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a  b s  t r a  c t

This article presents a  methodology for the  characterization of the  dynamic properties of a

laminated glass automotive ceiling, motivated by the  inherent difficulty in obtaining labora-

tory samples from this kind of components. This methodology is based on the identification

of  the effective complex modulus of the  laminated glass ceiling through Experimental Modal

Analysis in conjunction with a  finite element model. Besides, a material behaviour model is

proposed for the effective complex module. Then, the dynamic properties of the laminated

glass  core are extracted from the latter using a  reverse homogenized formulation of sand-

wich plates specifically developed in this work. As  a  result, a  methodology to accurately

predict the dynamic behaviour of these key automotive components has been achieved.

An  additional advantage of this methodology is that the identification of properties is car-

ried  out from a  manufactured component and not from samples of reduced geometries,

considering the impact of the manufacturing process.

©  2024 The Author(s). Published by Elsevier España, S.L.U. on behalf of SECV. This is  an

open access article under the  CC BY-NC-ND license (http://creativecommons.org/licenses/

by-nc-nd/4.0/).

Caracterización  de las  propiedades  dinámicas  de  un  techo  de vidrio
laminado  para  automóviles
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r e  s u  m e  n

Este artículo presenta una metodología para  la caracterización de las propiedades dinámi-

cas  de  un techo de vidrio laminado de automoción, metodología motivada por la  dificultad

inherente de obtener muestras de laboratorio de este tipo de componentes. Esta metodología

se  basa en la identificación del módulo complejo efectivo del techo de vidrio laminado medi-

ante  análisis modal experimental y  mediante un modelo de elementos finitos. Además, se

propone un modelo de comportamiento del material para el  módulo complejo efectivo. A

continuación, las propiedades dinámicas del núcleo de vidrio laminado se extraen de  este

último utilizando una formulación homogeneizada inversa de placas sándwich específi-

camente desarrollada en este trabajo. Como resultado, se ha  conseguido una metodología

para  predecir con precisión el comportamiento dinámico de estos componentes clave de la
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automoción. Una ventaja adicional de  esta metodología es que la identificación de

propiedades se realiza a  partir de un componente fabricado y no a  partir de muestras de

geometrías reducidas, considerando el  impacto del proceso de  fabricación.

© 2024 El Autor(s). Publicado por  Elsevier España, S.L.U. a nombre de SECV. Este es un

artı́culo  Open Access bajo la CC  BY-NC-ND licencia (http://creativecommons.org/licencias/

by-nc-nd/4.0/).

Introduction

Ride comfort is a critical factor to evaluate the vehicle per-
formance and has  been an interesting topic for researchers
working on comfort, performance, and health. Human com-
fort can be understood as  a  measurement of the vibrational
and sound pressure level experienced by the final user of the
car as a result of the excitations in the system, especially those
coming from the engine, aerodynamics and the  road. These
excitations are vibrations transmitted through the chassis of
the vehicle resulting in the passengers and drivers experi-
encing discomfort. In consequence, automobile designers give
great attention to the isolation of vibrations in the car in order
to provide a  comfortable ride for the  passengers. Once the
internal combustion engine, the  major source of vibration in
the vehicle, is eliminated, other sources of discomfort arises
and the dynamic behaviour of different vehicle components
affects vibroacoustic comfort perception, being therefore, par-
ticularly relevant for electric and autonomous vehicles where
on the one hand light weighting is key and on the other hand,
comfort has become the  main indicator of the  quality of the
vehicle becoming top priority in  purchasing decisions.

Concerning sound and vibration transmission in  vehicles,
three stakeholders are implied. These are: (i)  primary sources,
being the engine, the road, the aerodynamics and ancillary
systems, those that impose motion and therefore those that
generate sound and vibration; (ii) secondary sources, chas-
sis structure and car body panels, those that get excited by
primary sources becoming a new source of excitation; (iii)
and finally, transmission paths, those that connect sources to
receptor, i.e. the joints.

