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a  b s  t r a  c t

Gallesia integrifolia (Phytolaccaceae) is native to Brazil and has a  strong alliaceous odor.

The  objective of this study was to identify the  chemical composition of G. integrifolia fruit

essential  oil and evaluate fungicidal activity against the main food-borne diseases and

food  spoilage fungi. The essential oil  was extracted by hydrodistillation and identified by

GC–MS. From 35 identified compounds, 68% belonged to the organosulfur class. The major

compounds were dimethyl trisulfide (15.49%), 2,8-dithianonane (52.63%) and lenthionine

(14.69%). The utilized fungi were Aspergillus fumigatus, Aspergillus niger, Aspergillus ochraceus,

Aspergillus versicolor, Penicillium funiculosum, Penicillium ochrochloron,  Penicillium verrucosum var.

cyclopium,  and Trichoderma viride. Minimal fungicidal concentration for the essential oil var-

ied  from 0.02 to 0.18 mg/mL and bifonazole and ketoconazole controls ranged from 0.20 to

3.50  mg/mL. The lower concentration of the essential oil  was able to control P. ochrochloron,  A.

fumigatus,  A.  versicolor,  A. ochraceus and T.  viride. This study shows a  high fungicidal activity

of  G. integrifolia fruit essential oil and can support future applications by  reducing the  use of

synthetic fungicides.
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Introduction

Gallesia integrifolia (Spreng.) Harms and its synonymies Crat-

eva gorarema Vell., Gallesia gorazema (Vell. Conc.) Moquin,

Gallesia gorazema (Vell.) Moq., Gallesia ovata O. C. Schmidt, Galle-
sia scorododendrum Casar., Thouinia integrifolia Spreng. and G.
integrifolia var. ovata (O.C. Schmidt) Nowicke belong to  Phyto-

laccaceae family.1 This tree  is  popularly known as  pau d’alho

(common name in  Portuguese) and is  native to Brazil, from

the states of Ceará to Paraná.2,3 In popular medicine, the

bark of this species is utilized to prepare teas for the flu,

coughing, pneumonia, vermin, gonorrhea, prostate tumors

and rheumatism.4 However, despite the ethnopharmacologi-

cal use, there are no studies on the  chemical composition and

antifungal activity of G. integrifolia fruit essential oil.

Microorganisms such as the genera Aspergillus, Fusarium,

and Penicillium are responsible for food poisoning and food-

borne infections that can also deteriorate foods and increase

the cost of agricultural production, and health care.5,6 In addi-

tion, the genera Trichoderma, Aspergillus and Penicillium, known

as green molds, occur on mushroom production when the

composting is not correctly prepared and/or does  not become

selective enough.7

There are still few studies on fungal resistance to chemical

products, but Arendrup8 describes that the global prevalence

of azole resistance in Aspergillus is  estimated to be around

3–6%. In addition, the resistance in Aspergillus spp seems to be

related to the use of agricultural azoles for crop protection.9,10

Besides the resistance of these microorganisms, the  indis-

criminate use of fungicides in the production of foods can

damage human and animal health.11,12 These chemical com-

pounds can be toxic and their residues can have carcinogenic

and teratogenic side effects.13 Thus, the search for new

antimicrobial molecules are of interest for public health as

well as for the maintenance and broadening of food product

and an alternative to reduce microbial resistance.14–17

Therefore, the present study aimed to evaluate the chem-

ical composition and the fungicidal activity of G.  integrifolia
fruit essential oil against the main food-borne diseases and

food spoilage fungi.

Materials  and  methods

Essential  oil

Fresh fruits of G. integrifolia were collected in  the month of

June, 2015 in the morning, at the  coordinates of S23◦46′16′′

and WO53◦19′38′′ and altitude of 442 m.  The fruit essential

oil was obtained by hydrodistillation technique in  a modified

Clevenger equipment for 2 h and stored at −20 ◦C.

