
ABSTRACT

The innate immune system possesses a network

of germline–encoded receptors that recognize micro-

bial molecular motifs and endogenous molecules

produced by injured tissues and set in motion a de-

fensive response which adapts to the damage that

has occurred. This network includes Toll-like recep-

tors (TLRs), a family of transmembrane receptors

that recognize a wide spectrum of ligands at the cell

surface and in the lumen of intracellular vesicles.

Recognition of ligands by TLRs induces the recruit-

ment of different cytoplasmic adaptor molecules and

initiates signalling pathways which ultimately lead to

the activation of transcriptional factors such as

NF-��, IRF1/3/5/7, or AP-1. These factors are involv-

ed in the expression of inflammatory cytokines,

chemokines, type I interferons, co-stimulatory mole-

cules, and other factors of the effector response.

TLRs regulate many aspects of both innate and

adaptive immunity. To prevent an inappropriate or an

overactive immune response, a complex network of

molecules negatively regulates TLRs and their asso-

ciated signalling pathways. TLRs are currently view-

ed as important targets for the development of new

vaccines and innovative therapies which may help

prevent or treat disorders such as cancer, allergy,

autoimmunity, obesity, atherosclerosis, and other

inflammatory diseases.
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INTRODUCTION

Most living species have developed efficient

mechanisms of surveillance and defence that have

protected them from the pathogens they face. These

defensive mechanisms are mediated by products en-

coded in the host genome and constitute a phyloge-

netically preserved immunity, known as innate im-

munity1. The cells of innate immunity possess a set

of germline-encoded receptors (termed pattern

recognition receptors or PRRs), and each receptor

harbours a fixed specificity that enables it to detect

invariant molecular constituents of the pathogens

(known as pathogen-associated molecular patterns,

or PAMPs) and initiate a defensive response which is

adapted to the pathogen2,3. Besides their primary

function in discriminating infectious non-self from

non-infectious self, PRRs can also identify endoge-

nous molecules released during tissue injury, and it

has been postulated that, rather than sense non-self,

PRRs detect “danger signals” and alert the immune

system4. Different experimental models propose that

some of these innate sensors monitor specific phys-

iological disturbances, and PRRs are believed to be
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involved in the control of cell and tissue homeo-

stasis5-7.

The strategy used by innate immunity to mount a

particular effector response is based on the existence

of a set of different PRRs in all cells of the same type

that can discriminate between ligands. Functional co-

operation and complementation exist between these

receptors, thus providing a combinatorial repertoire of

signals that triggers and shapes the immune re-

sponse best suited to destroying a specific pathogen

and repairing the damage produced8,9.

To date, three families of PRRs that activate sig-

nalling pathways and induce the expression of in-

flammatory genes have been identified10: Toll-like re-

ceptors (TLRs), nucleotide binding oligomerisation

domain (NOD)-like receptors (NLRs), and retinoic acid

inducible gene-I (RIG)-like receptors (RLRs). TLRs

were the first to be described and are the most wide-

ly studied. In this review, we examine the main struc-

tural and functional features of TLRs, their ligands,

and the signalling pathways that they activate. We

also highlight the importance of TLR cooperation for

the induction of a specific immune response.

DISCOVERY OF THE TLR FAMILY

TLRs are a family of innate receptors that have been

evolutionarily conserved from plants to mammals.

They derive their name from the Drosophila Toll pro-

tein, with which they share a sequence and functional

similarity. This protein was initially involved in the em-

bryonic development of Drosophila11,12; however, giv-

en the remarkable similarity between the signalling

pathway of Toll protein and mammalian LRs, the inter-

leukin (IL)-1 receptor signalling pathway which leads to

the activation of NF-�� (Fig. 1), it was proposed that

Toll protein might be involved in the fly’s immune de-

fence against pathogens13,14. Several subsequent ex-

perimental works in mutant flies clearly showed that

Toll protein was involved in protecting the fly against in-

fection by fungi and gram-positive bacteria15,16. These

studies revealed the existence in invertebrates of a

highly conserved defensive strategy able to discrimi-

nate between various classes of microorganisms in or-

der to mount a response adapted to the pathogen, de-

spite the fact that invertebrates only have innate

immunity. When these results were published, a hu-

man homologue of Toll protein (later named TLR4) was

shown to regulate the expression of NF-��-controlled

inflammatory genes and the expression on

antigen-presenting cells of the co-stimulatory mole-

cules required for the activation of naive T cells. These

results showed that TLRs not only mediate in the ef-

fector response of innate immunity, but they also par-

ticipate in the functional polarization of naive lympho-

cytes during antigen cross-presentation17. TLR4 was

later identified as a lipopolysaccharide (LPS) sensor18,19.