As wide glass solar roofs are a  significant secondary source,
this investigation is focused on the characterization of their
dynamic material properties for further ride and comfort
modelling. Besides, properties identification techniques on
manufactured components rather than reduced geometries
samples is preferred to account for complex manufacturing
process impact and enabling simulations testing to take place
much earlier in  the development process at lower cost, mean-
ing the vehicle is closer to production when the physical
prototypes are produced. Hence, simulation techniques are an
integral part of the vehicle development cycle as they provide a
natural link between the phases of car design, from computer
modelling to laboratory testing and, finally, to the test track.
Therefore, it is essential to develop reliable vehicle compo-
nents models that allow the validation of new developments
and functionalities of components before the  prototyping
phase.

The mechanical behaviour of laminated glass is strongly
affected by the polymeric interlayer placed between glass lay-

ers, and the  property that defines its mechanical behaviour
is the  complex modulus E∗(ω). A method to  obtain the com-
plex modulus E∗(ω) of each material, the storage modulus
E′(ω) and the loss modulus E′′(ω), which can be obtained from
the relaxation modulus E(t) is by using analytical interconver-
sions from static tests [1]. Tensile or bending tests carried out
in a dynamic mechanical thermal analyser DMTA  equipment
can be used to define the  dynamic response of the  interlayer
material. Other methodology to determine the mechanical
behaviour of laminated glass subjected to  dynamic loads is
using a monolithic model and a stress effective complex mod-
ulus [2]. The technique to predict the  dynamic response of
laminated glass elements using a  linear elastic monolithic
model is based on the  relationship of constant thickness and
effective complex modulus [3].  Once the linear elastic mono-
lithic model with constant stiffness and mass per unit length
is  obtained, the natural frequencies and mass normalized
mode shapes can be calculated.

In order to empirically characterize the dynamic proper-
ties of polymeric materials [4], and particularly their complex
modulus, several methods considering free and forced vibra-
tions with and without resonance can be used [5] depending
on the desired frequency range [6]. The techniques used in
these tests vary: rheological methods [7], Dynamic Mechani-
cal Thermal Analysis DMTA  [8] or the standard test method
ASTM E  756-05 [9].  The ASTM E 756-05 is extensively applied
to  estimate the dynamic properties of a  wide range of materi-
als. It characterizes the material by means of constrained layer
damping (CLD) specimens [10] where the  core of the CLD [11]
sandwich is subjected to shear stress, and its properties can
be obtained by means of the well-known RKU model [12–14].
This is  a  well-known homogenization method where a  model
is built to identify the  properties of the sandwich by means of
an equivalent complex flexural stiffness as  if it were a homo-
geneous beam. However, it was proved that the  RKU method
tends to  rigidize the  sandwich [15],  that is, it models the struc-
ture stiffer than the actual one, specially at high frequencies
or for thick beams. As a consequence, the value for storage
modulus obtained with the ASTM E  756-05 standard is lower
than the real one, and errors can be  made specially if the iden-
tified properties are used in  thick beams or plates. Cortés and
Sarría [15] considered a  quadratic shear model in a  CLD beam
to  overcome this limitation. Therefore, this paper extends this
model to sandwich plates to  allow the identification of damp-
ing properties of viscoelastic sandwich cores complementing
the standard ASTM E  756-05. Both the  model proposed in this
paper and that of Ref. [15] are built on the same basis of the
mechanics of structural members in bending and shearing,
but the latter can be applied only for thin beams according to
the Euler–Bernoulli theory, while the presented in this extends
to  plates according to the Love–Kirchhoff theory.
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Fig. 1 – Experimental set-up: (a) laminated glass ceiling; (b) experimental model.

Table 1 – Laminated glass dimensions.

