer above the target 

boundary, then one can write from (9b) for this 
sector j:

 T P B s C sij j j i j i= + +1 1 2
, (10)

where T
ij
 is the value T calculated from the 

trace i in the sector j. In each sector, B1

j
  = m

j
B

j
, 

C1

j
  = m

j
C

j
, where m

j
 = P

j 
/A, and P

j
, B1

j
 , C1

j
  are the 

Ývvkpi"eqpuvcpvu0

Having T
ij
 and s

i
 for all i in the sector j (k

j
""œ"

3), one can calculate s
i
 = sin2 si, and then P

j
, B1

j
 , 

and C1

j
  from (10) by the least-squares method. 

For this, it is minimized the functional of error 
for each sector j:

 F P B s C s Tj j j i j i ij

i

k j

= + + −
=

∑( )
1 1 2 2

1

. 

For minimizing F
j
, it is necessary to solve 

the system of three equations:

 ∂ ∂ = ∂ ∂ = ∂ ∂ =F P F B F Cj j j j j j/ , / , /0 0 0
1 1

. 

It gives: C
b f a g

b a c
j

1 1 1 1 1

1

2

1 1

=
−

−
, B1

j
 = (f

1
/C1

j
 b

1
)/a

1
, 

and P
j
 =(u

0
/BC1

j
""(AB1

j
 )/k

j
, where a

1
 = A2/Bk

j
, b

1
 = 

AB/Ck
j
, c

1
 = B2/Dk

j
, f

1
 = Au

0
/u

1
k

j
, g

1
 = Bu

0
 /"u

2
k

j
,

 
A si

i

k j

=
=

∑
1

, B si
i

k j

=
=

∑ 2

1

,C si
i

k j

=
=

∑ 3

1

,D si
i

k j

=
=

∑ 4

1

,

,
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u Tij
i

k j

0

1

=
=

∑ ,

 

u s Ti ij

i

k j

1

1

=
=

∑ , and u s Ti ij

i

k j

2

2

1

=
=

∑ .

These calculations should be made for all 
sectors. 

Then, the unknown value h
0
 can be obtained 

from the system of equations of type (3), see 
(9b):

 B P b c tj j j

1 1 1
/ = + , (11)

where j = 1, ..., n, and t
j
 = cos2(h/h

0
). The 

unknown constants b1, and c1 have a sense: 
b1A = B

iso
/A, and c1A = B

ani
.

Equation (11) is transformed into more 
convenient form:

 U
j
 = b

0
+c

0
gg

j
+c

0
hh

j
, (12)

where U
j
 = B1

j
  /P

j
, b

0
 = b1 + 0.5c1, c

0
 = 0.5c1, g = 

cos(2h
0
), h = sin(2h

0
), g

j
 = cos(2h

j
) and h

j
 = sin(2h

j
).

The system (12) has three unknowns (b
0
, 

c
0
, and h

0
), therefore it should be n œ" 5" for 

obtaining solution. The system (12) has two 
solutions (two h

0
 differing in r/2, and two c

0
 

of opposite signs, correspondently), and is 
solved by the least-squares method, too. It is 
minimized the functional of error:

 F b c gg c hh Uj j j

j

n

= + + −
=

∑( )0 0 0

2

1

. (13)

The following system of three equations 
should be solved:

 るH/るd
0
 = 0,"るH/るe

0
 = 0,"るH/るh

0
 = 0. 

It gives: tan( )2 0

1 1 1 2

1 2 1 1

≡ =
−

−

h

g

b f a f

b f c f
ϕ , c

0
 = f

1
/

(ga
1
 + hb

1
), and b

0
 = [u

0
/c

0
(Ag + Bh)]/n, where 

a
1
 = A2/Cn, b

1
 = AB/Dn, c

1
 = B2/En, f

1
 = Au

0
/u

1
n, 

f
2
=Bu

0
/u

2
n, A g j

j

n

=
=

∑
1

, B h j
j

n

=
=

∑
1

, C g j
j

n

=
=

∑ 2

1

,

D g hj j

j

n

=
=

∑
1
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j

n

=
=
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1

, u U j

j

n

0

1

=
=

∑ , 

u g Uj j

j

n

1

1

=
=

∑ , and u h Uj j

j

n

2

1

=
=
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The condition for distinguishing symmetry-
axis from fracture-strike directions is derived 

by Sabinin & Chichinina (2008), and uses 
equation (4). Here it is presented in more 
general form.

