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A B S T R AC T

Treatment of infections caused by carbapenemase-producing Enterobacteriaceae  (CPE) is currently one of 
the most important challenges of infectious diseases. The available information is based on in vitro studies, 
some animal model data and a few case studies and retrospective cohorts; appropriate data are lacking or 
are very scarce for some old antibiotics that are still occasionally used. Because of the heterogeneity in 
clinical situations, in specific carbapenemases and in the susceptibility of isolates, individualized treatment 
decisions must usually be made. Here we review the different antibiotics that might be useful for treating 
infections caused by CPE.

© 2014 Elsevier España, S.L. All rights reserved.

Tratamiento de infecciones causadas por enterobacterias productoras  
de carbapenemasas

R E S UMEN

El tratamiento de las infecciones causadas por las enterobacterias productoras de carbapenemasas (EPC) es 
uno de los retos más difíciles de las enfermedades infecciosas en la actualidad. La información disponible 
se basa en estudios in vitro, modelos animales y un escaso número de series de casos y estudios de cohortes 
retrospectivos; no existen datos, o son escasos, para algunos de los antibióticos “viejos” que a veces deben 
usarse. Es habitual que deban tomase decisiones individualizadas debido a la heterogeneidad de situacio-
nes clínicas, carbapenemasas específicas y sensibilidad de los aislados. En este artículo se revisan los dife-
rentes antibióticos que pueden ser útiles para el tratamiento de las infecciones por ECP.

© 2014 Elsevier España, S.L. Todos los derechos reservados.
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Introduction

Invasive infections caused by carbapenemase-producing 
Enterobacteriaceae  (CPE) are associated with high rates of morbidity 
and mortality and are currently one of the most important challenges 
in antimicrobial therapy.1 As we will review, high quality data to 
support clinical decisions for the treatment of CPE infections are 
scarce. The general principles of management of infections should 
always be applied, including early support therapy in the presence of 
severe sepsis or septic shock and timely and adequate source control 
(e.g., abscess drainage, catheter removal). Regarding antibiotic 

therapy, the prompt administration of active antibiotics is important 
in patients with severe infections; therefore, empirical therapy 
including antibiotics active against locally circulating strains should 
be considered in areas with high rates of CPE (e.g., outbreaks). Finally, 
therapy should be optimized based on the microbiological 
information. In this review we will summarize the available data 
concerning antibiotic therapy for infections due to CPE. Recommended 
doses are summarized in Table 1.

Carbapenems for the treatment of infections caused by CPE

A significant proportion of CPE are susceptible to imipenem, 
meropenem or doripenem (and only rarely to ertapenem). Therefore, 
it is worth investigating the potential usefulness of carbapenens in 
these infections.2 In animal models with VIM- and NDM-producing 
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Enterobacteriaceae, carbapenems were shown to significantly reduce 
bacterial counts, particularly when an adequate time above the 
minimum inhibitory concentration (MIC) ratio (T>MIC) was 
reached.3-6 However, the results were poorer when carbapenems 
were used for KPC-producing Klebsiella pneumoniae isolates.7,8 
Results from some other models suggest the activity of carbapenems 
might vary depending on the carbapenemase type, and would be 
higher for metallo-beta-lactamases (MBLs) or carbapenem-resistant 
isolates not producing carbapenemases than for KPC or OXA-48.5,9,10

In stochastic pharmacokinetic/pharmacodynamic (PK/PD) 
models, a high probability of attaining >40% or 100% T>MIC by using 
optimized dosing of meropenem (2 g every 8 h in an extended 
infusion7,11 or 6 g/day in a continuous infusion,12,13 respectively) was 
predicted for strains with MICs up to 16 mg/L. Imipenem is usually 
less active and the total dose is limited by safety issues; doripenem 
could be substituted for meropenem, but there is almost no clinical 
experience with doses higher than 3 g/day.

