
ABSTRACT

In recent years our concept of the non-specific na-

ture of innate immunity has changed following the

identification of a network of germline-encoded re-

ceptors that recognise with substantial specificity

molecular motifs of microorganisms and many other

cues produced during tissue injury. Stimulation of

these innate sensors by their specific ligands triggers

signalling pathways that result in the activation of in-

nate effector mechanisms as well as the priming of

naive lymphocytes for the type of response that

must be induced. These events culminate in the gen-

eration of an immune response appropriately adapt-

ed to the damage that has occurred. These new in-

sights into innate immunity herald an entirely new

era in the understanding of the molecular events that

initiate and drive a host-protective response, chang-

ing many concepts about susceptibility to infections

and providing greater insight into the underlying in-

flammatory pathology of other diseases. Targeted

manipulation of innate immunity has enormous po-

tential for the development of new vaccines and in-

novative therapies for the treatment of diseases

such as infections, cancer, allergy, autoimmunity and

autoinflammatory diseases. This article provides an

overview of current trends in the field of innate im-

munity and its role in the control of infection and dis-

ease.

Key words: Innate immunity, inflammation, TLRs,

NLRs, RLRs.

INTRODUCTION

One of the distinctive features of the host defence

system in mammals is the presence of specialized

cells that detect pathogens and activate effector

mechanisms to control and destroy invasive microor-

ganims. It is comprised of two branches: innate and

acquired immunity. Cells involved in innate immunity

contribute to the control and eradication of infectious

agents by activating evolutionarily conserved effector

mechanisms of defence and clearance. This re-

sponse is characterized by its rapid induction, as is

required in an emergency situation, and is responsi-

ble for host defence during the initial days of infec-

tion, but it does not generate lasting protective im-

munity. The adaptive immune response takes longer

to develop but specifically recognizes microorgan-

isms to activate a response that amplifies the effec-

tor mechanisms involved in innate immunity and in

this way destroy a particular pathogen more effi-

ciently. This response allows the organism to react

quickly to subsequent reinfections.

The belief that a highly specialized adaptive im-

munity is essential for the effective protection of

mammals against pathogens has for many years fo-

cused scientific interest on this final part of the im-
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mune response. In contrast, innate immunity has

been regarded as a primitive ancestor of adaptive im-

munity that provides only a non-specific defensive re-

sponse characterized by phagocytosis of microor-

ganisms, foreign substances or detritus, and its

contribution to immune protection has been under-

estimated. In recent years, various studies of immu-

nity in plants and insects have identified phylogenet-

ically conserved mechanisms of surveillance and

defence that offer effective protection against dead-

ly pathogens, despite the absence of an adaptive im-

munity in those organisms. In these systems,

pathogens are attacked with burst of superoxide, hy-

drogen peroxide, nitric oxide or toxic antimicrobial

metabolites. However, these organisms have also

developed strategies to detect pathogens and selec-

tively activate an immune response. These mecha-

nisms are mediated by products encoded in the host

genome that have been conserved during evolution

and are presently found throughout the animal and

plant kingdoms. In mammals, signals generated by

innate immunity also participate in the polarization

and modulation of adaptive immunity. These new

concepts reveal innate immunity to be more specific

than previously thought and suggest that it plays a

more prominent role in host protection.

INNATE IMMUNITY IDENTIFIES PATHOGENS

AND SENSES DAMAGE

Charles Janeway1,2 was the first to explore the

“road not taken” of the innate immune response,

and in the late 1980s he established new paradigms

for innate immunity. He had the idea that infectious

agents activate naive T cells via their effects on the

innate immune system and proposed that cells in-

volved in innate immunity recognize pathogens

through germline-encoded receptors, each harbour-

ing a fixed specificity. He coined the term “pattern

recognition receptors” or PRRs to refer to such mol-

ecules. PPRs have been selected by innate immunity

throughout evolution to detect invariant molecular

constituents expressed by a wide range of different

microorganisms2,3. These molecular constituents,

which are not expressed in the host, were termed

“pathogen-associated molecular patterns” or

PAMPs. PAMPs are essential for survival of the mi-

croorganism, since mutations affecting the genes

that encode them will lead to non-viable organisms.

