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Abstract

Introduction: The test blueprint bridges the teaching, learning, and assessment processes. It

describes what to measure in which learning domain and at what competency level. We used

Rasch analysis to compare the test results and item response patterns of two uro-reproductive

tests. The Fall-2020 (Test one) exam was developed without a test blueprint, while the Fall-2021

(Test two) exam used a test blueprint.

Methods: The study analyzed data from 143 Sultan Qaboos University medical students who

passed the course in fall 2020 and fall 2021. 25 MCQs were chosen at random. Psychometric

analysis was performed using the Rasch model. Means, measurement errors, and reliability

indices were calculated. Rasch's dichotomous model computed PCAR for unidimensionality, local

item independence, person separation estimate, and fit statistics for item conformity.

Results: Both tests exhibited non-significant variations in test scores, person separation indices

(PSI), and item reliability. On test two, item separation measures showed three difficulty levels.

Unidimensionality assumptions were validated in both tests. Test one items 16 and 18 were 0.53

intercorrelated, indicating response dependence. Both tests produced acceptable infit statistics,

with 8 items in test one and 6 in test two unfitting for the outfit range (0.7–1.3). Test two ICC had a

wider range of item difficulty. The item-person map showed that students' abilities are greater than

item difficulties in both tests, with a wider range of abilities in test two.

Conclusions: Psychometrically sound tests require test blueprints. The Rasch model analyzes

test psychometrics effectively. Test score accuracy, item differentiation, and item indepen-

dence improved with blueprinting. Creating a test with a high correlation between item

difficulty and student ability reduced score measuring errors. General research should examine

blueprinting methods and educational milestones.
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PALABRAS CLAVE
Evaluación;
Modelo de prueba;
Análisis psicométrico;
Modelo de Rasch;
Confiabilidad de la
prueba

Resultados de pruebas con y sin Blueprinting: Análisis psicométrico usando el modelo

de Rasch

Resumen

Introducción: El plan de pruebas une los procesos de enseñanza, aprendizaje y evaluación.

Describe qué medir en qué dominio de aprendizaje y en qué nivel de competencia. Se utilizó el

análisis de Rasch para comparar los resultados de las pruebas y los patrones de respuesta a ítems

de dos pruebas uro-reproductivas. El examen Otoño-2020 (Prueba uno) se desarrolló sin un plan

de pruebas, mientras que el examen Otoño-2021 (Prueba dos) utilizó un plan de pruebas.

Métodos: El estudio analizó datos de 143 estudiantes de medicina de la Universidad Sultan

Qaboos que aprobaron el curso en el otoño de 2020 y el otoño de 2021. Se eligieron 25 MCQs al

azar. El análisis psicométrico se realizó mediante el modelo de Rasch. Se calcularon medias,

errores de medición e índices de confiabilidad. El modelo dicotómico de Rasch calculó la PCAR

para unidimensionalidad, independencia local de ítem, estimación de separación de personas y

estadísticas de ajuste para la conformidad de ítem.

Resultados: Ambas pruebas mostraron variaciones no significativas en las puntuaciones de las

pruebas, índices de separación de personas (IPE) y confiabilidad de los ítems. En la prueba dos,

las medidas de separación de ítems mostraron tres niveles de dificultad. Los supuestos de

unidimensionalidad fueron validados en ambas pruebas. Los reactivos 16 y 18 estuvieron

intercorrelacionados 0,53, indicando dependencia de la respuesta. Ambas pruebas produjeron

estadísticas de infit aceptables, con 8 ítems en la prueba uno y 6 en la prueba dos no aptos para el

rango de outfit (0,7–1,3). La prueba dos ICC tenía una gama más amplia de dificultad de elementos.

El mapa ítem-persona mostró que las habilidades de los estudiantes son mayores que las dificultades

ítem en ambas pruebas, con un rango más amplio de habilidades en la prueba dos.

Conclusiones: Las pruebas sicométricamente sólidas requieren planos de prueba. El modelo de

Rasch analiza la psicometría de las pruebas de manera efectiva. La precisión de la puntuación de

prueba, la diferenciación de los elementos y la independencia de los elementos mejoraron con el

diseño. La creación de una prueba con una alta correlación entre la dificultad del elemento y la

capacidad del estudiante redujo los errores de medición de puntuación. La investigación general

debe examinar los métodos de diseño y los hitos educativos.