In terms of equations (9b), (10), and (11), 
equation (4) can be written as

 C P d e t f tj j j j

1 1 1 1 2
/ = + + , (14)

where j = 1, ..., n, d1 = (c/B
iso

)/A, e1 = (Ff(V)/2/
B

ani
)/A, and f1 = (Fg(V)/Ff(V))/(2A).

When substituting the value 
π

0 2
±ϕ  instead 

of h
0
 into equation (14), the sign of the second 

term e1t
j
 switches to the opposite sign, because 

equation (14) takes the form

 C P d e e t f tj j j j

1 1 1 1 1 2
/ ( )= + − + . 

The last term of equation (11) c1t
j
 switches 

its sign, too. One can combine Ff(V) = 2A(c1 + e1) 
htqo"fgÝpkvkqpu" vq" gswcvkqpu" *33+." *36+." cpf"
conclude that the sign of Ff(V) is switched, too. 
For calculating Ff(V), it should be solved system 
(14) which is similar to (10) by the method of 
solution.

If the HTI layer is situated between 
isotropic layers then Ff(V) must be negative for 
wrrgt"tgÞgevkpi"dqwpfct{ of the HTI layer, and 
positive for lower boundary. If the calculated 
value of Ff(V) has this sign then h

0
 is the 

symmetry-axis angle. In opposite case, it is 
the fracture-strike direction.

It must be noted that Fg(V) = 2A(c1 + e1 + 
f1), and also can be used for distinguishing 
solutions because g(V) and f(V) have the same 
sign.

The formal condition that the second 
derivative of functional (13) must be positive in 
the minimum of functional can also be applied. 
Because of errors in data, it should be used as 
an additional condition to previous ones, and 

should have a form る2F/るh2

0
 > a small value.

Linear methods

The method LR was suggested by Jenner 
(2002) for equation (1). It is not needed in 
sectoring data. All traces of superbin are taken 
into consideration together.

Here, it is applied to equation (9b), the 
method L. Equation (9b) is truncated after a 
line part respecting s. If the superbin has n 
traces(i = 1, ..., n), with incidence angles s

i
 at 

the target boundary, and with azimuthal angles 



GEOFÍSICA INTERNACIONAL

 OCTOBER - DECEMBER 2014      463

h
i
, then one can write the result of truncation 

in the form:

 T
i
 = a + s

i
 (b

0
 + c

0
gg

i
 + c

0
hhi). (15)

where T
i
 is the value T calculated from the trace 

i, s
i
 = sin2s

i
, b

0
 = b + 0.5c, c

0
 = 0.5c, g = cos(2h

0
), h 

= sin(2h
0
), g

i
 = cos(2h

i
), and h

i
 = sin(2h

i
).

The values s
i
, g

i
, and h

i
 are known because 

they can be calculated from headers of 
seismograms and parameters of medium. Let 
us consider the functional of error:

 F a b s c gs g c hs h Ti i i i i i

i

n

= + + + −
=

∑( )0 0 0

2

1

.  
  (16)

Functional F must be minimized over 
parameters a, b

0
, c

0
, and h

0
. For this, it is 

necessary to solve the system of four equations:

 るH/るc = 0,"るH/るd
0
 = 0,"るH/るe

0
 = 0,"るH/るh

0
 = 0.  

  (17)

Solution of system (17) gives the equation 
for obtaining h

0
:

 tan( )2 0

2 1 1 2

2 2 1 1

= =
−

−

h

g

A H A H

A H B H
ϕ , (18)
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2
a

1
/F

1
a

2
, and H

2
=F

3
a

1
/F

1
a

3
 in which 

a
1
=nB/A2, b

1
=nI/D2, c

1
=nJ/E2, a

2
=nG/AD, 

b
2
=nK/ED, a

3
=nH/AE, F

1
=nf

1
/Af

0
, F

2
=nf

2
/Df

0
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0
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1
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1

,

K g h si i i

i

n

=
=
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1

, f Ti
i

n

0

1

=
=

∑ , f s Ti i

i

n

1

1

=
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f g s Ti i i

i

n

2

1
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n
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1
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=

∑ .

The other parameters are:

c
A H A H

h A A B
0

2 1 1 2

2

2

1 1

=
−

−( )
, b

0
 = (F

1
/c

0
ga

2
/c

0
ha

3
)/a

1
, 

and a = (f
0
/b

0
A/c

0
gD/c

0
hE)/n.