Length x (m) Length y  (m)  Thickness h  (m) Glass thickness hg (m) Adhesive thickness ha (m) Surface area (m2)

0.923 0.8632 0.00385 0.001715 0.00042 0.8212

In short, this research proposes a  methodology for the
identification and modelling of the dynamic properties of vis-
coelastic cores of automotive laminated glass ceilings based
on the identification of the homogenized properties of the
component which are further used to extract the viscoelastic
core properties through a numerical formulation for multi-
layer plates.

The article is structured as follows:

1. First, the modal behaviour of the laminated glass roof is
characterized via Experimental Modal Analysis (EMA).

2.  Then, the homogenized dynamic properties are identified
by a numerical procedure and a material model is  proposed.

3. Third, a  method to identify the dynamic mechanical prop-
erties of soft not self-supporting viscoelastic materials for
multilayer plates is presented.

As a result, the proposed methodology allows to properly
characterize the  dynamic mechanical properties of automo-
tive laminated glass components considering the impact of
the manufacturing processes and over the real component
so they can be  considered in  the comfort analysis during the
design of the vehicle.

Experimental  procedure

This section presents the  experimental procedure to charac-
terize the dynamic behaviour of the laminated glass ceiling by
means of the frequency response functions (FRF) and modal
properties where free-free conditions are considered as shown
in Fig. 1. Concretely 81 measurements points uniformly dis-
tributed in a  square grid are measured where excitation is
imposed perpendicularly to the  glass on a  single point.

The laminated glass ceil shows an irregular curvature, and
the top projection can be assumed to be a rectangle. The gen-
eral geometrical properties are summarized in  Table 1. The

measured mass was 8.54 kg, thus the corresponding density is
�  = 2702 kg m−3, and the surface density �S = 10.40 kg m−2.
The laminated glass is  manufactured by two sheets of tem-
pered glass stuck with a  sheet of PVB (polyvinyl butyral).

The experimental testing was  performed at room temper-
ature being the frequency range 0–80 Hz with a  resolution of
0.25 Hz. The impact hammer used for exciting the system was
an  8206-003 of Brüel and Kjaer (B&K) and the signals were
acquired using a triaxial accelerometer 4535-B of the same
manufacturer on a 4-ch input Module LAN XI also from B&K,
where the exciting location was fixed while measuring loca-
tion was mobile. The locations of the elastic supports were
placed close to  vibration nodes of the low order modal shapes
that were previously estimated by numerical modelling in
order to minimize the impact on non-rigid low order modes.

The excitation impact is  on 1Z- (see Fig. 1)  and five con-
secutive hits are measured to  obtain each experimental FRF
where exponential windows were used both on excitation and
response time signals. Besides, as  the glass is a  curved sur-
face, a  Computer Aided Design (CAD) model has been used to
extract each rotation matrix between the local coordinate sys-
tem defined by each accelerometer and a global one (see Fig. 1)
in which the 429 experimental FRF’s are expressed before per-
forming the modal extraction. This modal analysis has  been
performed using the Rational Fraction Polynomial – Z [16]
where Complex Mode Indicator Function (CMIF) is used for
pole selection. The transfer functions were computed as

H∗
ij(ω)

∣

∣

exp
=

X∗
i
(ω)

F∗
j
(ω)

, (1)

using the H1(ω) definition where X∗
i
(ω) represents the cross-

spectrum between input fj(t) and output xj(t) and Fj(ω) the
input auto-spectrum. Modal properties were computed from
these transfer functions where 3 modes where found. Fig. 2

https://doi.org/10.1016/j.bsecv.2024.05.001
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Fig. 2 – RMS  of the experimental transfer functions.

shows the Root Mean Square (RMS) of the transfer functions
computed as

rms( H∗
ij(ω)

∣

∣

exp
) =

√

1
3N

∑3N

i=1

(

H∗
ij
(ω)

∣

∣

∣

exp

)2

,  (2)

where N is the number of measured points and j = 1  represents
the excitation location. This RMS  function is  the employed in
the next section to obtain the effective complex modulus of
the laminated glass.