Thus, many of them are highly conserved molecules

that are present in thousands of microorganisms.

This host immune strategy helps to avoid mutants

escaping immune surveillance and allows the im-

mune system to detect many classes of microorgan-

isms through the use of a relatively limited repertoire

of receptors. The fact that PAMPs are produced only

by the invading microbes and are not expressed in

the host allows innate immunity to discriminate be-

tween “infectious non-self” and “non-infectious

self”.4,5

At the end of the 1990s, several studies in

Drosophila revealed that the Toll receptor, a protein

involved in embryonic development of the fly and

which shows homology to the interleukin (IL) 1� re-

ceptor, is a key mediator of innate immunity in that

model system.6,7 At the time that these results were

published, Charles Janeway’s group had cloned the

mammalian homologue of Toll and shown that a

dominant active form of the protein could activate

NF�B and several NF�B-dependent inflammatory

genes, and induce the expression of the co-stimula-

tory molecules CD80 and CD86.8 These results re-

vealed that costimulatory signals required for the ac-

tivation of naive T cells are generated via PRR-PAMP

interactions, demonstrating that innate receptors can

induce signals that activate both an innate and an

adaptive immune response. Later, this receptor was

named Toll-like receptor (TLR) 4,9 and was identified

as a lipopolysaccharide sensor involved in suscepti-

bility to infection by gram-negative bacteria.10,11 Since

then, 13 different TLRs have been identified in

mouse and analysis of the human genome database

has revealed the existence of 11 TLR homologs in

humans.9,12

Janeway’s work explained how the immune sys-

tem evolved to discriminate infectious non-self from

non-infectious self; many non-infectious factors, how-

ever, such as traumatic injury, transplantation, or ex-

posure to a long list of chemical and physical insults,

cause tissue damage that must be controlled and re-

paired by immune cells in the absence of infectious

non-self signals. In the early 1990s, Polly Matzinger, in

another view of innate immunity, postulated the “dan-

ger model”, which proposed that cells of the innate

immune system detect those substances that are

dangerous rather than simply foreign.13-15 She stated

that under stressful conditions, dead or damaged cells

release endogenous molecules that should not nor-

mally be present outside the cell or in certain intracel-

lular locations, and that these serve as early warning

signals to activate primary and secondary immune re-

sponses. The term “alarmin” was proposed by Op-

penheim to refer to endogenous stress molecules

that signal tissue and cell damage.16,17 Alarmins are

rapidly released by dead cells but not by apoptotic

cells in response to infection or tissue injury. They

have both chemotactic and activating effects on in-

nate and adaptive immune responses, possess in vivo

immune-enhancing activity, and promote reconstruc-

Allergol et Immunopathol 2008;36(3):164-75

165Montero Vega MT.—A NEW ERA FOR INNATE IMMUNITY



tion of the damaged tissue. Thus, this subset of medi-

ators alerts host defences and promotes an immune

response both after tissue injury and infection. Media-

tors with alarmin activity include a long list of mol-

ecules, among them defensins, cathelicidin,

eosinophil-derived neurotoxin, high mobility group box

protein 1, protein S100, ATP and uric acid.18 Endoge-

nous alarmins and exogenous PAMPs are currently

considered subgroups of a larger set, the damage-as-

sociated molecular patterns or DAMPs.14,19 Recently it

has been proposed that DAMPs might be part of an

evolutionarily ancient warning system in which the hy-

drophobic portions of biological molecules, when ex-

posed, act as universal DAMPs to initiate repair, re-

modelling, and immune response.20

Many of the mechanisms used by the innate im-

mune system in animals show surprising parallels

with those of immunity in plants, and this has high-

lighted common research goals for immunologists

working with both systems.21 Unlike mammals,

plants lack motile cells involved in host defence and

each of their somatic cells must have the capacity to

perceive attacks by pathogens and alert other cells to

the infection. Plants protect against pathogens via a

two-branched innate immune system.22 One branch

uses transmembrane PRRs that recognize and re-

spond to PAMPs through a signalling pathway that is

reminiscent of the mammalian one. However, during

the coevolution of host-microbe interactions,

pathogens acquired the ability to deliver effector fac-

tors to the plant cell which suppress PAMP-triggered

immunity, thus allowing pathogen growth. The other

branch of innate immunity in plants senses these

pathogen effector factors through intracellular PRRs,

such as the plant resistance proteins (R proteins).