Chemical  identification

Chemical identification of the  essential oil occurred by using a

gas chromatographer coupled to a  mass spectrometer (GC–MS;

Agilent 19091J-433). An HP-5MS UI 5% analytical column

(30 m × 0.25 mm ×  0.25 �m)  was utilized, with an initial tem-

perature of 60 ◦C, and kept for 3 min; then, a  ramp  of 5 ◦C/min

and the  temperature was increased to 300 ◦C and kept for

10 min  and, finally, to 310 ◦C with a  ramp  of 10 ◦C/min for

10 min. Helium was utilized as  the  carrier gas at the linear

speed of 1  mL/min until 300 ◦C and pressure release of 56 kPa.

The injector temperature was 300 ◦C; the injection volume was

2 �L; the injection was  in split mode (20:1). The transfer line

was  kept at 285 ◦C and the ionization source and quadrupole

at 230 ◦C and 150 ◦C, respectively. The EM detection system

was utilized in  “scan” mode, in the range of mass/load ratio

(m/z)  of 40–550 with 3-min solvent delay. The compounds

were identified by comparing their mass spectra with the ones

from NIST 11.0 libraries, and comparing their retention indices

(RI) obtained by a homologous series of n-alkane standards

(C7–C28).18

Antifungal  activity

For the antifungal bioassays, eight fungi were used: Aspergillus
fumigatus Fresenius (ATCC 1022), Aspergillus niger van  Tieghem

(ATCC 6275), Aspergillus ochraceus Wilhelm (ATCC 12066),

Aspergillus versicolor (Vuillemin) Tiraboschi (ATCC 11730), Peni-
cillium funiculosum Thom (ATCC 8725), Penicillium ochrochloron
Biourge (ATCC 9112), Penicillium verrucosum var. cyclopium
(Westling) Samson, Stolk & Hadlok (food isolate), and Tricho-
derma viride Pers. (IAM 5061). Microorganisms were obtained

from the Mycological Laboratory, Institute for Biological

Research ‘Siniša Stanković’, University of Belgrade, Serbia.

Fungi were kept on malt extract agar (20 g/L) and the cultures

stored at 4 ◦C and subcultured once a  month.19 In order to

investigate the antifungal activity of the compounds, a  modi-

fied microdilution technique was used.20,21 The fungal spores

were washed from the surface of agar plates with a  sterile

0.85% saline solution containing 0.10% polysorbate-80 (v/v).

The spore suspension was adjusted with sterile saline solu-

tion to a concentration of 1  × 105 in a  final volume of 100 �L

per well. The inocula were stored at 4 ◦C for further use. Dilu-

tions of inocula were culture on solid malt agar to verify the

absence of contamination and to  check the validity of each

inoculum. Minimum inhibitory concentration (MIC) determi-

nations were performed by a  serial dilution technique using

96-well microtiter plates. The investigated compounds were

dissolved in  5% dimethyl sulfoxide (DMSO) solution contain-

ing 0.1% polysorbate-80 (v/v) (1 mg/mL) and added in broth

malt extract medium with inoculum. The microplates were

incubated in  a  rotary shaker (160 rpm) for 72  h at 28 ◦C.  The

lowest concentrations without visible growth under the micro-

scope light were defined as MIC. The minimum fungicidal

concentration (MFC) was determined by serial subcultivation

of 2  �L of tested compounds dissolved in culture medium and

inoculated for 72  h onto microtiter plates containing 100 �L

broth per well and with further incubation for 72  h at 28 ◦C.

The lowest concentration with no visible growth was  defined

as MFC indicating 99.5% killing of the  original inoculum. A

solution of 5% DMSO was used as  a  negative control. Com-

mercial fungicides bifonazole (Srbolek, Belgrade, Serbia) and

ketoconazole (Zorkapharma, Šabac, Serbia) were used as posi-

tive controls (1–3500 �g/mL). All experiments were performed

in  duplicate and repeated three times.
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Statistical  analysis

All the tests were carried out in  triplicate. The results were

expressed as  arithmetic mean values ±  standard deviation,

and analyzed by one-way analysis of variance (ANOVA) fol-

lowed by Tukey HSD (honest significant difference) test with

 ̨ = 0.05 to determine whether there is a statistically significant

difference among the results. The analysis was carried out by

Statistical Package for the Social Sciences (SPSS) version 18.0.