For Fig. 2, it can be verified that three vibration modes are
found on the analyzed range. Regarding the  extra peaks at 18
and 20 Hz, they are two resonances from the  support system
exerting no influence on the glass vibration modes, as their
amplitudes are negligible respect the magnitude of the three
glass vibration modes.

Accordingly, Fig. 3 shows the associated mode shapes and
natural frequencies obtained by means of BK Connect com-
mercial software.

From Fig. 3, it can be verified that associated mode shapes
for the laminated glass component are similar to those of a
regular plate [17]. The obtained natural frequencies are an
important reference for the methodology employed to obtain
the effective complex modulus of the  laminated glass, as
described in the next section.

Laminated  glass  complex  modulus
identification

The homogenized or effective complex modulus of the lami-
nated glass has  been identified through an error minimization
procedure between the experimentally obtained RMS  transfer
functions given by Eq. (2) and that numerically obtained by
means of a finite element model with 2D 4 node iso-parametric
shell elements, whose meshing is equivalent to  the one of the

experimental model represented in Fig. 1.  The matrix of the
transfer functions is  given by

H∗(ω)
∣

∣

num
=

(

−ω2M + K∗(ω)
)−1

,  (3)

where M  and K∗ represents the mass and complex stiffness
matrices respectively, where

K∗(ω)  =  K0
E∗(ω)

E0
. (4)

In this equation, K0 is  the real stiffness matrix for ω =  0, in
which a constant modulus E0 is considered, and the complex
modulus E∗ is

E∗(ω) = E′(ω) + iE′′(ω) = E′(ω) [1 + i�(ω)] , (5)

where E′ represents the  storage modulus, E′′ the loss modulus
and �  the loss factor, defined as

�(ω) =
E′′(ω)
E′(ω)

. (6)

For the complex modulus, a model adapted from [18] is
proposed,

E∗(ω) = E0 exp(−�ω) +  i2
c

t0
ωt0 exp(−t0ω), (7)

where E0,  �, c and t0 are parameters of the  model. E0 is the
relaxed modulus, i.e., the value of the modulus for ω  = 0; t0 and
� are the time-decay constants of the storage and loss moduli,
respectively, which are related with the angular frequency at
which the  loss factor is maximum by

ω�max =
1

t0 −  �
, (8)
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Fig. 3 – Laminated glass mode shapes.

Table 2 – Model parameters.

E0(GPa) �
(

10−3s
)

t0

(

10−3s
)

c
(

106Pa s
)

67.45 0.686 4.295 1.617

where t0 >  �; and c is the viscous constant, which gives the
maximum loss  factor

�max =
2cω�max

E0
exp(−1). (9)

These four parameters have to be obtained from the mini-
mization of the error function given by

error = abs
(

rms
(

H∗
ij(ω)

∣

∣

exp

)

− rms
(

H∗
ij(ω)

∣

∣

num

))

. (10)

For the numerical RMS  transfer function, only the first col-
umn  of the matrix of the transfer functions is taken into
account, i.e., j = 1, the  same way as for the experimental case
defined in Eq. (2).  Table 2 shows the results of the model
parameters obtained and Fig. 4  shows the storage modulus
and the loss factor obtained from Eq. (7).

From Fig. 4, it  can be concluded that both storage modulus
and loss factor of the  laminated glass depends indeed on fre-
quency where the former decreases as  frequency increases.
It can be noted that, on the  one hand, the storage modulus of
this laminated glass is between 65 and 67 GPa, while the Young
modulus of the glass is 70 GPa [1,19–21].  On the other hand,
the loss factor of the  laminated glass is comprised between
2.5 × 10−3 and 4 × 10−3,  while the one of the glass is  between
1 × 10−5 and 2 ×  10−4 [21].  Therefore, the effect of the adhesive
on the laminated glass is  evident, significantly increasing the
damping capacity of this vehicle component without hardly
reducing the stiffness.

Fig. 5 compares the  experimental and numerical RMS
functions, wherefrom it can be verified the accuracy of the
proposed procedure.