These receptors are proteins with leucine-rich repeat

(LRR) motifs and nucleotide binding oligomerization

(NOD) domains and associate in multiprotein com-

plexes that detect the presence of pathogens and in-

duce a strong resistance response to the infection.23

From the plant research community emerged in 1998

the “guard hypothesis”,24,25 which postulated that

plant resistance proteins act as guards for cellular ma-

chinery by protecting those components of the host

cells that are targets of bacterial effectors. It is

thought that these proteins somehow sense the

damaged status of the effector targets, ra ther than

the effectors themselves, and activate resistance

(see fig. 1). According to this theory, perturbation

of the host target generates a “pathogen-induced

modified self” which activates the plant resistance

proteins, triggering resistance to the infection. This

concept is analogous to the immune recognition of

“modified self” proposed for mammals in the danger

model.26 These proposals support the idea that host

cells do not search for microbial products but rather

protect themselves such that when a physiological

disturbance occurs an immune response is initiated.

These new concepts regarding innate immune sur-

veillance represent a much larger step toward under-

standing how immunity functions to protect the host,

since they suggest that innate immunity has devel-

oped strategies to differentiate between normal and

damaged or diseased cells.
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Fig. 1.—The guard hypo-

thesis. Invading plant patho-

gens deliver effector mole-

cules (termed avirulence

proteins) into the host cell.

These effectors alter the

function of proteins involv-

ed in downstream signalling

from membrane pattern re-

cognition receptors (PRRs).

Intracellular PRRs (guards)

somehow sense pathogen-

induced damage of their

“guardee” protein and trig-

ger a resistance response

against the infection that

renders the pathogen aviru-

lent. PAMPs, pathogen-

associated molecular pat-

terns.



In the last 8 years, a family of at least 22 mam-

malian genes that encode intracellular receptor ho-

mologues to plant resistance proteins has been iden-

tified.27,28 These receptors possess NOD and LRR

domains, and form protein complexes that respond

to PAMPs and danger signals, playing an important

role in the human immune response. On the basis

of their structure and function, this new class of in-

tracellular PRRs has been named NOD-like receptors

or NLRs.

THE NETWORK OF INNATE RECEPTORS 

THAT SENSE DAMAGE AND ALERT THE

IMMUNE SYSTEM

It seems clear that the strategy of innate immuni-

ty to identify and specifically respond to the presence

of a broad class of pathogens and injuries is based on

the existence of a set of PRRs in all cells of the same

cell type that can discriminate between different

DAMPs5. The combined activation of these different

receptors by their specific ligands triggers signalling

pathways that can be complementary, synergistic or

antagonistic.29-31 This functional cooperation and

complementation between receptors, in association

with some accessory molecules, results in the acti-

vation of specialized effector mechanisms to destroy

a given pathogen and in the generation of signals

that provide information to the adaptive immune sys-

tem about the origin of the antigen and the type of

adaptive response to be induced.32-35 In addition, sev-

eral cellular strategies have evolved to negatively reg-

ulate immune activation induced through PRRs in or-

der to prevent inappropriate or overactive responses.

Negative regulators act at multiple levels within the

PRR signalling cascades or elicit negative-feedback

mechanisms that synchronize the positive activation

and negative regulation of signal transduction.36-39

These various elements together reveal a tightly con-

trolled innate receptor network that monitors

changes in tissue homeostasis to alert and drive both

innate and adaptive immunity.

PRRs CLASSIFICATION

Mammalian PRRs can be functionally classified

into three main groups: humoral proteins, endocytic

receptors, and signalling receptors.4,29 Humoral pro-

teins identify, bind and opsonize the pathogen to

neutralize and clear it through activation of the com-

plement and phagocytic systems. These PRRs in-

clude mannose-binding lectins, C-reactive proteins

and collectins. Endocytic receptors, including some

C-type lectins and scavenger receptors, directly sup-

port the capture of pathogens or damaged cells and

promote their internalisation and transport to the

lysosomal compartment to be degraded. In addition

to their role in the effector response, both groups

have a critical role in activating antigen presentation.