From (18), one can see that the solution h
0
 

has a period of 
2

π. This value of the period means 

that we must use an additional condition for 
understanding what value h

0
 is the symmetry-

axis azimuth. This condition may be B
ani

 > 0 if V
S 

/ V
P 

> 0.56 (Chichinina et al., 2003). In general 
case, it can be the condition る2F/るh2

0
 > a small 

positive value, where F is the functional of 
error (16).

General method (G)

The method is constructed by analogy with the 
GM method by Sabinin (2013). It is not needed 
in sectoring, too. All traces of superbin are taken 
into consideration together. If the superbin has 
n traces (i = 1, ..., n), with incidence angles s

i
 at 

the target boundary, and with azimuthal angles h
i
, then equation (9b)  can be written as:

 T a bs cs t ds es t fs ti i i i i i i i i= + + + + +2 2 2 2
, 

where T
i
 is the value T calculated from the trace 

i, s
i
 = sin2s

i
, and t

i
 = cos2(h

i
/h

0
).

Let us consider the functional of error:

 

F a bs cs t dsi i i i

i

n

= + + +
=

∑(
2

1  

                   
es t fs t Ti i i i i+ + − )

2 2 2 2

. (19)

Functional F must be minimized over 
parameters a, b, c, d, e, f, and h

0
. For this, 

it is necessary to solve the system of seven 
equations:

 るH/るc = 0,"るH/るd = 0,"るH/るe = 0, るH/るf = 0, 

 るH/るg = 0, るH/るh = 0, るH/るh
0
 = 0. (20)

Vjg"ukz"Ýtuv"gswcvkqpu"qh"u{uvgo"*42+"ikxg"
a line system for deriving expressions for the 
parameters a, b, c, d, e, and f (for details, see 
Appendix).

The last equation of (20) can be transformed 
into a non-linear equation for obtaining h

0
 (for 

details, see Appendix).

Thus, system (20) is non-linear on h
0
, and 

is solved by the method of bisecting. It has 
more than one solution usually. From these 
local solutions, one chooses that one which 
gives a minimum for functional (19).

As was observed from calculations, the 
solutions of system (20) near the symmetry 
axis angle, and near the fracture strike angle 
give close values of functional (19). It means 
that additional criterions are practically needed 
for separating these directions. For the case 
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of HTI layer situated between isotropic layers, 
it can be the condition of negative values 
for calculated g(V) and f(V) in the anisotropic 
nc{gt." cu" cdqxg0" Hqt" vjku." htqo" fgÝpkvkqpu" vq"
equations (9b) and (2), one can calculate from 
the solution of (20) at the interface:

 Fg(V)= 2A(c + e +f)/a, (21)

 Ff(V)= 2A(c + e)/a. (22)

In the case of interface between anisotropic 
layers, it is needed additionally to know 
vjg" rtgfgÝpgf" ukipu" qh" Fg(V), and Ff(V) for 
comparison.

The additional criterion can also be the 
maximum of second derivative of functional 
(19), るH/るh

0
.

Comparing the AVOA techniques

The techniques using the methods above 
for estimation of symmetry axis angle were 
compared in ability to give the most precise 
value of h

0
 for HTI medium. At present, reliable 

Ýgnf" ogvjqfu" qh" qdvckpkpi" h
0
 do not exist. 

Therefore, I generated synthetic seismograms 
hqt" cp" ctvkÝekcn" vjtgg/nc{gt" ogfkwo" ykvj" vjg"
anisotropic layer in the middle by applying 
the technique by Sabinin (2012) of 2D wave 
modeling. I set h

0
 =60º, and derived models of 

the anisotropic layer for different values of h
j
 by 

rotating the stiffness tensor for anisotropic HTI 
layer (MacBeth, 1999) around z axis relatively 
to h

0
. Anisotropic parameters e

n
 = 0.35, and e

t
 

= 0.2 (see MacBeth, 1999) were used in the 
stiffness tensor.

Host rock velocity V
P
 in three layers from 

above had the values 3200, 4000, and 4800 
(the other variant was 3200), m/s, V

S
 was twice 

less, densities were equal, and thicknesses 
qh" vyq"Ýtuv" nc{gtu"ygtg"3822." cpf"622"m. A 
source of explosion type generated one Ricker 
impulse of frequency 30 Hz. Receivers were 
spaced over every 100 m beginning from the 
source, and they measured z-component of 
velocity. There were 50 offsets, and 50 traces 
in each seismogram.