The resonance frequencies, peak amplitudes and modal
damping obtained from these two curves are shown in Table 3.

As it can be verified from Table 3, the proposed method-
ology reaches an accuracy over 95% for frequency, amplitude
and damping for every one of the three analyzed modes, but
for the amplitude of the first one where the frequency resolu-

tion (�f = 0.25 Hz) is affecting the rms( H∗
ij
(ω)

∣

∣

∣

num
).

Adhesive  core  dynamic  properties  identification

The dynamic mechanical properties of non-self-supporting
materials as the adhesive of the core of the laminated glass
studied in this work can be obtained according to the ASTM
E756-05 standard [9].  According to this standard, beam-like
specimens have to be tested and the RKU method [13] is
applied using the experimental frequency responses to obtain
the shear complex modulus of the core material. Due  to the
inherent difficulty of producing beam like specimens from this
laminated glass ceiling, in this work, a methodology to obtain
the properties of the core material directly from the homoge-
nized complex modulus is presented (see section “Laminated
glass complex modulus identification”). Thus, the method
proposed in  [22] for sandwich beams, based on the homoge-
nization method of Ref. [15] previously mentioned, is adapted
to be applicable to sandwich plates. The basis of both models,
that of [22] and the one presented in this section, are equiv-
alent. Both models are formulated with the idea of including
the shear effects in an  equivalent flexural stiffness by means
of the homogenization of beams and plates. The former was
developed for thin beams with small width according to the
Euler–Bernoulli theory, whereas the presented in  this paper
consist in an  adaptation of the former without restrictions for
the surface dimensions to apply the theory of Love–Kirchhoff.

Hence, next the bases of the homogenization method are
presented and then, the method to extract the properties of
the core material from those of the homogenized one.

Homogenization  of  a  three-layer  sandwich  plate

This section presents the adaptation for sandwich plates of
the method proposed in  Ref. [22]. The main idea is to  obtain
a homogenized or equivalent bending stiffness of a sand-
wich plate that considers the deformations due to  bending
moments and to shear forces also. In this way, this homoge-
nized stiffness can replace the stiffness of the  corresponding
to the Love–Kirchhoff theory but considering deformations
due to shear forces, instead of using a  more  complex for-
mulation as the one of Reissner–Mindlin. For this aim, let us
consider an infinitesimal cell of a  three-layer sandwich plate
in the x −  y  plane with dimensions dx × dy,  as  Fig. 6 shows.

The transverse displacement w(x, y, t) of the neutral plane
of the  cell can be obtained by adding the term wM(x,  y, t) due to

https://doi.org/10.1016/j.bsecv.2024.05.001
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Fig. 4 – Laminated glass complex modulus: (a) storage modulus, (b) loss factor.

Fig. 5 – Experimental numerical correlation of the RMS  of the transfer functions.

Table 3 – Comparison between the experimental and numerical modal parameters.

Frequency f (Hz) Amplitude A (m) Damping ratio �

fexp fnum ε (%) Aexp Anum ε (%) �exp �num ε (%)

Mode 1 15.75  15.75 0 15.26 13.32 12.7 0.0195 0.0196 0.61
Mode 2 24.75  24.75 0 10.11 10.22 1.01 0.0071 0.0068 4.32
Mode 3 42.50  42.50 0 39.63 39.42 0.60 0.0063 0.0064 2.11

the bending moments and the term wQ(x, y, t) derived by the
shear forces,

w(x, y, t) = wM(x, y, t) + wQ(x,  y, t). (11)

On the one hand, regarding small deformation, the term
wM(x, y, t) is related with the bending moment density vector
M(x, y, t) by

M(x, y, t) = BeqLMwM(x, y, t), (12)

https://doi.org/10.1016/j.bsecv.2024.05.001
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Fig. 6 – Representation of an  infinitesimal cell of a

sandwich plate.