Results

Chemical  identification

Essential oil chemical compounds, 34 out of 35, obtained by

GC–MS, were identified (Table 1). The major compounds were

dimethyl trisulfide (15.49%), 2,8-dithianonane (52.63%) and

lenthionine (14.69%). The mass spectra obtained for these

major compounds are shown in Figs. 1–3, respectively.

Antifungal  activity

The fungistatic activity (MIC) for the essential oil ranged from

0.01 to 0.09 mg/mL, and positive bifonazole and ketoconazole

controls varied from 0.10 to 2.50 mg/mL  (Fig. 4). MIC values

for the essential oil were all lower (p  ≤ 0.05) than the positive

controls (Fig. 4). The fungicidal activity (MFC) for the essential

oil varied from 0.02 to 0.18 mg/mL  and bifonazole and keto-

conazole controls ranged from 0.20 to  3.50 mg/mL  (Fig. 5). MFC

values for the essential oil were all lower (p ≤ 0.05) than the

positive controls (Fig. 5). In general, the essential oil concentra-

tion was from 1.4 to 10.0 times lower than bifonazole and from

2.8 to 175 times lower than ketoconazole, both with fungicidal

effect (Figs. 4 and 5). Specifically, P.  ochrochloron needs a concen-

tration of the controls bifonazole or ketoconazole 12.5 or 175

times, respectively, higher than the essential oil to obtain the

same fungicidal activity. The essential oil concentration was

from 22 to 25  times lower than ketoconazole control against A.
fumigatus,  A.  versicolor, A. ochraceus and T. viride (Fig. 4). These

results make evident that the essential oil  of G. integrifolia fruits

have excellent performance in fungistatic and fungicidal con-

trol of several fungi.

Discussion

G. integrifolia fruit essential oil  presented fungicidal activity in

much lower concentrations than bifonazole and ketoconazole

controls. The fungicidal activity can be related to  compounds

found in the essential oil. Out of 35 identified compounds, 68%

belong to the organosulfur class which, according to  Kyung

and Lee22 and Dewick,23 is synthetized in vegetal tissues from

sulfur amino acids such as  methionine and cysteine. The

presence of sulfur increases the fungicidal activity of the  com-

pounds that protect plants.24–27 According to Avato et al.,28 the

antimicrobial potential of organosulfur is also related to the

presence of disulfide links of these molecules.

Another factor that can affect the antimicro-

bial activity is molecule polarity. Yin and Cheng29

reported that among lipophilic organosulfurs [diallyl

Table 1 – Chemical composition of Gallesia integrifolia
fruit essential oil.

Peak cCompounds aRIcal Area (%) IM

1  Disulfide dimethyl 808 0.89 a,b,c

2 2,4-Dithiapentane 892 0.04 a,b,c

3 Camphene 938 t  a,b,c

4 Myrcene 938 t  a,b,c

5 2-Carene 939 t  a,b,c

6 ˛-Terpinene 939 t  a,b,c

7 Limonene 939 t  a,b,c

8 Methyl

(methylsulfinyl)methyl

sulfide (FAMSO)

974  0.84 a,b,c

9 1,2,4-Trithiolane 1094 0.11 a,b,c

10 Dimethyl trisulfide 1136 15.49 a,b,c

11 2,3,5-Trithiahexane 1174 0.28 a,b,c

12 Butane,1,4-bis(methylthio) 1202 0.10 a,b,c

13 Trithiomethoxymethane 1219 0.15 a,b,c

14 Thiophene,2-

[(methylthio)ethynyl]