Subsequently, a growing family of evolutionarily con-

served proteins that were structurally related to

Drosophila Toll and could recognize a broad spectrum

of PAMPs and activate immunity were identified.

To date, 13 different TLRs have been characterized

in mice and 11 TLR homologues (10 of which are func-

tional) have been found in the human gene data-

base20,21. Based on their amino acid sequence and

function, human TLRs are subdivided into five subfam-
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Figure 1.—IL-1R/Toll-like receptor superfamily structure and con-

served signalling pathways. Mammalian Toll-like receptors (TLRs)

and Drosophila Toll possess an extracellular domain containing

different leucine-rich repeat (LRR) motifs, which detect

pathogen-associated molecular patterns (PAMPs) and the Spätzle

molecule, respectively. IL-1 receptors recognise IL-1 members

through an immunoglobulin-like structure. They all share a cyto-

plasmic signalling domain called the Toll/IL-1 receptor domain

(TIR). TIRs of mammalian TLRs and of IL-1 receptors associate

with MyD88 and recruit members of the interleukin-1 receptor–as-

sociated kinase (IRAK) family, leading to TRAF6 activation to de-

grade I�� and activate NF-��. Activated Drosophila Toll associates

with DmMyD88 (a homologue of mammalian MyD88) through the

TIR domain to recruit signalling molecules such as Tube and Pelle

(a serine-threonine kinase that is highly homologous to mam-

malian IRAKs) and activate DTRAF6 (homologue of TRAF6 in the

fly), thus inducing the degradation of Cactus (the Drosophila I��

homologue) and the release of Dif/relish dimer, a transcription

factor homologue of NF-��.



ilies: TLR2, TLR3, TLR4, TLR5, and TLR922. The TLR2

subfamily has four members: TLR1, TLR2, TLR6, and

TLR10, which are highly homologous and work in a

pair-wise combination in the presence of their respec-

tive ligands. The TLR9 subfamily is composed of TLR7,

TLR8, and TLR9. The subfamilies TLR3, TLR4, and

TLR5 include only one member that can work alone or

in association with other receptors or molecules.

Most tissues express mRNA for at least one TLR

and several express all of them23, with considerable

differences between mice and humans24. In both

species, the most abundant repertoires of TLR are

detected in the cells and tissues involved in innate im-

munity and in those tissues highly exposed to the en-

vironment. At the cellular level, TLRs are differential-

ly distributed and their location correlates with the

nature of their ligands25,26. Members of the TLR2,

TLR4, and TLR5 subfamilies are mainly located in the

plasma membrane and recognize external ligands.

The TLR3 and TLR9 subfamilies are located in the

membranes of intracellular vesicles such as endo-

somes, and only detect ligands present in the lumen

of these intracellular structures. This distribution is

not permanent, and the expression and location of

TLRs can vary depending on cell and tissue status27-29.

During the last ten years, several experimental

works have revealed that TLRs are key regulators of

both the innate response and the adaptive response.

The TLRs on the sentinel cells of innate immunity ini-

tiate and regulate inflammation30, on dendritic cells

they play an essential role in the polarization of the

adaptive immune response31, and on the cells of

adaptive immunity they regulate their functions32.

TLR STRUCTURE AND SIGNALLING PATHWAYS

Most of the proteins that participate in cellular sig-

nalling networks are constructed in a cassette-like

fashion and contain several protein interaction do-

mains. Some of these domains have the intrinsic abil-

ity to undergo homotypic or heterotypic domain-do-

main interactions to identify a physiological partner

involved in a common signalling process and form

functional complexes33.