There were three goals: to investigate 
how the techniques behave on different sets 
of incidence angles, how the techniques are 
kpÞwgpegf"d{"pqp/u{oogvt{"kp"h

j
 relatively to h

0
."cpf"jqy"vjg"vgejpkswgu"ctg" kpÞwgpegf"d{"

noise.

Vjgtghqtg." hqt" vjg" Ýtuv" iqcn." K" ocfg"
calculations of h

0
 for different intervals of 

offsets: from a minimum offset till a maximum 

offset, provided the minimum offset was 
Ýzgf"cv" vjg"pwodgt"qpg." cpf" vjg"pwodgt"qh"
maximum offset was changed from number 50 
down to 3 in one set of the intervals; and the 
oczkowo"qhhugv"ycu" Ýzgf" cv" vjg" 72/vj." cpf"
the minimum offset was changed from number 
1 to 48 in the other set of the intervals. 
Naturally, the maximum incidence angle s

max
"

corresponding to the maximum offset, and the 
minimum incidence angle s

min
 corresponding to 

the minimum offset was also correspondently 
changed in these sets of offsets.

For the second goal, I obtained different sets 
of the synthetic seismograms corresponding to 
different azimuths, one seismogram for each 
azimuth. The sets of azimuths were uniform, 
cpf"fkhhgtgf"d{"u{oogvt{0"K"fkf"pqv"cko"vq"Ýpf"
the best or the worst set from them. I only 
supposed that a symmetric set can be better 
than an asymmetric one. I kept for testing the 
symmetric set of azimuths h

j
 ={/150º, /120º, /90º, /60º, /30º, 0º, 30º, 60º, 90º, 120º, 150º, 180º}, 

and the asymmetric set h
j
 ={85º, 95º, 105º, 115º, 

125º, 135º, 145º, 155º, 165º}. 

For the third goal, I took the best variant for 
the symmetric set of seismograms to eliminate 
the errors as due to the non-symmetry, as due 
vq"c"Ýpkvg/fkhhgtgpeg"ukowncvkqp"yjgp"crrn{kpi"
vjg" ctvkÝekcn" pqkug0" Vjg" HF" ukowncvkqp" d{"
Sabinin (2012) uses PML boundary conditions 
which give non-visible (see Figure 4) but non-
¦gtq" ycxgu" tgÞgevgf" htqo" vjg" dqwpfctkgu" qh"
area. This slightly distorts the form of some 
synthetic impulses.

For the synthetic seismic data being quasi-
real, I added a random Gauss normal noise to 
the seismograms generated, different for each 
seismogram. Maximum amplitude of the noise 
was chosen as 10% of the maximum amplitude 
qh" vjg"ycxg" tgÞgevgf" htqo" vjg" vqr" dqwpfct{"
qh" vjg" cpkuqvtqrke" nc{gt" kp" vjg" Ýtuv" vtceg" qh"
seismogram.

Finally, I added the noise to the seismograms 
of the asymmetric set.

All seismograms were smoothed by 
Ýnvgtu" *7+" kp" vjg" vgejpkswgu0" Jkij/htgswgpe{"
components of the noise are eliminated well 
after smoothing, as shown in Figure 3. It 
is principally impossible to eliminate low 
frequencies compared with the frequency of 
signal. Therefore, the signal after smoothing 
remains slightly deformed. I suppose that just 
these deformations affect the estimated value 
of h

0
 in the case of noise.
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The same sets of the time windows were 
used for all the techniques, and for all intervals 
of offsets.

As illustration, in Figure 4, the seismogram 
without noise for azimuth 5º is presented for 
the variant of V

P3
 = 4800 m/s; and in Figure 

5,  the seismogram with noise for azimuth 30º 
is presented for the variant of V

P3
 = 3200 m/s.

As one can see from Figure 5, the amplitudes 
of noise reach really up to 50% of the maximum 
wave amplitudes in the middle traces, and up 
to 100% in the far traces.

The techniques were applied as to upper 
(1050 ms), as to down boundary (1250 ms) of 
the anisotropic layer.

In Figures 6, 7, the error of estimated h
0
 in 

degrees (difference with the correct value 60º) 
is presented for the symmetric set of azimuths 
and the upper boundary, variant V

P3
 = 3200. 

Hkiwtg"8" ku" hqt"Ýzgf"s
min 

= 0º, and Figure 7 is 
hqt"Ýzgf"s

max 
= 56.853º. The sectored methods 

show some instability for small values of s
max
/s

min
 in comparison with the others. All methods 

increase the error in the case of small s
max

 
(Figure 6).

