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a  b s t r  a  c t

Enterobacter cloacae and E. aerogenes have been increasingly reported as  important oppor-

tunistic pathogens. In this study, a  high prevalence of multi-drug resistant isolates from

Brazil,  harboring several �-lactamase encoding genes was found. Several virulence genes

were  observed in E. aerogenes, contrasting with the E. cloacae isolates which presented none.

©  2018 Sociedade Brasileira de  Microbiologia. Published by  Elsevier Editora Ltda. This is

an  open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

Bacteria belonging to the Enterobacter genus are gram-negative

facultative anaerobes and widely distributed in nature. In the

last decades, species of the genus Enterobacter have aroused

greater concern, since they are increasingly associated with

nosocomial infections, especially in  immunocompromised

patients.1 Enterobacter species are members of ESKAPE (Ente-

rococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae,
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Acinetobacter baumannii,  Pseudomonas aeruginosa and Enterobac-

ter species) which are described as  the leading cause of

nosocomial infections throughout the world.2,3 Among the

species, E. aerogenes and E. cloacae stand out as  opportunistic

pathogens, especially in patients on mechanical ventilation.4

Enterobacter sp., including E. aerogenes and E.  cloacae eas-

ily acquire numerous genetic mobile elements containing
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resistance and virulence genes, which strongly contribute to

the increased pathogenicity of these bacteria. These species

are extended spectrum �-lactamase producers and posses

intrinsic resistance to ampicillin, amoxicillin, first-generation

cephalosporins and cefoxitin, due to the production of consti-

tutive AmpC �-lactamase. Thus Enterobacter sp. may  develop

antimicrobial resistance during treatment, limiting therapeu-

tic options.3,4

Although studies have been pointing to the increasing

prevalence of E.  cloacae and. E. aerogenes as opportunistic

pathogens, frequently associated with multidrug-resistance,

little is known about their virulence mechanisms.1 Therefore,

the aim of this study was to characterize E.  aerogenes and

E. cloacae clinical isolates from Brazil regarding the genetic

relationships, antimicrobial susceptibility profile, and the

presence of virulence and �-lactamase encoding genes.

In this study a total of 14 Enterobacter isolates were included,

being eight E.  cloacae (EC) and six E.  aerogenes (EA). Among the

isolates, seven were obtained from male patients, six from

female patients and one was  not informed. These isolates

were obtained between March 2013 to  September 2016 from

three Brazilian tertiary hospitals located in different regions:

the southeast (Ribeirão Preto city, São Paulo state), northeast

(Teresina city, Piauí state) and the north region (Manaus city,

Amazonas state). These isolates were obtained from different

sources such as  urine, blood, anal and nasal swabs, catheter

tip, oropharynx and gastrostomy tube (Table 1).

Bacteria identification were performed by matrix-assisted

laser desorption–ionization time of flight mass spectrometry

(MALDI-TOF MS)  using the Vitek
®

MS  system (bioMérieux,

Marcy l’Etoile, France), according to the  manufacturer’s rec-

ommendations.

The antimicrobial susceptibility tests were performed by

disc diffusion in Mueller-Hinton Agar (Oxoid), as  recom-

mended by the Clinical Laboratory Standards Institute (CLSI).5

Thirty-two different antibiotic discs (Oxoid) were tested:

amikacin (30 �g), aztreonam (30 �g),  cefaclor (30 �g), cefepime

(30 �g), cefixime (5 �g), cefotaxime (30 �g), ceftriaxone (30 �g),

ceftazidime (30 �g), cefuroxime (30 �g), ciprofloxacin (5 �g),

chloramphenicol (30 �g), doripenem (10 �g), doxycycline

(30 �g), ertapenem (10 �g), gentamicin (10 �g), imipenem

(10 �g), levofloxacin (5 �g), lomefloxacin (10 �g), meropenem

(10 �g), minocycline (30 �g), nalidixic acid (30 �g),  nitrofuran-

toin (300 �g), norfloxacin (10 �g),  ofloxacin (5 �g),  piperacillin-

tazobactam (100/10 �g), streptomycin (10 �g), sulphonamide

(300 �g),  tetracycline (30 �g), ticarcillin-clavulanate (75/10 �g),

trimethoprim (5 �g), tobramycin (10 �g) and trimethoprim-

sulfamethoxazole (1.25/23.75 �g). The strains E. coli ATCC
®

25922 and ATCC
®

35218, and Pseudomonas aeruginosa ATCC

27853 were used as quality control for these experiments.

Although cefuroxime is  considered as  intrinsic resistance for

E. cloaceae and E. aerogenes by the CLSI,5 this antibiotic was

added in the study because it is recommended by Magiorakos

et  al.6 for these species. The isolates were classified as  multi-

drug resistant (MDR), extensively drug-resistant (XDR) and

pandrug-resistant (PDR), according to the criteria established

by  Magiorakos et  al.6 Isolates which did  not fit the previous

definitions were designated as not classified (NC).