TLRs are integral membrane glycoproteins that ac-

tivate signalling pathways through interaction do-

mains. Structurally, TLRs are characterized by the

presence of an ectodomain involved in ligand recog-

nition, which consists of leucine-rich repeat (LRR)

motifs and a cytoplasmic signalling domain (Toll/IL-1

receptor [TIR] domain) that shows a remarkable sim-

ilarity to that of the IL-1 receptor family, which is es-

sential for signal transduction. Both domains are

joined by a single transmembrane helix22.

In Drosophila, TLRs do not interact directly with

PAMPs, but are activated upon binding a cleaved

form of the cytokine-like Spätzle molecule. During

the immune response, this protein is thought to be

processed by serine proteases secreted in he-

molymph that are activated by the recognition of

gram-positive bacteria or fungi34. Binding of Spätzle

to TLRs induces recruitment of a cytoplasmic adap-

tor, initiating a cascade of recruitments and phos-

phorylations analogous to the mammalian NF-�� ac-

tivation pathway (Fig. 1).

In mammals, the structural basis of ligand recogni-

tion is still poorly understood, and there is a relative

lack of experimental evidence to support a physical

interaction between LRR domains and TLR ligands. In

any case, upon detection of PAMPs, TLRs dimerise

and/or associate with other receptors or molecules

and induce the interaction between the TIR-cytoplas-

mic domain and the TIR- domains of intracellular

adaptor molecules35. This in turn initiates a cascade of

recruitments that results in the successive activation

of different members of the IL-1 receptor–associated

kinase (IRAK) family. These events ultimately lead to

the activation of transcriptional factors such as

NF-��, interferon (IFN) regulatory factor (IRF)-1/3/5/7,

and/or activator protein-1 (AP-1), which allow the ex-

pression of genes that code for inflammatory cy-

tokines, chemokines, type I IFNs, co-stimulatory mol-

ecules, and other factors of the effector response36.

Four intracytoplasmic TIR-containing adaptors in-

volved in TLR signalling have been identified:

myeloid differentiation factor 88 (MyD88), TIR do-

main–containing adaptor inducing IFN-� (or TRIF, also

named TICAM1), TIR domain–containing adaptor pro-

tein (or TIRAP, a structurally related MyD88 protein

also known as MyD88-adaptor–like (MAL) protein),

and TRIF-related adaptor molecule (or TRAM, also

known as TICAM2)21,36. MyD88 and TRIF mediate in

the activation of two independent signalling path-

ways that can be categorised as the MyD88-depen-

dent pathway and the TRIF-dependent pathway.

TIRAP and TRAM act as “bridging molecules” with

TIRA protein recruiting MyD88 to TLR2 and TLR4,

and TRAM recruiting TRIF to TLR4.

MyD88-dependent signalling pathway

MyD88 is the key signalling adaptor for all TLRs ex-

cept TLR3, but it is also the adaptor molecule for the

IL-1 receptor family (see Figs. 1 and 2). MyD88 has a

bipartite nature, containing an N-terminal death do-

main and a COOH-terminal TIR domain. Upon stimula-

tion with appropriate ligands, the TIR domain of the cy-

toplasmic portion of the TLRs directly associates with
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the TIR domain in the C-terminal portion of MyD88. In

the case of TLR2 and TRL4, TIR-dependent recruit-

ment of MyD88 requires TIRAP to facilitate TIR do-

main interactions37. The death domain in the N-termi-

nal region of MyD88 is involved in the recruitment and

successive phosphorylations of different members of

the IRAK family21,35. IRAK4 and IRAK1 are sequentially

phosphorylated and then dissociated from MyD88 to

interact with TNF-associated factor 6 (TRAF6), which

in turn activates transforming growth factor (TGF)-�-

activated protein kinase 1 (TAK1), a protein that, in

combination with TAB1, TAB2, and TAB3 proteins,

mediates in two different downstream pathways. One

of these pathways is involved in the activation of

AP-1 transcription factor through the mitogen-activat-

ed protein (MAP) kinase cascade. The other pathway

activates the I��-kinase (IKK) complex, which is com-

posed of two catalytic subunits, IKK� and IKK� and of

a regulatory subunit IKK� (also known as NF-�� es-

sential modulator or NEMO), which catalyses the

phosphorylation and degradation of I��, thus enabling

activation of NF-��. Active AP-1 and NF-�� transcrip-

tion factors then translocate to the nucleus and medi-

ate in the expression of genes that regulate inflam-

matory cytokines such as TNF�, IL-6, IL-1�, or IL-12,

and several chemokines21,35,36. The MyD88-IRAK-
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Figure 2.—The MyD88/TIRAP-dependent signalling pathway. Activation of toll-like receptors (TLRs), except TLR3, induces the recruitment

of myeloid differentiation factor 88 (MyD88) through association with the Toll/IL-1 receptor (TIR) domain, although TLR2 and TLR4 require