where LM is the curvature operator given by

LM =

{

−
∂2

∂x2
−

∂2

∂y2
2

∂2

∂x∂y

}T

, (13)

and  the flexural stiffness matrix Beq of a three-layer plate is
obtained from

Beq = B1 + B2 + B3.  (14)

In this last equation, Bi represents the  flexural stiffness
matrix of the ith layer of the sandwich, and it  is given by

Bi = Bi

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1

1 −  �2
i

�i

1 − �2
i

0

�i

1 −  �2
i

1

1 − �2
i

0

0  0
1

2(1  + �i)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

,  (15)

where  �i is  the Poisson ratio and

Bi = EiIi. (16)

For the ith layer, Ei is the  Young modulus and Ii is given by

Ii = hi

[

h2
i

12
+ (hNi − hNP)2

]

, (17)

where  hi is the thickness and hNi is the position of its middle
plane with respect the lower surface of the  plate. The position
of the neutral plane of the plate becomes

hNP =
E1h2

1/2 +  E2h2(h1 + h2/2) +  E3h3(h1 + h2 + h3/2)
E1h1 + E2h2 +  E3h3

. (18)

Then, the transverse displacement due to bending could be
solved from the  Love–Kirchhoff equation,

LT
MBeqLMwM(x,  y, t) + �SẅM(x, y, t) =  0, (19)

where  �S is the mass per unit of surface area of the plate.
On the other hand, if shear deformations were considered,

a more  complex theory such as Reissner–Mindlin theory have
to be considered. In this, the relationship between the shear
force density vector Q (x, y, t) and the corresponding transverse

displacement wQ(x, y, t) is given by an  equivalent shear stiff-
ness matrix Keq as

Q (x, y, t) =  KeqLQwQ(x, y, t),  (20)

where LQ denotes the operator

LQ =

{

∂

∂x

∂

∂y

}T

, (21)

and the shear stiffness matrix is given by

Keq = Keq

[

1 0

0 1

]

.  (22)

For the case of a  plate made of a unique layer with shear
modulus G and thickness h, Keq can be considered as

Keq =
5
6

Gh, (23)

where the coefficient 5/6 is usually employed considering that
the shear stress is  not constant along thickness but parabolic
[23].  In the case of a three-layer sandwich, the equivalent shear
stiffness Keq depends on the thickness and on the properties
of the materials, and may  be decomposed as  a  function of the
stiffness Ki of the ith layer as [15]

1
Keq

=
1

K1
+

1
K2

+
1

K3
, (24)

where

1
K1

=
6

5G1h1

10r2
NP − 15rNP + 6

(1 + r2M2 + r3M3)2
[

1 + 3(rNP −  1)2
]2

, (25)

1
K2

=
1

G2h1

36T2(rNP − 1)2 − 12M2T2
2 (rNP −  1) (2T2 − 3rNP +  6)

(1 + r2M2 + r3M3)2
[

1  + 3(rNP − 1)2
]2

(26)

+
6

5G2bh2

M2
2T4

2

(

10r2
NP − 15rNPT2 − 40rNP + 6T2

2 + 30T2 +  40
)

(1 +  r2M2 + r3M3)2
[

1 +  3(rNP − 1)2
]2

and

1
K3

=
6M2

3T4
3

5G3h3
(27)

×

(

10r2
NP − 25rNPT3 − 40rNPT2 − 40rNP + 16T2

3

+50T3T2 +  50T3 + 40T2
2 + 80T2 +  40

)

(1 +  r2M2 + r3M3)2
[

1 +  3(rNP −  1)2
]2

respectively, where M2 =  E2/E1,  M3 = E3/E1, T2 = h2/h1,  T3 =

h3/h1, rNP = 2hNP/h1,  r2 = I2/I1, and r3 = I3/I1.  In that way, shear
stress is considered parabolic in each layer, and it can be
remarked that if the three materials had the same properties,
Eq. (23) would be retrieved.