Data on the clinical efficacy of monotherapy with carbapenems in 
patients with infections due to CPE are limited and restricted almost 
exclusively to KPC and VIM producers. A failure rate of approximately 
30% was found in a recent review of previous papers;1 the rate was 
28% for the 42 cases of isolates with a carbapenem MIC ≤8 mg/L and 
75% for the 8 cases with higher MICs. A systematic review identified 
29 patients with bacteremia treated with carbapenems in 

monotherapy; mortality ranged in various series between 9% and 
50%.14 Another review including 421 episodes of bacteremia found 34 
patients treated with an active carbapenem in monotherapy, of 
whom 11 (32%) died,15 and in the most recent and larger compilation 
of 889 patients with infection due to CP-K. pneumoniae, 40% of those 
receiving monotherapy with an active carbapenem had a fatal 
outcome.16 However, in a recent observational study of patients with 
bacteremia due to KPC or VIM-producing K. pneumoniae, mortality 
was 58% among 12 patients infected with strains showing imipenem 
or meropenem MIC ≤8 mg/L and treated with a carbapenem in 
monotherapy.17 Conversely, this and other observational studies, as 
well as the above-mentioned reviews including patients with 
bacteremia due to KPC or VIM-producing K. pneumoniae, found that 
carbapenem-containing combinations used as empirical or definitive 
therapy were associated with the lowest mortality rates (8%-25% vs. 
an average death rate of 24%-44% with other regimens).1,15-20 In two of 
these studies, the apparent effectiveness of carbapenem-based 
combinations was restricted to strains with MICs to imipenem or 
meropenem ≤8 mg/L.17,18 Overall, it appears that monotherapy with 
carbapenems cannot be recommended in severe, invasive infections, 
but whether specific low risk patients can be treated with appropriate 
dosing of carbapenems alone should be studied.

Other beta-lactams

Aztreonam is not efficiently hydrolyzed by MBLs;1 slow 
bactericidal activity against VIM-1-producing K. pneumoniae was 
shown in an in vitro model.21 In addition, aztreonam was more 
effective than carbapenems against an aztreonam-susceptible, VIM-
1-producing Escherichia coli in an in vivo rabbit intra-abdominal 
abscess model.4 However, we could not find any published clinical 
studies providing data on the efficacy of aztreonam for the treatment 
of infections caused by MBL-producing Enterobacteriaceae. 
Furthermore, many clinical MBL-producing Enterobacteriaceae  
additionally carry extended-spectrum beta-lactamases (ESBLs) or 
other resistant determinants that confer resistance to aztreonam, 
which would limit the use of this antibiotic.

OXA-48-producers that do not coproduce any ESBL could be 
susceptible in vitro to broad-spectrum cephalosporins. Ceftazidime 
showed significant antibacterial activity in animal models against 
these types of isolates10,22 and was even more effective than 
imipenem, ertapenem and piperacillin/tazobactam.22 To our 
knowledge, however, clinical data are lacking. Unfortunately, most of 
these isolates also produce ESBL or AmpC enzymes, and therefore 
show high MIC to cephalosporins.

Temocillin is stable against ESBLs and AmpC enzymes. It has also 
been shown to retain some in vitro activity against KPC-producing 
Enterobacteriaceae , but not against OXA-48 or MBLs.23-25 Again, 
clinical experience in the treatment of infections caused by these 
isolates is lacking.

Polymyxins

Although resistance is being increasingly reported, polymyxins 
are usually effective antimicrobial agents against CPE.1,14 Two 
polymyxins are available for parenteral use, polymyxin E (or colistin) 
and polymyxin B. Although polymyxin B appears to have better 
clinical pharmacological features,26 there is more clinical experience 
with colistin, which is the formulation available in Europe. 
Importantly, colistin has been used inadequately for years, 
particularly in critically ill patients, because the product information 
sheets contain inaccurate information.27 The PK/PD parameter that 
best predicts colistin activity is the unbound area under the 
concentration time curve over the MIC ratio (AUC/MIC); an AUC/MIC 
ranging from 22.5 to 52.8 has been identified as an appropriate PK/
PD target.28-30 The traditional dosing schedule of colistin (2 MU/8 h)  

Table 1

Recommended doses of antimicrobials potentially useful for invasive infections  

caused by carbapenemase-producing Enterobacteriaceae (CPE)

Drug Recommended intravenous 

dose (normal renal function)