TIR domain–containing adaptor protein (TIRAP). MyD88 then recruits different members of the interleukin-receptor–associated kinase

(IRAK), which interacts with TNF-associated factor 6 (TRAF6) to activate transforming growth factor-�–activated protein kinase1 (TAK1).

Next, TAK1 combines with TAB1, TAB2, and TAB3 proteins to mediate in two different pathways of downstream signals. One pathway

activates the I��-kinase (IKK) complex (composed of IKK�, IKK�, and regulatory subunit IKK�/NEMO, which allows NF-�� to translocate to

the nucleus. The other pathway activates the MAPK pathway, which mediates AP-1 activation and translocation. IFN regulatory factor

(IRF) 5 can be recruited to the MyD88-IRAK4-TRAF6 complex to be phosphorylated and directly translocated to the nucleus. NF-��, AP-1,

and IRF5 control the expression of genes encoding inflammatory cytokines. In plasmacytoid dendritic cells (pDC), stimulation of TLR9 in-

duces the recruitment of TRAF3 to the complex formed by MyD88, IRAK-4, IRAK-1, and TRAF6, to phosphorylate and activate IRF7, the

main inducer of type I IFNs. MyD88 also combines with IRF1 when it is induced by IFN� and travels assembled to the nucleus to induce the

expression of IFN�.



TRAF6 complex directly phosphorylates IRF-5 to be

translocated to the nucleus and induces gene expres-

sion of proinflammatory cytokines, such as IL-6, IL-12,

and TNF�38. Stimulation of TLR9 by their specific ligand

also induces the recruitment of TRAF3 to the complex

formed by MyD88, IRAK-4, IRAK-1, and TRAF6, to

phosphorylate and activate IRF7, the main inducer of

type I IFNs39. MyD88 also binds to IRF1, when it is in-

duced by IFN�, and travels assembled to the nucleus

to induce expression of IFN� and IL-12 p3540.

TRIF-dependent signalling pathway

The adaptor molecule TRIF is used by TLR3 and

TLR4 to initiate an MyD88-independent signalling

pathway that leads to activation of NF-��, IRF-3, and

IRF-721,35,36, but that is also an inducer of apoptosis41

(Fig. 3). Ligand binding to TLR3 and TLR4 results in

TRIF recruitment through its TIR domain, although

TLR4 requires cooperation with TRAM to bind to

TRIF42. The N-terminal region of TRIF possesses a

domain that recruits two non-canonical IKKs—IKKi

and TANK-binding kinase (TBK) 1—to phosphorylate

IRF3 and IRF7, which form homodimers and translo-

cate from the cytoplasm to the nucleus, where they

regulate expression of high levels of IFN� and of dif-

ferent host defence genes. It is thought that TRIF

associates with TBK1 through TRAF343. Recently, it

has been proposed that IRF3 activated by the

TRIF-dependent pathway promotes the synthesis of

TNF�, which then binds to its receptor to initiate a
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Figure 3.—The TRIF-dependent signalling pathway. After exposure to their respective ligands, Toll-like receptor (TLR) 3 and TLR4 recruit Toll

IL-1 receptor (TIR) domain–containing, adaptor-inducing interferon (IFN)-beta (TRIF) through the TIR domain, although TLR4 requires the

TRIF-related adaptor molecule (TRAM). The N-terminal region of TRIF directly recruits the non-canonical I�� kinases (IKKs), TBK1 and IKKi,

which mediate phosphorylation and dimerisation of IRF3 to be translocated to the nucleus and induce expression of IL-10 and type I IFN

genes. The N-terminal region of TRIF also recruits TRAF6 and the C-terminal region mediates its interaction with receptor interacting pro-

tein (RIP) 1. RIP1 then forms a complex with TRAF6 and TAK1, resulting in activation of NF-�� and MAPKs. RIP3 blocks RIP1-induced NF-��

activation and the death domain of RIP1 recruits Fas/Apo-1–associated death domain protein (FADD), thus inducing apoptosis.



late phase of NF-�� activation in an autocrine man-

ner44,45.