Signalling receptors that act as primary sensors of

pathogens and damage trigger intracellular signalling

cascades that result in the upregulation of immune

response genes which are critical for the induction of

both effector and adaptive responses. This last group

of receptors can be located on the plasma mem-

brane, in different internal compartments, or in mem-

branes from intracellular vesicles, or they can be cy-

tosolic proteins, and their expression is not restricted

to cells of the immune system. Three families of sig-

nalling PRRs have been identified: TLRs, NLRs and

retinoic acid inducible gene-I (RIG-I)-like receptors

(RLRs)40.

Receptors for alarmins include the IL-1 receptor,

RAGE (a multiligand receptor binding advanced gly-

cation end products) and RPTP (receptor-type tyro-

sine phosphatase) �/�; however, there is increasing

evidence that in order to signal alarm most endoge-

nous molecules produced by injured tissues bind the

same TLRs and NLRs as microorganisms and evoke

similar responses.41,42 That suggests that PRRs and

receptors for alarmins synergistically reinforce each

other to evoke an immune response, but it could also

mean that both PAMPs and endogenous alarm sig-

nals belong to a common set of signals that are near-

ly as ancient as life itself, as recently proposed by

Polly Matzinger.20

There is also a group of transmembrane receptors

that sense pathogens and directly or indirectly func-

tion as PRRs and cooperate with them.43,44 These re-

ceptors include members of the TREM (triggering

receptors expressed on myeloid cells) proteins.

Among them, TREM-1 synergistically amplifies sig-

nals mediated by TLRs and NLRs to upregulate pro-

duction of proinflammatory cytokines. In addition to

roles in adhesion and endocytosis, many receptors

of the C-type lectin family, particularly dectin-1 and

DC-SIGN, can also mediate cell signalling for effector

responses and, in particular, cooperate with TLRs to

enhance or inhibit them. Various members of the

family of Siglecs (sialic acid-binding immunoglobu-

lin-like lectins) possess a conserved immunorecep-

tor tyrosine-based inhibitory motif (ITIM) and an

ITIM-like motif in the cytoplasmic tail, indicating that

they have roles in modulating cell function. It is

thought that these receptors promote cell-cell inter-

actions and regulate the functions of cells in the in-

nate and adaptive immune systems through glycan

recognition.44
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TLRS IN INNATE AND ADAPTIVE IMMUNITY

TLRs are a family of PRRs capable of detecting a

long list of DAMPs and inducing the expression of

proinflamatory genes and costimulatory molecules.