Genomic DNA was extracted using the phenol/chloroform

method as  described by Covone et al.7 The concentration and

purity were determined using a  DS-11 + Spectrophotometer

(DeNovix, USA).

PCR reactions were performed for the detection of the  fol-

lowing �-lactamase encoding genes: blaCTX-M-Gp1,  blaCTX-M-Gp2,

Table 1 – General data relating to six E. aerogenes (EA) and eight E. cloacae (EC) isolates from this study.

Isolate Date of  isolation Sex Age  Source Resistance profile  (non-susceptible)

EA01 05/15/2013 F 39  Urine LMX, EST, DOR, CFC, CFM, CRX, DOX, NIT, SUL,  SUT

EA02 05/06/2013 F 66  Urine CFC, CFM,  DOX, NIT, SUL,  TRI

EA03 04/30/2016 F NI  Urine EST, CFC, CFM, DOX, MIN, NIT, SUL, SUT, NAL

EA04 05/05/2016 M  NI  Blood EST, CFC, DOX, MIN, NIT, SUL, SUT, NAL

EA05 09/15/2016 M  33  Catheter tip CIP, LEV,  LMX, NOR, OFX, AMI, EST,  GEN, TOB, DOR,  ERT, MPM, CAZ,

CFC, CFM,  CPM, CRO, CRX, CTX, ATM, PIT, TAC, DOX, MIN, TET, NIT,

SUL, SUT, TRI, NAL

EA06 04/29/2013 M  57  Nasal swab LMX, AMI, EST, GEN, TOB, DOR,  ERT, IPM, CAZ, CPM, CRX,  PIT, DOX,

NIT, SUL, SUT, TRI, NAL

EC01 04/20/2013 F NI  Urine CFC, CFM,  DOX, MIN, NIT, SUL, TRI, NAL

EC02 05/20/2013 F 57  Urine AMI, ERT, MPM, CFC, CFM, CRO, DOX, MIN, NIT, SUL,  TRI,  NAL

EC03 05/07/2016 NI  NI  Urine CIP, LEV,  LMX, NOR, OFX, EST, TOB, CAZ, CFC, CFM,  CPM,  CRO, CRX,

CTX, ATM, PIT, TAC, DOX, MIN, TET, NIT, SUL,  SUT, TRI, NAL

EC04 04/29/2013 F 43  Anal swab CIP, LEV,  LMX, NOR, OFX, EST, GEN, TOB, ERT, CAZ, CFC, CFM, CPM,

CRO, CRX, CTX, ATM, PIT, TAC, DOX, TET, NIT, SUL, SUT, TRI, CLO, NAL

EC05 05/06/2013 M  65  Anal swab LMX, OFX, AMI, EST, GEN, ERT, CAZ, CFC, CFM,  CPM, CRO, CRX, CTX,

ATM, PIT, TAC, SUL, SUT, TRI, NAL

EC06 02/23/2015 F 53  Oropharynx EST, CFC, CFM, CRX, DOX, NIT, SUL, SUT,  TRI, NAL

EC07 03/13/2015 M  58  Catheter tip ERT, SUL, SUT, TRI

EC08 05/13/2015 M  51  Gastrostomy tube CFC, CRX, NIT, SUL, SUT

Note:  F, female; M, male, NI, not informed; AMI, amikacin; ATM, aztreonam; CFC, cefaclor; CPM, cefepime, CFM,  cefixime; CRO, ceftriax-

one; CAZ, ceftazidime; CTX, cefotaxime; CRX,  cefuroxime; CIP, ciprofloxacin; CLO, chloramphenicol; DOR,  doripenem; DOX, doxycycline; ERT,

ertapenem; GEN, gentamicin; IPM,  imipenem; LVX, levofloxacin; LMX, lomefloxacin; MPM, meropenem; MIN, minocycline; NAL, nalidixic acid;

NIT, nitrofurantoin; NOR, norfloxacin; OFX, ofloxacin; PIT, piperacillin-tazobactam; EST, streptomycin; SUL,  sulphonamide; TET, tetracycline;

TAC, ticarcillin-clavulanate; TRI, trimethoprim; TOB, tobramycin; SUT, trimethoprim-sulfamethoxazole.
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blaCTX-M-Gp8, blaCTX-M-Gp9,  blaSHV,  blaPER, blaVEB,  blaGES, blaKPC,

blaVIM,  blaOXA-48-like, blaIMP, blaSPM,  blaSIM,  blaGIM, and blaNDM

using primers and protocols previously described.8–11 All PCR

were performed using positive and negative controls.