The N-terminal region of TRIF contains another do-

main that mediates interaction with TRAF6. The

C-terminal region of TRIF interacts with the receptor

interacting protein (RIP) 1 and forms a complex with

TRAF6 and TAK1. Together, the recruitment by TRIF

of RIP1 and TRAF6 seems to facilitate TAK1 activa-

tion, which in turn results in activation of NF-�� and

of MAP kinases. When RIP3 is complexed with TRIF,

RIP1 blocks RIP1-induced NF-�� activation and the

death domain of RIP1 recruits Fas/Apo-1–associated

death domain protein (FADD) to induce apoptosis45.

NEGATIVE REGULATION OF TLR SIGNALLING

Although TLR-mediated signalling pathways are in-

dispensable for the eradication of microbes and tissue

repair, their prolonged and/or excessive activation

would lead to an aberrant immune response and dis-

ease. To avoid or minimise inappropriate reactivity or

an excessive immune response, TLR signalling is

tightly regulated through multiple negative regulatory

mechanisms, which seem to be non-redundant46,47

(Fig. 4). The first line of regulation is to avoid improper

or excessive interaction between TLRs and their lig-

ands. Excessive binding of ligands can be prevented

by naturally produced soluble TLRs, which function as

decoy receptors48,49, by reducing TLR expression or by

inducing their degradation50,51. Other molecules di-

rectly hamper binding to the receptor52. Once the TLR

and ligand have interacted, TLR signalling can be fur-

ther controlled by intracellular regulators which could

be upregulated by TLR signalling during damage or

constitutively expressed to physiologically control in-

flammation. These molecules can inhibit TLR sig-

nalling pathways at different levels (Fig. 4).

TLRs can also function as death receptors and in-

duce apoptosis, a process that might be important in

the control of a deregulated TLR response67. This

novel mechanism of activation-induced cell death

could also play an important part in the resolution of

inflammation.

TOLL-LIKE RECEPTOR LIGANDS

Relatively few TLRs have been identified to date;

however, they enable the innate immune system to

recognise an increasingly broad spectrum of ligands

from bacteria, fungi, protozoa, viruses, and many en-

dogenous molecules.

Cell surface TLRs mainly recognise microbial

membrane lipids68. The TLR2 subfamily has been

shown to identify lipoproteins and lipopeptides from

a wide range of pathogens including gram-negative

bacteria, mycoplasma and spirochetes69-72, peptido-

glycans and lipoteichoic acid from gram-positive bac-
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Figure 4.—Main points of negative regulation of Toll-like receptor

(TLR) function. Endogenous molecules interfere in the TLR down-

stream signalling pathways at different levels: soluble TLRs (sTLR)

and the radioprotective 105 protein (RP105) prevent excessive

binding of ligands to TLR52. Transforming growth factor beta

(TGF-�), IL-10, and Triad 3A regulate TLR expression. The short

form of MyD88 (MyD88s) antagonises MyD88 function53. The

membrane-bound form of the IL-1 receptor-like protein (known as

ST2L) sequesters MyD88 and TIRAP, thus preventing their associ-

ation with the TIR domains54. The single immunoglobulin IL-1 re-

ceptor-related molecule (SIGIRR, also known as TIR8) interacts

with the TIR domain of the TLR455. IL-1 receptor–associated kinase

M (IRAKM) seems to prevent the activation of the tumour necro-

sis factor receptor–associated factor 6 (TRAF6)56. Toll-interacting

protein (TOLLIP) interacts with IRAK157. The zinc finger protein

A20 acts by blocking TRAF6 signal58. The inhibitory proteins down-

stream of kinase 1 and 2 (DOK1 and DOK2) negatively regulate

Ras-Erk signalling downstream of protein tyrosine kinases59. TNF

receptor–associated factor (TRAF) 1 interacts with the TIR domain

of TRIF and inhibits TLR3-mediated activation of NF-��60, whereas

TRAF4 acts as a silencer in TLR-mediated signalling through its as-

sociation with TRAF6 and TRIF61. The sterile-alpha and HEAT/ar-

madillo motif–containing protein (or SARM), seems to associate

with TRIF62. PI3K (phosphatidylinositol 3-kinase) is a negative regu-

lator of TLR signalling, but its molecular basis is still unclear63-65. Bal-

anced production of pro-inflammatory cytokines mediated by the

TLR2 signalling pathway seems to be regulated by NOD2 through

an L-10-mediated anti-inflammatory cytokine response66.