All TLRs possess an ectodomain composed of an

LRR motif involved in recognition of PAMPs and a cy-

toplasmic signalling domain that shows a remarkable

homology to the cytoplasmic region of the IL-1 re-

ceptor, called the Toll IL-1 receptor (or TIR) domain,

which is required for downstream signalling.12 Stimu-

lation of these receptors by their specific ligands re-

sults in the acquisition of specialized effector func-

tions of innate cells but TLRs expressed on dendritic

cells (DC) have been shown to be critical for the gen-

eration of signals that polarize the adaptive immune

response,34,45,46 placing these receptors at the inter-

face between innate and adaptive immunity. The im-

portance of TLRs in the outcome of adaptive re-

sponses is supported by analysis of genetic

polymorphisms, mutations and experimental mod-

els that reveal associations with susceptibility to in-

fection and with immune disorders such as aller-

gy,47-49 autoimmunity50-52 and cancer.53,54

Studies to identify potential sites of TLR action

have revealed that most of the tissues express mRNA

at least for one TLR and several express all of them, al-

though changes in the expression of TLR mRNA may

be induced by purified PAMPs and cytokines.55,56 No-

table differences have been observed between hu-

man and mouse TLR expression, but in both species

the largest repertoire has been detected in cells and

tissues involved in innate immunity.55,57 At the cellular

level, TLRs are differentially distributed and their loca-

tion correlates with the nature of their ligands. Those

located in the plasma membrane recognize external

ligands at the cell surface, whereas TLRs located in

membranes from intracellular vesicles such as endo-

somes only detect ligands present in the lumen of

those structures, mainly viral nucleic acids.12,58-60

A pathogen gaining entry to the host or release of

alarm signals as a result of injury is sensed by sen-

tinel cells through TLRs and the cells quickly respond

by activating a cascade of biochemical events that

initiates inflammation.61 Although TLRs expressed in

resident macrophages, mast cells and endothelial

cells mainly perform this function, TLRs constitutive-

ly expressed by other non-immune cells such as

smooth muscle cells or fibroblasts are also in-

volved.62 In inflamed tissues, there is a marked up-

regulation of TLR expression in these somatic cells,

allowing recognition of both PAMPs and endogenous

agonists generated to reinforce and amplify the in-

flammatory response.63 Indirectly, TLRs expressed in

somatic cells also mediate the release of molecules

that prime DCs to acquire a determined function.64

When expressed on epithelial barriers, TLRs play an

essential role in maintaining tolerance to commensal

microorganisms.54

One of the most intriguing recent observations is

that TLRs are also expressed on T and B cells and

that they respond to their ligands by modulating and

cooperating with adaptive immunity in different

steps.65-68 Stimuli mediated by PRRs expressed on

naive B cells optimise the sequential integration of

signals mediated by antigen presentation to specific

helper T (Th) cells through immune synapses.65,66

TLRs are also expressed on different subsets of T

lymphocytes and their respective ligands can directly

modulate T cell function. With few exceptions, it ap-

pears that TLR signalling modulates T cell responses

triggered by TCR stimulation rather than inducing a

direct cellular response.68

NLRS AND RLRS: INTRACELLULAR SENSORS

OF INFECTION AND DAMAGE

NLRs are a family of intracellular proteins with a

tripartite modular structure that contain a central nu-

cleotide-binding oligomerization domain, a C-terminal

LRR, and an N-terminal effector-binding domain that

shares structural similarity with a subclass of plant

disease resistance genes.27,69 Various studies have

found evidence that NLR activation occurs through a

mechanism similar to that described for the forma-

tion of the apoptosome, although their structural

characteristics remain to be elucidated.69 It has been

proposed that NLR proteins are present in the cyto-

plasm in a monomeric auto-repressed form and that

the presence of bacterial products in the cytoplasm

directly or indirectly induces a conformational re-

arrangement of the NLR molecule that leads to

auto-association to form a complex protein structure

in which the receptor acts as a central scaffold pro-

tein to recruit the downstream effector molecules

and integrate cellular immune signals.69 Several

NLRs (NALPs and IPAF subfamilies) form multi-pro-

tein complexes termed inflammasomes, which en-

gage inactive proforms of the enzyme Caspase-1.

This induced proximity of two inflammatory pro-cas-

pases initiates their autoprocessing, which leads to

enzyme activation and the subsequent cleavage of

pro-IL-1�, pro-IL-18 and probably pro-IL-33 to gener-

ate mature and active forms.70,71

Under many conditions of cellular damage or un-

der physical or psychological stress, ATP is released

from cells without cell lysis, and this is considered

as a danger signal that induces the formation of a

NALP inflammasome and Caspase-1 activation.72 Re-
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cently it has been reported that monosodium urate

(MSU) and calcium pyrophosphate dihydrate crystals,

the causative agent of gout and pseudogout inflam-

matory diseases, engage the Caspase-1-activating

NALP inflammasome and induce the release of in-

flammatory cytokines.73 It was proposed that uric

acid could nucleate to form MSU and act as a dan-

ger signal that activates Caspase-1, further support-

ing the role of NLRs as intracellular danger sensors.

Other members of the NLR family (the NOD sub-

family) also form complex protein structures termed

nodosomes, which recruit the downstream effector

molecules initiating a signalling pathway that leads to

the activation of NF�� and to the expression of in-

flammatory genes.74

Genetic alterations in NLRs are linked to autoinflam-

matory syndromes such as familial cold autoinflamma-

tory syndrome, Muckle-Wells syndrome and chronic

infantile neurological cutaneous and articular syn-

drome/neonatal onset multisystemic inflammatory dis-

ease.75,76 Other mutations affecting genes that code

for proteins implicated in the regulation of inflamma-

some assembly and Caspase-1 activation are respon-

sible for other very similar autoinflammatory diseases.