1263  0.35 a,b,c

15 1,2,4,5-Tetrathiane 1367 5.66 a,b,c

16 ˛-Ionone 1432 t  a,b,c

17 Dimehtyl tetrasulfide 1479 0.14 a,b,c

18 ˇ-Ionone 1492 t  a,b,c

19 5,6-Dihydro-2,4,6-

trimethyl-4H-1,3,5-

dithiazine

1506  0.66 a,b,c

20 2,8-Dithianonane 1540 52.63 a,b,c

21 1-Oxa-4,7-dithiononane 1559 0.61 a,b,c

22 Trimethylsilyl

methansulfonate

1618  0.08 a,b,c

23 3,5-Dithiahexanol-5,5-

dioxide

1634  0.10 a,b,c

24 2,3,5,6-tetrathiaheptane 1718 0.12 a,b,c

25 l-Methionine, ethyl ester 1761 0.10 a,b,c

26 Disulfide, bis(2-sulfhydryl

ethyl)

1780 0.14 a,b,c

27 Lenthionine 1780 14.69 a,b,c

28 Ethanol, 2-octhylthio 1792 0.11 a,b,c

29 n.i.  1797 0.09 a,b,c

30 Hexathiepane 1916 5.53 a,b,c

31 N-Ethyl-1,3-dithioisoindole 2027 0.10 a,b,c

32 Phytol 2121 t  a,b,c

33 5-Methyl-2-phenylindole 2176 0.56 a,b,c

34 Propane,1,1′-thiobis[3-

(methylthio)]

2194 0.18 a,b,c

35 11,13-Dihydroxy-tetradec-

5-ynoic acid, methyl

ester

2325 0.23 a,b,c

Total identified compounds 99.98

a RIcal =  identification based on  retention index (RI) using a homolo-

gous series of  n-alkanes C7–C28 in an Agilent HP-5MS UI column.
b identification based on  the comparison of mass spectra using

Nist 11.0 libraries.
c Compounds listed in order of  elution in HP-5MS UI column;

n.i., non-identified compounds; t,  traces. IM = Methods of

Identification.

sulfide (CH2=CHCH2SCH2CH=CH2)  and diallyl disulfide

(CH2=CHCH2SSCH2CH=CH2)], and hydrophilic organosul-

furs (CH3CH2SCH2CH(NH2) COOH) and n-acetylcysteine

(HSCH2CH(NHCOCH3)COOH)], most antimicrobial activity

was obtained for diallyl sulfide, a lipophilic organosulfur with

disulfide links. Thus, the presence of sulfur compounds in
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Fig. 1 – Mass spectrum of dimethyl trisulfide (m/z = 126) found in Gallesia integrifolia fruit essential oil obtained by GC–MS.
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Fig. 2 – Mass spectrum of 2,8-dithianonane (m/z = 164) found in  Gallesia integrifolia fruit essential oil obtained by GC–MS.
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Fig. 3 –  Mass spectrum of lenthionine (m/z = 188) found in  Gallesia integrifolia fruit essential oil obtained by GC–MS.
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fungal strains. Different letters above bars indicate statistically significant differences among treatments for each fungal

strain according to Tukey test (p ≤ 0.05).
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essential oils with polysulfide bridges (–Sn–)  can increase its

apolarity and broaden its chemical affinity with the  structure

of microorganism cell wall and membrane consisting mainly

of chitin and ergosterol.30–33 This interaction with the mem-

branes can promote membrane rupture and can unbalance

microbial cell.34 Li et al.35 verified that cellular organelles

such as vacuoles, mitochondria, and storage granules of Can-
dida albicans were severely damaged after 2  h in 1.39 �g/mL

garlic (Allium sativum L.) essential oil. For these authors, the

results were consistent with the damages observed in  P.
funiculosum mycelia treated with garlic essential oil.35 Dziri

et al.36 verified that garlic essential oil extracted by different

methods consists of 84.3 to 98.9% of sulfuric compounds,

and the major ones are diallyl trisulfide (37.3–45.9%), diallyl

disulfide (17.5–35.6%) and methyl allyl trisulfide (7.7–10.4%).

The polysulfur groups can also interact with amino acids

and proteins acting as  inhibitors of enzymatic reactions and

protein synthesis. For Li et  al.,35 garlic essential oil changed

the expression of a  large number of genes in  C. albicans after

garlic oil treatment.