teria27,73,74, lipoarabinomannan from mycobacteria75,

and LPS from non-enterobacteria76,77. TLR4 mainly

recognizes LPS, but can also sense mannans from

Saccharomyces cerevisiae and Candida albicans78,

glucuronoxylomannan from Cryptococcus neofor-

mans79, and taxol80, and it can mediate in the re-

sponse to respiratory syncytial virus81. Mammalian

TLR5 recognises bacterial flagellin, the principal com-

ponent of bacterial flagella from both gram-positive

and gram-negative bacteria82. Intracellular TLRs main-

ly sense nucleic acids and their derivatives. Human

TLR3 recognises foreign-derived double-stranded

RNA (dsRNA) and participates in the generation of

protective immunity against some viral infections83.

Natural agonists consisting of nucleic acids, such as

single-stranded RNA (ssRNA) or DNA with unmethy-

lated CpG motifs, activate innate immune cells

through TLR7/8 or TLR9, respectively84. TLR9 also

recognises haemozoin, a pigment from the malaria

parasite Plasmodium, and seems to play an impor-

tant role in the cerebral pathology of malaria85.

Other evidence shows that non-microbial mole-

cules can be detected by TLRs and activate an in-

flammatory response. TLR2 and TLR4 recognise the

release of degradation products by damaged tissues

as danger signals86. These endogenous ligands in-

clude molecules such as heat shock proteins, fi-

bronectins, hyaluronic acid, heparan sulfate, fibrino-

gen, defensin, surfactant protein A, minimally

modified low-density lipoprotein (LDL), and extracel-

lular matrix degradation products. In addition, several

studies clearly reveal that TLR7 and TLR9 are sensors

of damage and enhance the immune response by

sensing endosomally translocated self-DNA or

self-RNA87,88, and human TLR3 recognises endoge-

nous necrotic cell RNA. It has been proposed that, in

certain autoimmune disorders, recognition of en-

dogenous ligands by TLRs drives sterile inflammation

sustained by innate immune cells that contributes to

the loss of tolerance89. Similarly, it is interesting to

emphasize that many autoantigens are generated by

tissue injury and are able to stimulate innate immuni-

ty through TLRs. This supports the idea that many of

them are autoantigens because they act as autoadju-

vants that directly activate innate immunity to induce

a self-directed immune response87.

Recent reports show that TLR2 and TLR4 recog-

nise saturated fatty acids and activate both

MyD88-dependent and TRIF-dependent pathways to

induce the expression of pro-inflammatory gene

products, whereas various unsaturated fatty acids in-

hibit TLR-mediated signalling pathways and target

gene expression90. It has been proposed that TLRs

sense pathological levels of lipids playing a role in the

central control of energy homeostasis, and it is spec-

ulated that the detection of abnormal levels of dietary

lipids through TLRs could participate in the control of

food intake7. These new concepts in innate immune

function can help us to understand the pathophysio-

logical basis of conditions such as obesity, insulin re-

sistance, or atherosclerosis90.