Such is the case for familial Mediterranean fever,77 pyo-

genic arthritis, pyoderma gangrenosum, and acne syn-

drome,78 or hyperimmunoglobulinemia D syndrome.79

Mutations that affect nodosome formation have been

associated with other autoinflammatory diseases such

as Blau syndrome and early-onset sarcoidosis, and

with susceptibility to Crohn’s disease.76,80

The RLR family includes proteins encoded by RIG-I,

the melanoma differentiation-associated gene

MDA5 and the laboratory of genetics and physiology

2 gene LGP2, which detect intracellular double-strand-

ed RNA and activate certain interferon-regulated factor

family members. These proteins have been consid-

ered as cytosolic sensors of viruses that protect all vi-

rally-infected cells. It has recently been reported that

RLRs are expressed ubiquitously, suggesting that

these sensors represent the foremost antiviral de-

fence system in most organs.81,82 It is likely that TLRs

and RLRs function together to provide omnipresent

anti-viral protection, with anti-viral TLRs being more re-

stricted to DCs. These receptors have been implicated

in autoimmunity and recently it has been suggested

that they might be involved in mouse development, in-

dependently of their role as virus sensors.83

DENDRITIC CELLS: THE MAIN LINK BETWEEN

INNATE AND ADAPTIVE IMMUNITY

The specificity of adaptive immunity in identifying

pathogens is based on the existence of a varied

repertoire of antigen receptors that are generated by

somatic mechanisms during the ontogeny of each in-

dividual organism. These receptors are clonally dis-

tributed on T and B cells and possess random speci-

ficities. Unlike cells involved in innate immunity,

specific lymphocytes are not pre-programmed for a

particular effector response and acquisition of a spe-

cialized function requires cross-talk between naive

lymphocytes and antigen-presenting cells (APCs).

This communication is mainly mediated by signals

generated through PRR-PAMP interactions, which

alert the innate immune system to the presence of

microbial infection or tissue damage to initiate a rapid

effector response, and participate in the generation

of an adaptive immune response by modulating APC

functions.84

DCs are professional APCs that confer early pro-

tection against pathogens and display a capacity to

stimulate naive T cells and induce a specific immune

response or tolerance, acting as a bridge between in-

nate and adaptive immunity.85,86 In addition, they

have recently been shown to be involved in support-

ing innate immunity by interacting with various in-

nate lymphocytes, such as natural killer, natural killer

T or TCR-gamma delta cells.87

DC precursors develop in the bone marrow and

migrate through the blood into tissues, particularly at

the mucosal surfaces and skin, where cells home

and differentiate into resident populations that con-

tinuously sample the microenvironment for foreign

substances and apoptotic host cells88. DCs can be

divided into several subsets on the basis of cell-sur-

face marker expression, maturity and function89. Al-

though many subtypes arise from different develop-

mental pathways, their phenotype and function are

mainly modulated by signals that the cells receive

from pathogens, the environment and from other im-

mune cells.46,90-92

Under steady-state conditions, tissue-resident

DCs are mostly immature, characterized by a high

endocytic and phagocytic capacity, a low level of ex-

pression of MHC class II molecules and costimulato-

ry molecules and a poor capacity to produce cy-

tokines. Antigen presentation by these immature

DCs leads to tolerance by inducing specific naive

T-cell anergy or deletion and through the generation

of T regulatory (Treg) cells, a group of T cells that ac-

tively suppress effector Th cells and cytotoxic T

cells93-95 (see fig. 2). Alterations in Treg cell function

have been associated with the pathogenesis of vari-

ous disorders including autoimmunity, allergy, can-

cer, and infection with persistent pathogens96.

In infectious processes, immature DCs migrate to

the injured region where they detect pathogens and

damage via PRRs and receive other environmental
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Fig. 2.—Dendritic cells

control tolerance and im-

munity in the periphery.