Detection of virulence genes were performed by PCR for the

following genes: allS (allantoin metabolism), entB, ybtS and iutA

(siderophores), kfu (iron transport and phosphotransferase

function), mrkD  (adhesin type 3  fimbriae), rmpA (regulator of

mucoid phenotype A)  according to  Compain et  al.,12 and ycfM

(outer membrane lipoprotein) and fimH (adhesive subunit of

type 1 fimbriae) according to El  Fertas-Aissani et al.13 All PCR

were performed using positive and negative controls.

Confirmation of the amplified genes’ identity was per-

formed by sequencing. One of each amplicon was randomly

selected and purified using the IllustraTM GFX PCR DNA and

Gel Band Purification Kits (GE Healthcare, Buckinghamshire,

UK). The sequencing was performed in  an automated

sequencer ABI 3500 ×  L  Genetic Analyzer platform (Applied

Biosystems, USA). The sequences were analyzed using Chro-

masPro version 1.7.6 software (Technelysium Pty. Ltd) and

compared with the sequences available in the BLAST algo-

rithm (http://blast.ncbi.nlm.nih.gov/Blast.cgi).

Enterobacterial Repetitive Intergenic Consensus PCR (ERIC-

PCR) analysis was performed to evaluate the genetic similarity

among the bacterial isolates of this study. ERIC-PCR was

performed as  previously described by Versalovic et al.14

using primers ERIC1R (5′-ATGTAAGCTCCTGGGGATTCAC-3′)

and ERIC2 (5′-AAGTAAGTGACTGGGGTGAGCG-3′). Band profile

analysis was  performed using the BioNumerics version 5.1

program (AppliedMaths, Keistraat, Belgium) for  construction

of the similarity dendrogram by the unweighted pair group

mean method and Dice’s similarity coefficient. Only bands

representing amplicons between 500 and 3000 bp were con-

sidered for this analysis. The ERIC-PCR assays were performed

in triplicate to be sure of the  reproducibility of the amplified

bands.

Among the 14 isolates, eight (57.1%) were  classified

as  MDR according to the criteria established by  Magio-

rakos et al.,6 being five isolates of E. cloacae (EC02, EC03,

EC04, EC05 and EC06) and three E. aerogenes (EA01, EA05

and EA06) (Fig. 1). All isolates showed non-susceptibility

(i.e. either intermediate or resistance) to sulphonamide;

12 (85.7%) isolates were non-susceptible to  cefaclor and

nitrofurantoin; 11  (78.6%) to  doxycycline; 11 (78.6%) to

cefixime, trimethoprim-sulfamethoxazole, trimethoprim and

nalidixic acid; nine (64.3%) to streptomycin; eight (57.1%)

to cefuroxime; six  (42.9%) to  lomefloxacin, ertapenem and

minocycline; five (35.7%) to ceftazidime, cefepime, ceftriax-

one and piperacillin-tazobactam; four (28.6%) to amikacin,

gentamicin, tobramycin, ofloxacin, cefotaxime, aztreonam

and ticarcillin-clavulanate; three (21.43%) to ciprofloxacin,

levofloxacin, norfloxacin, doripenem and tetracycline; two

(14.3%) to meropenem and just one isolate (7.14%) to chloram-

phenicol (Table 1).

The resistance profile found in the studied isolates corrob-

orate with a  study conducted by Cabral et al.,4 which analyzed

a Brazilian collection of E. aerogenes and E.  cloacae complex

isolates, and found the lowest resistance rates in amikacin,

gentamicin and tobramycin. However, they found low lev-

els of resistance to trimethoprim–sulfamethoxazole while we

found 71.4% resistance for this antibiotic. Fortunately, with

the exception of isolate EA06, all isolates were sensitive to

imipenem, since papers have described that this antibiotic

remains one of the most effective in  combating E. cloacae infec-

tions. However, there are several works reporting the adaptive

response of clinical isolates of Enterobacter sp. to imipenem by

regulation of porins.4,15

In this study 16 different �-lactamase encoding genes

belonging to group 2 and 3, according to Bush and Jacoby16

were investigated, and a  total of 18  amplicons from six differ-

ent genes (blaCTX-M-Gp1, blaCTX-M-Gp2,  blaSHV,  blaVEB, blaGES, and

blaKPC)  were detected (Fig. 1). The most prevalent gene was
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Fig. 1 – Dendrogram obtained by  enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) analysis of six E. aerogenes

and eight E.  cloacae studied isolates from Brazil. Clusters were  determined using the Unweighted Pair Group Mean (UPGMA)

method and the Dice similarity coefficient. Similarity (%)  among patterns is represented by the numbers beside the nodes.

For each isolate their respective resistance profile classification (RP), �-lactamase (white bars) and virulence (black bars)

encoding genes are  represented. MDR, multi-drug resistant; NC, not classified.