Another factor that may  have affected antimicrobial activ-

ity of G. integrifolia essential oil can be  related to the number

of  sulfur atoms found in the molecules. According to Kyung,37

heterocyclic organosulfurs with 5 and 6 atoms of sulfur in the

molecule were more  effective than the microbial control when

compared to heterocyclic ones with 4 sulfur atoms.

Therefore, the antifungal activity of G. integrifolia fruit

essential oil is possibly due to the presence of organosulfur

compounds. In addition, 29% of the fruit essential oil com-

pounds presented disulfide links of lipophilic nature and/or

heterocyclic chains. Among the major compounds, lenthion-

ine (14.69%) presents heterocyclic chain with five sulfur atoms

in its molecule, and it has  already been isolated from the red

algae Chondria californica and the  edible mushroom shiitake

(Lentinula edodes).38 In studies done by Morita and Kobayashi,39

the isolated compound lenthionine presented antimicro-

bial potential against several microorganisms such as the

following fungi: Glomerella cingulata (MIC of 12.50 �g/mL),

Pyricularia oryzae (MIC of 12.50 �g/mL), C. albicans (MIC of

6.25 �g/mL), Trichophyton mentagrophytes (MIC of 3.12 �g/mL),

Saccharomyces cerevisiae (MIC of 6.25 �g/mL), Cryptococcus neo-
formans (MIC of 6.25 �g/mL) and Trichophyton rubrum (MIC of

3.12 �g/mL). Analyzing these results obtained for lenthionine

in the reported study, we can consider that the presence of

this organosulfur compound in the pau d’alho fruit essential

oil influenced the antifungal activity of this study in which

the obtained MIC  values ranged from 10 to 90 �g/mL, repre-

senting a smaller concentration than the  ones in the control

(bifonazole and ketoconazole) (Fig. 4).

G. integrifolia fruit essential oil presented higher antifun-

gal activity than the controls (bifonazole and ketoconazole)

against all tested fungi. These microorganisms are related to

several human diseases such as A. fumigatus which is  the

main etiologic agent of lung.40 Several tested fungi promote

agricultural losses, food deterioration, produce mycotoxins,

and are found in  several grains, and may  cause damages dur-

ing the storage with loss of food quality and germinating

capacity.41–43

In the production of edible mushrooms, T. viride is  one of

the main worldwide contaminants causing economic losses

and reducing the availability of this food.14,44 In general, the

fungal control occurs with synthetic fungicides that with

time cause the development of resistance to pathogens,

contaminate the environment and may  cause carcinogenic

effects.45,46 An  alternative to synthetic fungicides is  the sub-

stitution for natural products that reduce the environmental

contamination.47,48 Geels et al.7 reported that green molds

such as  Trichoderma genus can contaminate and cause mush-

room production losses. Benomyl (Benlate
®

), among other

fungicides, is broadly used in  Agaricus bisporus mushroom

cultivation49,50 Prochloraz (Sporgon
®

) is another commonly

used as fungicide in mushroom cultivation; however, it is sug-

gested that Prochloraz and Benomyl may  cause side effects.45

Thus, G. integrifolia fruit essential oil can be an  alternative to
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control T. viride and other fungi that contaminate mushroom

production.

In conclusion, the major compounds of G. integrifolia fruit

essential oil are dimethyl trisulfide (15.49%), 2,8-dithianonane

(52.63%) and lenthionine (14.69%). Fruit essential oil con-

sists of 68% of organosulfur compounds mainly lenthionine,

which is likely the responsible for its fungicidal activity. The

essential oil has antifungal (fungistatic and fungicidal) activ-

ity against all evaluated fungi in much lower concentrations

than the ones used in the controls (bifonazole and ketocona-

zole), mainly against P.  ochrochloron, A. fumigatus,  A. versicolor,
A. ochraceus and T. viride. The essential oil from G. integrifolia
fruit is a potential alternative to  reduce the use of synthetic

fungicides.
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