Finally, similarly as  the static problems of symmetric lam-
inated glass with thin polymeric core, the  Poisson ratio of the
laminated glass can be considered as  the  one of the glass,
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and the stiffness of the plate can be homogenized similarly
as beams [24,25].  Then, the shear coefficient Keq form plates
can be assimilated as the one of the  given by Timoshenko’s
formula for beams, and the homogenized flexural stiffness
matrix Beq of Eq. (19) can be transformed in  the homogenized
matrix BK given by

BK = BK

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
1 − �2

�

1 −  �2
0

�

1 − �2

1
1 −  �2

0

0 0
1

2(1 +  �)

⎤

⎥

⎥

⎥

⎥

⎥

⎦

, (28)

where the homogenized stiffness BK is  given by

BK =
Beq

(

√

1 + ϕ2(ω) + ϕ(ω)
)2

,  (29)

where

Beq = B1 + B2 + B3, (30)

and the function ϕ(ω) considers the shear effects and being
given by

ϕ(ω) =
ω
√

�SBeq

2Keq
.  (31)

Then, in the frequency domain, Eq. (19) becomes

(

LT
MBK(ω)LM − ω2�S)

)

W(x,  y, ω) = 0, (32)

where W(x, y, ω) is the frequency displacement amplitude due
to bending and shear, because the homogenized matrix BK(ω)
is built considering bending and shear. The advantage of this
method is that using the equations of the  Love–Kirchhoff
theory, by means of this homogenized stiffness, shear defor-
mations are taken into consideration without using complex
theories such as  the one of Reissner–Mindlin. Certainly,
unlike the Love–Kirchhoff theory, the Reissner–Mindlin theory
takes shear effects into account, it allows for large angu-
lar deformations of the  plate and does not assume that the
middle surface remains flat after deformation. As  a  con-
sequence, it is more  computationally complex, especially
in numerical analysis, because a  set  of three equations in
partial derivatives with three unknowns (the transverse dis-
placement and the two rotations) must be solved. On the
contrary, the Love–Kirchhoff theory ignores shear effects,
meaning that the middle surface remains flat after defor-
mation, and the motion of the plate is characterized by
only the transverse displacement due to bending that is
solved from by Eq. (19).  But thanks to the method pre-
sented in this work, this equation is transformed into (32),
and shear deformations can be taken into account in a sim-
pler way than with the Reissner–Mindlin theory with good
accuracy.

Identification  of  the complex  modulus  of  the  adhesive

In this section the dynamic properties of the  laminated glass
core are identified from the homogenized complex modulus
measurements of section “Laminated glass complex modulus
identification”, by means of the homogenization method of
sandwich plates presented in the previous section. To identify
the complex modulus of the adhesive core, this homogeniza-
tion method must to be applied in the inverse sense, i.e. from
the homogenized data to the individual properties of the lay-
ers. For that, first, the  experimental complex stiffness B∗

K(f ) is
obtained as

B∗
K(f )  =  E∗ (f )

h3

12
, (33)

from the results of homogenized complex modulus E∗ (f ) of
Fig. 4 (where ω = 2�f ), where h  is  the total thickness of the
sandwich plate,

h = 2hg + ha.  (34)

The values of the thickness of each layer are in Table 1.  To
compute the  equivalent flexural bending Beq of Eq. (30),  the
one of the adhesive layer can be neglected regarding the one
of the glass layers, then

Beq ≈ 2Eghg

[

h2
g

12
+

(hg + ha)2

4

]

, (35)

where the  modulus of the glass is assumed to be  Eg = 70 GPa
[1,19–21].