Comments

Carbapenems Meropenem: 2 g every 8 h in 

extended infusion (3 h) for 

isolates with MIC ≤8 mg/L

More clinical experience with 

meropenem. To be considered 

as part of a combination 

regimen in all severe infections 

caused by CPE with MIC ≤8 

mg/L

Aztreonam 1-2 g every 8 h (probably 

better in extended infusion)

No clinical experience for 

susceptible MBL-producing 

CPE

Ceftazidime 1-2 g every 8 h (probably 

better in extended infusion)

No clinical experience for 

susceptible OXA-48-producing 

CPE

Temocillin 2 g every 12 h (some authors 

recommend 2 g every 8 h or 6 

g/day in continuous infusion)

No clinical experience for CPE. 

Not available in Spain

Colistin Severe infections: loading 

dose 6-9 MU, followed by  

4.5 g every 12 h or 3 MU 

every 8 h

To be considered as part of a 

combination regimen in all 

severe infections caused by 

CPE

Aminoglycosides Gentamicin, tobramycin: 5-7 

mg/kg/day. Amikacin: 15-20 

mg/kg/day (higher dose may 

be needed in critically ill 

patients; monitoring blood 

levels is recommended)

Probably useful in monothera-

py for urinary tract and 

catheter-related infections 

with catheter removal

To be considered for 

combination therapy in severe 

infections

Tigecycline Loading dose, 100 mg, 

followed by 50 mg/12 h. For 

isolates with borderline MIC 

(1-2 mg/L), consider doubling 

the dose (200 mg loading 

dose followed by 100 mg/12 

h)

To be considered for 

combination therapy in severe 

infections. Low urinary 

concentrations

Fosfomycin 

(disodium)

4-6 g every 6-8 h Scarce clinical experience. To 

be used in combination
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is inappropriate, and plasma concentrations of colistin can remain 
under the MIC breakpoint (2 mg/L) for 48 h; the use of a loading dose 
(6 to 12 MU has been suggested) and administration of 9 MU in 2 or 3 
doses would likely overcome these problems.31,32 However, the 
available clinical information is scarce and based on case series or 
small subsets of patients from cohort studies. We found several case 
series and cohort studies reporting data on severe infections caused by 
carbapenem-resistant K. pneumoniae treated with polymyxins17,19,20,33-40 
(Table 2). Of note, the dose of colistin was suboptimal in the majority 
of these studies. Overall, mortality with colistin therapy was high 
(range 21%-50%), although lower than with other antimicrobials used 
in some studies, and usually higher when colistin was used in 
monotherapy (range, 23%-57%) than when used in combination 
(range, 12%-29%). Results might be improved when combined with a 
carbapenem, confirming in vitro data.41 Importantly, resistance to 
polymyxins can develop if used in monotherapy for CPE.39 However, a 
recent meta-analysis including diverse Gram negative organisms 
found no superiority of combination regimens with colistin.42

Despite these major limitations, we believe colistin should be 
considered as an important option for targeted therapy for serious 
infections caused by CPE, for which the use of appropriate dosing is 
important. For patients with renal dysfunction and without renal 
replacement therapies, dosing recommendations according to 
nomograms is recommended.32

Aminoglycosides

A substantial proportion of CPE remain susceptible to some 
representatives of this family.1 Although monotherapy with 
aminoglycosides has been considered as effective as other options in 
the treatment of patients with urinary tract infection (UTI), this is 
not the case for other types of infections for which these drugs are 
considered as inferior to beta-lactams or fluoroquinolones.43 Thus, 
the potential synergistic effect of aminoglycosides in combination 
with other drugs has been studied in vitro against CPE with occasional 
contradictory results.44-47

The available clinical data are limited. Five patients with 
pneumonia due to KPC-2-producing K. pneumoniae received an 
aminoglycoside in combination with colistin (3) or tigecycline (2), all 

of whom had a favorable outcome; an additional patient with 
bacteremia achieved clinical cure with gentamicin alone.48 Another 
retrospective study on bacteremia due to KPC-producing K. 