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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blaSHV, detected in 10 isolates (EA01, EA03, EA04, EA05, EA06,

EC04, EC05, EC06, EC07 and EC08). The following genes were

found in two  isolates each blaCTXM-Gp1 (EC04 and EC08), blaKPC

(EC01 and EC05) and blaGES (EC06 and EC08). The blaCTX-M-Gp2

and blaVEB genes were found in just one isolate each (EA04

and EA01, respectively) (Fig. 1). The blaCTX-M-Gp8,  blaCTX-M-Gp9,

blaPER,  blaVIM, blaOXA-48-like, blaIMP,  blaSPM,  blaSIM, blaGIM, and

blaNDM were not detected. These results are in contrast to

those described by Cabral et  al.,4 which did not find blaSHV in

Entorobacter sp. clinical isolates from Brazil, but they found a

high prevalence of blaKPC. In addition, Pereira et al.17 studied

21 carbapenem-resistant E. aerogenes strains isolated from

a Brazilian tertiary hospital in Juiz de Fora city located in

southeast Brazil. They observed 52.4% of blaSHV and 28.6% of

blaCTX-M groups in their collection.

Different mechanisms of resistance may  be  associated with

non-susceptibility to �-lactam antibiotics in Gram-negative

bacteria; however the enzymatic, for intrinsic and acquired �-

lactamases, is the main mechanism.16,18 Among the isolates,

EC01 and EA06 presented the blaKPC gene but did not present

non-susceptibility to extended-spectrum cephalosporins or

carbapenems, and the isolates EA05 and EA06 were non-

susceptible to carbapenems and only the blaSHV gene was

detected. Therefore, the diversity of mechanisms, such as

porin loss, efflux pumps or lack of expression of acquired

genes and the  presence of other unsearched �-lactamases

may be associated with these inconsistencies between genes

found and expressed phenotype.3

Nine virulence genes were investigated and, surprisingly,

all E. aerogenes isolates presented one or more  genes, whereas

no E. cloacae isolate presented virulence genes. The genetic

similarity dendrogram constructed with the ERIC-PCR data

showed the formation of two large clusters, denominated

A and B, comprising the E. aerogenes and E. cloacae isolates,

respectively (Fig. 1).  The isolate EA05 presented seven viru-

lence genes, followed by EA03 and EA04 with six, EA06 with

two, and EA01 and EA02 with one gene (Fig. 1). The obtained

virulence and �-lactamase encoding genes’ sequences were

deposited in GenBank (www.ncbi.nlm.nih.gov/Genbank) with

accession numbers MF622540 to MF622551.

The results found suggest a  predominance of virulence

genes in E. aerogenes when compared with E. cloacae. In

addition to  the few studies investigating virulence genes in

Enterobacter sp.,19,20 to our knowledge there are no studies

comparing the predominance of these genes in E. cloacae and E.

aerogenes. However, as  the number of isolates from this study

does not allow establishing a statistical correlation on this,

more detailed studies with a  larger collection are required.

The role of the  virulence genes found in the isolates is well

described for Klebsiella pneumoniae strains. The genes fimH and

mrkD encoding adhesins of type 1 and type 3 fimbriae and

ycfM are often found in K. pneumoniae and play an important

role in the process of bacterial adhesion in various human tis-

sues and also in the formation of biofilms.13 The genes kfu,

entB and ybtS are involved in  the production of siderophores

which are important molecules for the acquisition of iron for

bacterial metabolism. These siderophores, especially Kfu, are

often found in hypervirulent strains of K. pneumoniae.12 The

allS gene associated with assimilation of allantoin is closely

associated with K. pneumoniae isolates from liver abscesses.12

Hassan et al.19 studied thirty-two isolates of Enterobacter sp.

obtained from clinical urine specimens and identified the fimH

gene in 40% of the isolates. Hussain et al.21 studied some

virulence factor encoding genes of 75 E. cloacae and nine E.

sakazakiiand and observed that all isolates have the ability to

produce siderophores. Despite the relevance of Enterobacter sp.

as  a  nosocomial pathogen, the mechanisms of virulence of

these species are still unclear due to the scarcity of studies in

this area.3

In conclusion, a  high prevalence of multi-drug resistance

in the studied Brazilian Enterobacter species harboring sev-

eral �-lactamase encoding genes was found. Moreover, several

virulence genes were observed in E. aerogenes,  contrasting

with the E. cloacae isolates, which did  not present any viru-

lence genes. The combination of multi-drug resistance with

�-lactamase encoding genes and association with virulence

genes, especially in  E. aerogenes, is  worrying, since studies

have shown an increasing incidence of these opportunistic

pathogens causing nosocomial infections.
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