For the lower boundary and in the variant 
V

P3
 = 4800, the general and linear methods 

also show increasing errors for small s
max

, 
and small s

max
/s

min
, see Figure 8, and Figure 

9. However, the errors of these methods are 
uwhÝekgpvn{"nguu"vjcp"qh"vjg"ugevqtgf"ogvjqfu0

In Figures 10, 11, the variant of Figs. 
6, 7 with the added noise is presented. The 
sectored methods demonstrate so great errors 
and instability that can not be recommended 
for applying. The other methods show large 
errors only for small s

max
"(less than 30º).

The asymmetric set of azimuths is presented 
by results in Figures 12-15. The variant of 
upper boundary and V

P3
 = 3200 without noise 

is presented in Figures 12, 13, and the same 
with the noise – in Figures 14, 15.

Typical peculiarities of the asymmetric set 
are: great errors of the sectored methods with 
instability in noised data, and stable large 
errors of the linear methods (up to 7º). The 
general method remains of small errors. The 
noise causes instability of all methods in the 
interval of s

max
<36º, provided even the general 

method (G) gives large errors in this interval.

Figure 4. Synthetic seismogram without noise. Azimuth 5º, V
P3

 = 4800. Axis x – time in ms, axis y – numbers 
of traces. Zero time is origin of the source impulse.
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Figure 5. Synthetic seismogram with added 10% noise. Azimuth 30º, V
P3

 = 3200. Axis x – time in ms, axis y – 
numbers of traces.

Figure 6."Gttqtu"hqt"vjg"u{oogvtke"ugv"qh"c¦kowvju="vjg"wrrgt"dqwpfct{."cpf"Ýzgf"s
min

=0.
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Figure 7. Errors for the symmetric set of 
c¦kowvju="vjg"wrrgt"dqwpfct{."cpf"Ýzgf"

s
max

=56.853º.

Figure 8. Errors for the symmetric set of 

azimuths; the lower boundary, variant V
P3
 

?"6:22."cpf"Ýzgf"s
min

=0.

Figure 9. Errors for the symmetric set of 

azimuths; the lower boundary, variant V
P3
 

?"6:22."cpf"Ýzgf"s
max

=63.6º.
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Figure 10. Errors for the symmetric 
set of azimuths; the noise, the upper 

boundary, V
P3
"?"5422."cpf"Ýzgf"s

min
=0.

Figure 11. Errors for the symmetric 
set of azimuths; the noise, the upper 

boundary, V
P3
" ?" 5422." cpf" Ýzgf"
s

max
=56.853º.

Figure 12. Errors for the asymmetric 
set of azimuths; the upper boundary, 

variant V
P3
"?"5422."cpf"Ýzgf"s

min
=0.
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Figure 13. Errors for the asymmetric 
set of azimuths; the upper boundary, 

variant V
P3
"?"5422."cpf"Ýzgf"s

max
=56.853º.

Figure 14. Errors for the asymmetric 
set of azimuths; the noise, the upper 

boundary, V
P3
"?"5422."cpf"Ýzgf"s

min
=0.

Figure 15. Errors for the asymmetric 
set of azimuths; the noise, the upper 

boundary, variant V
P3
"?"5422."cpf"Ýzgf"

s
max

=56.853º.
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Discussion and conclusion

Some unexpected results were obtained. The 
Ýtuv" ku" vjcv" vjg" ugevqtgf" U" cpf" UT"ogvjqfu"
are failed. They can be used only in seismic 
data without noise, and for mainly symmetric 
distributions of azimuths h in the 3D data 
(Figures 6 - 9). This is too ideal conditions.

The second is that the linear L and LR 
methods have an additional nearly constant 
error in mainly asymmetric distributions of 
azimuths h in the data (Figures 12 - 15). This 
error is probably connected with the truncation 
of high terms in equation (1) of Rüger, 
because the general method G has not such 
error. Therefore, the linear methods should be 
applied to azimuthally symmetric data.

The third is that the smoothing data with 
pqkug" d{" ukorng" Ýnvgtu" *7+" ikxgu" tgncvkxgn{"
stable estimated values of h

0
"in a wide interval 

of incidence angles s for the methods L, LR, 
and G (Figures 10, 11, 14, 15). The interval of 
instability is near the normal incidence, and has 
a width of s

max
<40º, different in different variants 

(Figures 10, 14). For data without noise, this 
interval is s

max
<10º (Figures 6, 8). Presence of 

the interval of instability is an intrinsic property 
of the formula (1) in connection with the least-
squares method. Errors in amplitudes become 
relatively more with decreasing s"kp"fgÝpkvkqp"
of h

0
 by equation (1).