pneumoniae reported good responses in 3 patients who received 
aminoglycosides in monotherapy (1 patient) or combined with 
tigecycline (2 patients).19 A case report described a patient with 
endocarditis due to KPC-3-producing K. pneumoniae who fully 
recovered after antibiotic treatment with gentamicin plus colistin, 
without needing surgery.49 In a cohort of 40 episodes of bacteremia 
due to OXA-48-producers, 8 of 12 patients who received 
aminoglycosides in combination with other antibiotics died, but 2 
patients with catheter-related bacteremia treated with an 
aminoglycoside in monotherapy survived.50 Furthermore, 2 pediatric 
patients admitted to the Intensive Care Unit (ICU) with bacteremia 
due to VIM-1-producing Enterobacter cloacae recovered with 
aminoglycoside therapy (one in monotherapy and the other in 
combination with cotrimoxazole).51 In another series, clinical and 
microbiological responses were reported in 7 patients with UTIs due 
to KPC-producing Enterobacteriaceae  who were treated with 
gentamicin monotherapy.52 Finally, aminoglycosides were associated 
with higher rates of microbiological success in UTIs than colistin or 
tigecycline.35

In summary, and according to data from other populations, 
monotherapy with aminoglycosides could be considered for the 
treatment of less complicated infections due to CPE, such as catheter-
related bloodstream infections (if the catheter is removed) or urinary 
tract infections. Otherwise, aminoglycosides should be used in 
combination. 

Fosfomycin

Fosfomycin is active against many Gram-negative and Gram-
positive organisms. Fosfomycin tromethamine, an oral formulation, 
is approved in some countries (including Spain) for the treatment of 
uncomplicated UTI; fosfomycin disodium is also available in some 
countries for parenteral use. The drug shows little toxicity, achieves 
high peak levels in serum and urine, and rapidly penetrates tissues. 
Unfortunately, resistance can develop when fosfomycin is used as 
monotherapy.53 Fosfomycin retains activity against some CPE 

Table 2

Review of published data on polymyxin therapy in severe infections caused by carbapenem-resistant Klebsiella pneumoniae

Author, year  

and reference

Types of infection No. of patients Loading dose Daily dose Outcome Nephrotoxicity

Daikos, 201415 Bacteremia 78 No 9 MUa 36% mortality (29% monotherapy, 

54% combined)

NS

Qureshi, 201217 Bacteremia 19 NS NS 26% mortality (36% monotherapy, 

12.5% combined)

NS

Tumbarello, 201218 Bacteremia 61 Yes 6-9 MU/daya 33% mortality (50% monotherapy, 

23% combined)

NS

Falagas, 201031 Severe infections 18 No 3 to 9 MUa 28% clinical failure NS

Paul, 201032 Severe infections 104 No 6 MUa 52% mortality 6% needed hemodialysis

Satlin, 201033 UTI 25 No 2.25  g/kg/day (1.1 to 3.3)b 64% microbiological clearance 37%

Dalphino, 201234 Severe infections 13 9 MUa 9 MU/daya 23% clinical failure 17.8%

Capone, 201335 Severe infections 36 NS NS 28% mortality (40% monotherapy, 

23% combined)

NS

Dubrovskaya, 201336 Severe infections 40 25,000 U/kgb 25,000 U/kg/dayb 28% mortality (57% monotherapy, 

20% combined)

10%

Petrosillo, 201437 Severe infections 24 In 7% of patients 6 MU/daya 31% mortality 12.7%

Kontopidou, 201438 Severe infections 47 No 9 MUa 28% mortality (23% monotherapy, 

33% combined)

NS

NS: not specified. 
aColistin.
bPolymixin.
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isolates.25,54-56 In vitro studies on combinations with other drugs have 
shown heterogeneous results.45,57 However, combination therapy 
might prevent the development of resistance to this drug.47

Published data on the clinical use of fosfomycin are reduced to 
case series, and detailed information for all cases is not always 
specified. Many of the patients receiving fosfomycin in combination 
were seriously ill or had failed another regimen. In one series, 
fosfomycin was used in 8 ICU patients with invasive infections due to 
KPC-producing K. pneumoniae in combination with colistin, 
gentamicin and piperacillin-tazobactam; all achieved clinical and 
microbiological cure.57 In another series, 2 of 5 patients with 
bacteremia due to OXA-48-producing K. pneumoniae who received 
fosfomycin plus colistin or tigecycline died.50 Of note, in another 
article involving 3 severely ill immunocompromised patients with 
bacteremia due to KPC-producing K. pneumoniae, fosfomycin was 
added after failure of an initial combination regimen; the bacteremia 
relapsed and resistance to fosfomycin occurred.58 