The relationship between the bending and the experimen-
tal homogenized stiffness results

�∗(f ) =
Beq

B∗
K(f )

.  (36)

The modulus of this complex stiffness ratio |�∗(f  )| > 1  for
all f because shear makes the beam less rigid. From this rela-
tionship, it can be defined the function ϕ∗(f )  that considers the
frequency dependence of shear effects,

ϕ∗(f ) =
�∗(f ) −  1

2
√

�∗(f  )
. (37)

Next, the  equivalent shear stiffness of K∗
eq(f ) can be calcu-

lated as

K∗
eq(f )  =

2�f
√

�SBeq

2ϕ∗(f )
.  (38)

Once the equivalent shear stiffness K∗
eq(f )  is obtained, it can

be related to the shear stiffness of each layer of the  beam as

1
K∗

eq(f )
=

2
Kg

+
1

K∗
a(f  )

,  (39)

where Kg is the shear stiffness of one of the  glass layers,
according to K1 or K3 of Eqs. (25) and (27), and the unknown
term K∗

a(f ) must  be solved. If the shear stiffness of the glass
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Fig. 7 – Shear complex modulus of the adhesive of the laminated plate: (a) shear storage modulus and (b) shear loss factor.

layers is much larger than that of the  adhesive one, then K∗
a(f )

could be directly solved from Eq. (39) as

K∗
a(f ) ≈ K∗

eq(f ). (40)

Finally, the complex shear modulus of the adhesive mate-
rial yields

G∗
a(f ) =

9T(r − 1)2

hg
[

1 + 3(r  −  1)2
]2

K∗
a(f ),  (41)

where  T = ha/hg,  and r  = 2hNP/hg,  in which hNP is the  position
of the neutral plane for a  symmetric sandwich defined as

hNP = hg +
ha

2
. (42)

For the particular case of a  very thin adhesive layer, Eq. (41)
could be simplified as follows,

G∗
a(f  ) ≈

9
16

(

ha

hg

)

K∗
a(f )
hg

. (43)

Finally, the shear storage modulus and the loss factor of
the adhesive core of the  laminated glass yield

G′
a(f ) = Re (G∗

a(f  )) (44)

and

�a(f  ) =
Im (G∗

a(f ))
Re (G∗

a(f ))
, (45)

respectively. The obtained results are represented in Fig. 7. In
this figure, it can be remarked that the  shear storage modu-
lus of the adhesive G′

a increases from 4.5 MPa  to 13.8 MPa in

the studied frequency range. Regarding the  loss factor �a, this
presents a  maximum value of 0.065 at 26.75 Hz, and the  val-
ues at the lower and higher frequencies are 0.046 and 0.056,
respectively.

From the obtained results it can be drawn two observations.
On the one hand, according to [26],  the discomfort in vehicles
due to rigid body oscillations on the  suspensions, resonances
of engine and unsprung masses are given below 25 Hz. This
signifies that this adhesive is adequate for automotive appli-
cations to  reduce vibration due to those effect. On the other
hand, the resonance frequencies of the three first modes of
the own glass ceiling shown in Table 3 are between 16 Hz and
43 Hz, frequency range at which the loss factor presents the
highest values. As a consequence, it can be also concluded
that this adhesive gives the maximum values at the  frequency
range adequate to mitigate the resonances of the glass ceiling.

Conclusions

In this paper, a  methodology for the identification of the
homogenized dynamic properties of automotive laminated
glass ceilings has been presented and a  dynamic material
model has been proposed. These homogenized properties
have been further used to  extract the viscoelastic core prop-
erties through a numerical formulation for multilayer plates
opening the door to the design of wide laminated glass roof
ceiling from ride and comfort perspective.

1. The proposed methodology is capable to  extract the
homogenized dynamic properties of the laminated glass
ceiling avoiding the need of simplified samples preparation
and allowing to  consider the  actual effect of manufacturing
processes into the dynamic behaviour of the  real automo-
tive component.
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2. Once the homogenized dynamic properties are obtained
and modelled, a method to identify the dynamic mechan-
ical properties of soft not self-supporting viscoelastic
materials for multilayer plates has  been presented over-
coming the limitations of the sample preparation derived
from ASTM E  756-05.

As a result, the proposed methodology is able to precisely
predict the dynamic behaviour of laminated glass ceilings in
terms of amplitude, frequency and damping making it suitable
for and ride and comfort analysis for the automotive sector.
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