The results show a superior of the general 
method (G). On the whole, its errors are less 
than of the others. Unfortunately, it has an 
intrinsic problem of choosing the right solution 
from the local solutions of non-linear system 
(20). All criterions described above do not 
guarantee the correct choosing. It is especially 
fkhÝewnv" kp" vjg" kpvgtxcn" qh" kpuvcdknkv{0" Cnn" vjg"
methods have such problem of distinguishing 
solutions. The best in this sense is the 
method L. Its criterions are failed very rarely. 
Therefore, I recommend applying the method 
G in a coupling with the method L: after 
estimation of h

0
 by L, the value h

0
" ku"fgÝpgf"

more precisely by G with expertly taking into 
consideration the local solutions of (20). The 
other recommendation is to avoid the interval 
of instability.

Kp" crrn{kpi" vq" Ýgnf" fcvc." vjg" vgejpkswgu"
can give worse results. The real data have 
much more interferences of waves than the 
synthetic data. It is practically impossible to 
clear each interfered wave of the other by 
Ýnvgtu0""Fkuvqtvgf"d{"vjku"yc{"korwnugu"ecp"ngcf"
to unpredictable results.

Appendix. Solution of system (20)
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Vjgp."htqo"vjg"Ýtuv"ukz"gswcvkqpu"qh"u{uvgo"
(20), one can derive the formulas for unknown 
parameters:
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=a2

0 3
/a

01
c

01
, b

22
=a

03
a

04
/a

01
c

02
,

b
23

=a
03

a
05
/a

01
c

03
, c

21
=a2

0 4
/a

01
d

01
,

c
22

=a
04

a
05
/a

01
d

02
, d

21
=a2

0 5
/a

01
e

01
, h

1
=a

02
k

1
/a

01
k

2
,
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h
2
=a

03
k

1
/a

01
k

3
, h

3
=a

04
k

1
/a

01
k

4
, h

4
=a

05
k

1
/a

01
k

5
,

a
11

=a2

2 2
/a

21
b

21
, a

12
=a

22
a

23
/a

21
b

22
,

a
13

=a
22

a
24
/a

21
b

23
, b

11
=a2

2 3
/a

21
c

21
,

b
12

=a
23

a
24
/a

21
c

22
, c

11
=a2

2 4
/a

21
d

21
, g

1
=a

22
h

1
/a

21
h

2
, 

g
2
=a

23
h

1
/a

21
h

3
, g

3
=a

24
h

1
/a

21
h

4
, a

1
=a2

1 2
/a

11
b

11
,

a
2
=a

12
a

13
/a

11
b

12
, b

1
=a2

1 3
/a

11
c

11
, f

1
=a

12
g

1
/a

11
g

2
, 

and f
2
=a

13
g

1
/a

11
g

3
.

The seventh equation of system (20) takes 
a form:

c(aA
1
 + bB

1
 + cC

1
 + dD

1
 + eE

1
 + fF

1
 /"U

6
) + 

e (aB
1
 + bD

1
 + cE

1
 + dG

1
 + eH

1
 + fK

1
 /"U

7
) + 

2f(aC
1
 + bE

1
 + cF

1
 + dH

1
 + eK

1
 + fL

1
 /"U

8
) = 0

where A y si i

i

n

1

1

=
=

∑ , B y si i

i

n

1

2

1

=
=

∑ ,C y t si i i

i

n

1

2

1

=
=

∑

D y si i

i

n

1

3

1

=
=

∑ , E y t si i i

i

n

1

3

1

=
=

∑ , F y s ti i i

i

n

1

3 2

1

=
=

∑ , 

G y si i

i

n

1

4

1

=
=

∑ , H y t si i i

i

n

1

4

1

=
=

∑ , K y t si i i

i

n

1

2 4

1

=
=

∑ , 

L y t si i i

i

n

1

3 4

1

=
=

∑ , U yT si i i

i

n

6

1

=
=

∑ , U yT si i i

i

n

7

2

1

=
=

∑

U yT t si i i i

i

n

8

2

1

=
=

∑ , and y
i
 = sin[2(h

i
/h

0
)].
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