The largest series to date included 48 patients with serious 
infections caused by multidrug-resistant Gram-negative pathogens 
(41 had a KPC-producing K. pneumoniae) from Greece who received 
fosfomycin in combination with other antimicrobials (primarily 
colistin, tigecycline, gentamicin and meropenem); the median 
fosfomycin dose was 24 g per day. The most frequent infections were 
bloodstream infections (37%) and ventilator-associated pneumonia 
(29%). Overall, the success rate was 54%.59 Concerning UTIs due to 
CPE, a retrospective study described 13 patients with carbapenem-
resistant-K. pneumoniae treated with fosfomycin tromethamine; 
only 36% achieved microbiological cure despite good in vitro 
activity;60 however, multiple confounding factors could have 
contributed to microbiological failures. 

Tigecycline

Tigecycline is not affected by carbapenemases and thus remains 
active against a substantial proportion of CPE;25,61 isolates with MIC 
≤1 mg/L are considered susceptible according to EUCAST. As with 
other drugs, in vitro studies of combinations with other antibiotics 
provided diverse results.25,44,62,63 Unfortunately, resistance is 
increasing in some areas, and development of resistance has been 
reported when used in monotherapy.64,65

Administration of tigecycline results in low concentrations in the 
blood, in the epithelial lining fluid of the lung and in urine, which has 
been suggested to be the reason for lower cure and higher mortality 
rates than comparators in meta-analyses.66-68 However, tigecycline 
could be one of the last resorts for patients with multidrug-resistant 
and extensively drug-resistant isolates; thus, reviewing the published 
experience with this drug for CPE is of interest. Available reports are 
primarily based on retrospective data and include small numbers of 
cases in which tigecycline was usually used in combination. During 
an outbreak of KPC-2-producing K. pneumoniae in Greece, 6 patients 
with bacteremia and 2 patients with surgical site infections received 
tigecycline in combination with 2 or 3 other drugs, with favorable 
outcomes.69 Kelesidis et al reviewed 12 patients with invasive CPE 
infections who received tigecycline in monotherapy (5 patients) or in 
combination (7 patients), and 91% achieved clinical cure.66 In a 
review by Hirsch et al, 7 patients with invasive KPC-producing K. 

pneumoniae infections were successfully treated with tigecycline in 
monotherapy.70 Additionally, 15 patients with bacteremia due to 
OXA-48-producing Enterobacteriaceae  received tigecycline either in 
monotherapy (2 patients) or in combination (13 patients); the overall 
cure rate was 60%.50

Because of the concern regarding the low concentrations reached 
with conventional doses (100 mg loading dose followed by 50 mg 
every 12 hours), higher doses of tigecycline (up to 200 mg loading 
dose and 100 mg every 12 hours) are being investigated.71 A 
retrospective cohort study was recently published including 100 ICU 

patients with infections (63% had ventilator-associated pneumonia) 
caused by multidrug-resistant Gram-negatives; 50 were KPC-
producing K. pneumoniae. Forty-six patients receiving high tigecycline 
dosing (200 mg loading dose followed by 100 mg every 12 hours) 
were compared with 54 patients receiving standard dosing. Most 
patients received other concomitant antibiotics. The patients 
receiving the high dose had more frequent infections caused by 
isolates showing higher MICs (1-2 mg/L). Although there was no 
difference in mortality, high dosing was independently associated 
with an increased cure rate.72

Combination therapy

The primary reason for considering combination therapy in 
infections due to CPE is the experimental and clinical evidence that 
individual available drugs, even when correctly dosed, might not 
display optimal antimicrobial activity or are associated with poor 
outcomes. The potential impact of combination therapy on 
prevention of resistance development is also to be considered.73-79