In steady-state condi-

tions, dendritic cells

(DCs) remain immature

but may still capture the

antigen and migrate to

the lymph nodes to

prime naive cells and in-

duce their apoptosis or

anergy. Under specific

conditions immature/

semi-mature DCs in-

duce naive T cells to be-

come specific T regula-

tory (Treg) cells. In the

presence of signals gen-

erated by infection and

injury, DCs change to a

mature form and prime

naive T cells for different

effector functions (T

helper [Th] 1, Th2, Th17,

cytotoxic T [Tc] 1 and

Tc2) and generate spe-

cific Treg cells that sup-

press T cell effector

functions by releasing in-

terleukin (IL) 10 and

transforming growth fac-

tor � (TGF�) or by direct

contact.

Immature DC Mature DC Mature DC

Signal 1 Signal 2 Signal 3

MHCII

TCR

CD4

naive T cell activated T cell polarized effector T cell

CD40 B7

CD4CD28CD40L

CD40 B7

CD4
CD28

CD40L

polarizing
factors

inflammatory
signals

DAMPs
PRRs

DAMPs
PRRs

Fig. 3.—Activation of

naive T cells. Three sig-

nals provided by dendrit-

ic cells (DC) to naive T

cells determine their

function: signal 1 guaran-

tees specificity of re-

sponse, signal 2 con-

tributes to costimulation

and stabilisation of the

immune synapse and

signal 3 leads to func-

tional polarization of T

cells. DAMPs, damage-

associated molecular

patterns; PRRs, pattern

recognition receptors;

TCR, T cell receptor.



inflammatory signals. Initially, immature DCs respond

to injury by releasing inflammatory mediators that ac-

tivate effector cells of the innate immune system.

They then change their morphology, lose their phago-

cytic role and activate the antigen-processing ma-

chinery. During the maturation process, DCs express

high levels of MHC and costimulatory molecules, re-

program their expression of chemokine receptors

and acquire their T cell-polarizing capacity86,90,91,97. Si-

multaneously, DCs move to local lymph nodes and

migrate into the T cell area, where they finally en-

counter naive antigen-specific T cells. DCs provide

naive T cells with the three signals required for their

activation and functional differentiation98 (fig. 3). Sig-

nal one is supplied through the TCR after recognition

of antigen-specific peptides presented by DCs

through MHC molecules. This recognition stimulates

naive T cells and guarantees the specificity of the re-

sponse but is insufficient to induce T cell proliferation

and differentiation into effector cells. Signal two, the

so-called costimulatory signal, is mediated by binding

of different CD28 ligands (CD80 and CD86) ex-

pressed on DCs to CD28 on the naive T cell. This

second signal stabilises the immune synapse

through those adhesion molecules and CD40/CD40L

activation. Signal three is mediated during antigen

presentation by the binding of polarizing cytokines

and other molecules released by mature DCs to their

respective receptors on naive T cells. It has recently

been shown that DCs also use the Notch pathway

to polarize T cell differentiation99,100.

PRRs and DC polarizing signals

According to the density and nature of the anti-

genic peptide presented, the class of co-stimulatory

molecules expressed and the type of polarizing sig-

nals received, the naive CD4 + T cell differentiates

to display a Th1, Th2, Th17 or Treg cell phenotype.

DCs that secrete high levels of IL-12 p70 and

IL-27 and express the notch ligand Delta-4, and those

that produce type I interferons, instruct CD4 + naive

cells to differentiate into Th1 cells101,102, whereas DCs

that do not secrete high levels of IL-12 and express

the notch ligand Jagged have the capacity to induce

a Th2 response103,104. In addition the expression of

OX40 ligand on DCs has been implicated in triggering

the development of Th2 cells103. The differentiation

of Treg cells is mediated by immature DCs but also

by DCs that secret IL-10 and TGF-� and express the

ICOS ligand103,105. In addition, TGF-� and IL-6 appear

to act as polarising cytokines for the recently identi-

fied Th17 cells whereas IL-23 allows the activation of

already differentiated Th17106. Environmental signals

released by neighbouring cells are able to influence

various function of DCs. For example, a novel cy-

tokine, thymic stromal lymphopoietin, produced by

human epithelial, stromal and mast cells exerts an ef-

fect on DCs that promotes specific Th2 cell differen-

tiation and seems to be involved in the pathophysiol-

ogy of inflammatory arthritis as well as allergic

disease107,108. Other molecules that promote a

Th2 response are prostaglandin E2,109, vitamin D110

and glucocorticoid111. Induction of Treg cells is mod-

ulated by molecules such as vasoactive intestinal

polypeptide112 and vitamin A113. In addition DCs un-

dergo an instructional phase induced by IFN� and

IL-10 released from surrounding cells114,115.