SPECIFIC RECOGNITION OF LIGANDS BY TLRS

In spite of the low number of TLRs identified, their

role in the identification of invading pathogens and of

injury produced is essential for the induction of a spe-

cific protective response. One explanation for the ca-

pacity of such a reduced number of TLRs to discrimi-

nate between a large number of stimuli is that these

receptors assemble into heteromeric or homomeric

complexes and/or associate with other receptors or

with other co-molecules to form many different acti-

vation clusters91,92. These combined associations en-

able the discrimination of ligands and modulate TLR

signalling properties. For example, heterodimerisa-

tion of TLR2 with TLR1 or TLR6 permits the innate

immune system to differentiate between the numer-

ous lipopeptide structures present in different

pathogens93. Furthermore, CD14, a membrane re-

ceptor expressed mainly on phagocytes, is required

for TLR2/6 signalling to both lipopeptides and zy-

mosan94,95. The scavenger receptor CD36, a mem-

brane receptor which binds fatty acids and directs

their transfer into the cells, contributes to the identifi-

cation of TLR2/6 ligands containing diacylglycerides,

thus facilitating their signalling96. Another example of

TLR molecular cooperation is the recognition of LPS

by TLR486,92. The LPS binding protein (LBP) binds to

the amphipathic lipid A moiety of LPS, thus facilitating

its presentation and transfer to CD14, which guides

the complex to TLR4. Next, the myeloid differentia-

tion 2 protein (MD-2) acts as an extracellular adaptor

that binds to the hydrophobic portion of LPS and to

the extracellular domain of TLR4. This MD-2 interac-

tion determines molecular rearrangements in

TLR4 and their homotypic aggregation, and triggers

transmission of signals. When endotoxin is trans-

ferred from MD-2 to an extracellular soluble CD14, it

attenuates TLR4-dependent cell activation by acting

as a negative regulator.

FUNCTIONAL COOPERATION OF TLRS

Pathogens contain many different PAMPs that in-

teract with a specific combination of TLRs expressed

by the different host cells. Simultaneous activation of

TLRs can generate cross-talk between receptors and
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modify the primary responses of a TLR to their ago-

nist, thus adding a further level of complexity to the

regulation of innate immunity. Simultaneous acti-

vation of signalling pathways will result in comple-

mentary, synergistic, or antagonistic effects97. For

example, synergy has been described between

MyD88-associated and TRIF-associated pathways for

the induction of several proinflammatory cytokines.

Antagonistic cooperation has been seen in human

dendritic cells: the subset of Th1 cytokines that are

specifically induced by TLR4 or TLR3 in these cells

is blocked by IL-10 released by concomitant TLR2

stimulation. Other forms of TLR cooperation seem to

promote negative regulation of their signalling path-

ways.

A TLR-mediated response can also interact with

responses induced by ligands of other PRR families

and cooperate in the induction of the host defensive

response97. Moreover, many types of cells participate

in the response to injury, and PRR stimulation acti-

vates a myriad of genes, leading to the release of

mediators that can exert potent autocrine and

paracrine effects. Indeed, different authors have

shown that the same TLR ligand can have different

effects on the host cell under the influence of differ-

ent signals mediated by accessory cells and other im-

munocytes97,98.

At present, it is unknown how the ligands of TLRs

that activate signalling pathways which converge on

activation of common transcription factors, such as

NF-�� or AP-1, are coordinated to regulate specific

gene expression and generate a pathogen-specific

response. Recently, a greater understanding of these

subtleties has become evident with interesting new

insights into specific regulation of different NF-��

subunits at the transcriptional and functional levels99.

Other authors have found evidence that a post-trans-

lational modification of NF-�� and the cross-talk of

NF-�� with other cooperating transcription factors

play a role in the fine regulation of a specific tran-

scriptional response at the promoter level100.

FURTHER PERSPECTIVES

The identification of TLR ligands and their sig-

nalling pathways and regulatory mechanisms has

opened an array of possibilities in the development

of innovative vaccines and therapies to prevent and

treat infection, cancer, allergy, and a long list of im-

munological disorders101,102, many of which are cur-

rently being evaluated in clinical trials103-106. Howev-

er, the immune system is different to other drug

targets and its modulation could trigger unexpected

harmful responses107. Accordingly, although TLR-

based therapies have an enormous biological poten-

tial, their benefits are not free of risk107-111. In order

to prevent the undesirable adverse effects of these

therapies, we still need a more precise understand-

ing of the participation of TLRs in the pathophysiolo-

gy of a disease before drugs enter the trial phase and

routine clinical practice. We still need to expand our

knowledge on TLR cross-talk with other receptors,

the influence of cells from the microenvironment,

and the way in which the signals generated are co-

ordinated to elicit a specific response. We also need

to determine how many endogenous ligands signal

through TLRs and ascertain their role in human

health. In conclusion, the success of these potent

biological therapies will require the efforts of multi-

disciplinary teams including immunologists with de-

tailed knowledge of potential side effects.
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