As reviewed for individual antibiotics above, the synergistic 
potential of combinations against specific strains producing different 
types of carbapenemases has been evaluated, primarily using in vitro 
models. The effects might depend on the strains studied and on the 
methodology used, which probably explains the frequent 
inconsistency of results; no clear conclusion or recommendation can 
be obtained by analyzing these studies.25,44-47,56,57,61-63,80-89 An interesting 
observation is the increase in the bactericidal effect of doripenem by 
concomitant ertapenem exposure against a KPC-3-producing K. 

pneumoniae (with doripenem MIC=4 mg/dL) in an in vitro and murine 
thigh model, although in the latter a bactericidal effect was not 
reached.90 Of note, increasing the dose of ertapenem to 2 g/day 
abolished the additive effect. 

Data from several retrospective cohort studies on patients with 
bloodstream infections due to KPC or VIM-1-producing K. 

pneumoniae17-20,91,92 and reviews of case series1,15,16,57,70,93 suggest that 
definitive treatment with a combination of at least two active antibiotics 
is associated with a lower treatment failure and mortality, but the 
benefit was not evident in others.50,91 In some of these studies, 
combination therapy was associated with lower mortality after 
controlling for confounders by multivariate analysis.17,19,20 Analysis of 
subgroups appeared to show that the results of monotherapy were 
particularly worse than combination therapy in patients with more 
severe underlying diseases, higher severity of sepsis, pneumonia and 
bacteremic infections.17,92 However, caution is needed because these 
studies share some important limitations, including their retrospective 
nature, the lack of strict criteria for assignment of the treatment arm, 
and potential survivor bias. In fact, a recent meta-analysis (including not 
only Enterobacteriaceae , but all carbapenem-resistant Gram-negatives) 
found no benefit of combination regimens including colistin.42 
Nevertheless, if combination therapy is to be used, available data are 
insufficient to provide recommendations for the best combinations. 
Clinical experience with dual carbapenem therapy (doripenem or 
meropenem plus ertapenem) is limited to anecdotal cases.94,95

With the available data, we believe using combination therapy is 
to be strongly considered in severe, difficult to treat infections due to 
CPE; monotherapy, preferably with an active aminoglycoside, should 
be considered an option for UTI. Inclusion of carbapenems 
(administered in optimized dosing, e.g., meropenem 2 g every 8 h in 
extended infusion) as part of these combinations is recommended 
for strains with a carbapenem MIC ≤8 mg/L; whether carbapenems 
are useful for isolates with higher MIC is unknown. 

Conclusions

Despite the fact that carbapenemases are rapidly spreading 
worldwide, available data to support recommendations are scarce. 



 J. Rodríguez-Baño et al / Enferm Infecc Microbiol Clin. 2014;32(Supl 4):49-55 53

Although results from several retrospective cohorts suggest that 
combination therapy is more effective than monotherapy, particularly 
with severe infections caused by KPC- (and to a lesser extent, VIM-) 
producing K. pneumoniae, however some important limitations of 
these studies should be taken into account. Nevertheless, until more 
data are available, we recommend combination therapy for severe 
and complex infections caused by CPE, including a carbapenem (at 
least for isolates with MIC ≤8-16 mg/L, and used in optimized dosing) 
and another fully active drug (drugs to be considered include colistin, 
tigecycline, aminoglycosides and fosfomycin); a third active drug 
could be considered in selected cases. Clinical data are needed on 
aztreonam for susceptible isolates producing MBL and cephalosporins 
for susceptible OXA-48-producers. For less severe infections and 
UTIs, monotherapy with an active appropriate drug can also be 
considered. Nevertheless, individualized treatment decisions must 
be made considering the severity of the infection, the source, the 
susceptibility to the various agents, and possibly the specific 
carbapenemase involved. 

Areas for future research

Beyond the need to develop new antimicrobial agents, some 
research needs are evident. First, the in vitro and animal models for 
investigating the potential benefits of combination regimens must 
be optimized so the results can be reproducible and can be of more 
use in guiding clinical studies. Second, better observational studies 
overcoming the limitations of the studies available are urgently 
needed. Finally, the design and development of randomized 
controlled trials comparing different options in varying clinical 
circumstances must be a priority for funding agencies.
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