Maturation of DCs and the production of polarising

signals is tightly regulated by pathogen recognition

through PRRs in association with inflammatory sig-

nals and with other mediators released by innate

lymphocytes and by local somatic cells46,97,98,116. Sig-

nals mediated through TLRs stimulate transcription

of cytokines and chemokines, induce up-regulation

of surface costimulatory molecules, and also affect

antigen capture, processing and presentation, DC mi-

gration, and cell survival92,117. TLR activation is in-

volved in the production of the polarizing cytokines

IL-12118,119 and IL-10120,121, in the induction of the

notch ligand Delta-like-4 on DC122 and in the release

of thymic stromal lymphopoietin64. Recent evidence

has suggested that signals from other PRRs could

contribute to the elicitation of antigen-specific im-

munity116. Stimulation of the intracellular bacterial

sensor NOD2 programs DCs to promote IL-17 pro-

duction in human memory T cells123. It has been

found that Nod1 stimulation can independently in-

duce antigen-specific immunity with a predominant

Th2 polarization profile, while in cooperation with

TLR stimulation it leads to the development of Th1,

Th2, and Th17-mediated immunity124.

Taken together, these findings suggest a high de-

gree of functional plasticity of DCs to polarize naive

T cells according to the type of pathogen and the

presence of a variety of surrounding tissue factors.

FUTURE PERSPECTIVES

The recent evidence that PRRs play an essential

role in innate and adaptive immune responses and

the remarkable progress made in our understanding

of their signalling pathways open a wide array of pos-

sibilities for the development of innovative therapies

to treat infections and a long list of inflammatory dis-

eases116,125. Suppression or modulation of TLR sig-

nalling by introducing natural ligands, soluble recep-

tors, suppressors or antagonist proteins, and the use
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of genetic techniques that correct PRR signalling de-

fects represent tools that could be used for the de-

velopment of new immunotherapeutic strategies.

The high level of functional plasticity displayed by

DCs according to the signals generated through

PRRs and environmental factors renders them at-

tractive therapeutic targets for pharmacological redi-

rection of the adaptive immune response, opening

up new hopes for the design of cures for infections,

cancer, allergy, and autoimmune diseases and in the

induction of transplantation tolerance.54,126-131

In addition, therapies based on reducing IL-1 ac-

tivity, such as the use of a recombinant form of the

human IL-1 receptor antagonist (anakinra), have just

begun and bring new hopes for the treatment of in-

flammatory syndromes associated with inflamma-

some dysfunction132-134. Other possible therapies

such as anti-IL-1� monoclonal antibodies, the IL-1

Trap, IL-1 receptor type I antibodies, antibodies to the

IL-1 receptor accessory chain and inhibitors of Cas-

pase-1 will also be useful therapies in the future135.

It will be possible to use these new immunother-

apies as individualized treatments in each patient ac-

cording to the pathophysiology of the disease. There-

fore, the appropriate prescription of these “biological

agents” will necessitate a precise immunogenetic di-

agnosis and the development of techniques to allow

reliable identification of the underlying cause of the

disease as part of day-to-day clinical practice. Given

the high degree of complexity of the processes that

regulate the innate immune response and the

cross-talk between the different signalling pathways,

as well as the role of innate immunity in the devel-

opment of acquired immunity, drastic changes in one

of these immune mechanisms could give rise to un-

desirable side effects, as has been observed with

some existing biological therapies136-139. Therefore,

while these new therapies are promising, appropri-

ate prescription and monitoring will require the es-

tablishment of multidisciplinary teams including im-

munology specialists.
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