© 2023 The Author. Publicado por Elsevier España, S.L.U. Este es un artículo Open Access bajo la

licencia CC BY-NC-ND (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

The pedagogical strategies of medical education have
advanced significantly in recent years, notably with the
implementation of novel learning and teaching methodolo-
gies. As part of the curriculum development and improve-
ment processes, the assessment strategy should be
challenged, and medical educators should assure a well-
balanced assessment that employs real, active, and authen-
tic approaches. These comprehensive approaches emphasize
the application of factual, procedural, and integrated
knowledge in conjunction with the requisite skills necessary
to establish competency in medical practice. Many medical
schools have recently begun implementing the "assessment for
learning" paradigm, in which both students and teachers are
provided with information regarding how the learning process
is progressing and where it needs to go, as well as the
most effective way to get there. Accordingly, numerous
competency-based and programmatic assessment methodolo-
gies have been implemented.1 As proper assessment is an
inherent component of medical education, a good educational
process should be accompanied by an appropriate assessment
strategy.

The development of a test with inadequate validity or
reliability measures or with irrelevant variation among test
scores is one of the major threats to an accurate assessment.
Such invalid examinations devoid of objectivity could result
in an inaccurate evaluation of students' knowledge or
competence. Currently, the concept of validity has changed
from merely criterion, content, etc. to a unified concept of
construct validity, in which many sources of evidence are
used to support a contention for validity, initially through
Messick's framework of the five sources and, more recently,
through Kane's argument-based approach to validation.2

According to Cook et al., Kane's paradigm highlights four
steps for valid interpretation from observation to decision
making. The first step is scoring an observed performance to
ensure it accurately reflects it. Second, generalize the exam
outcome to test performance (Generalization). Third, real-
world performance extrapolation (Extrapolation). Fourth, is
decision-making based on data analysis (Implications).3

Along with these validity threats in test design, subjec-
tivity in test papers, lack of test pre-validation by reviewers,
lack of uniformity, and lengthy tests are frequently noticed
problems of such poorly created tests that lack content or
construct validity.4
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Post-exam data and test scores should be evaluated using
psychometric approaches to improve assessment quality.
Test developers and medical educators should assess student
performance reliably and consistently over time to reduce
unexpected test results.5 Post-examination analysis im-
proves assessment reliability and validity and reviews
learning outcomes and instructional methods.5,6 These
studies help to standardize tests and to detect test items
with irregular responses outside test control limits, which
can lower test quality. The test psychometrics improve
assessment quality in several ways: it helps to detect test items
with abnormal response patterns, allowing for rewriting or
rejecting of such items; it introduces new analytical methods,
such as the item response theory, which interprets tests by
associating student abilities with item difficulties; it improves
construct, content, and concurrent test validity measures; and
it improves question quality. Additionally, it allows for a more
precise calculation of examiners' true scores, identification of
measurement errors, reduction of inter-rater score variability,
and increased test generalizability.7

Numerous methods have been utilized to examine and
interpret post-test data in the field of test psychometrics.
The classical test theory (CTT) and the more complex item
response theory (IRT) have been implemented.7 The classi-
cal test theory is the most prevalent and widespread
method. The majority of post-examination data returned
to professors is derived from the CTT. It focuses primarily on
assessment items and examiners' attempts to appropriately
respond to these items and helps to identify the sources of
measurement errors and the degrees of test score variance.
In addition, a wide variety of descriptive statistics, such as
the mean, standard deviations, confidence intervals of
scores, skewness, kurtosis, difficulty and discrimination
indices, distractor efficiency, and test overall reliability
(Cronbach's alpha and Kuder Richardson measures) are
provided.8

Despite the fact that these parameters are simple to
interpret, evaluate, and provide a close look at all items and
test score measures, a clearer understanding of how
students interact with test items and how these items affect
students' performance and behavior during the test is not
described. In addition, the statistics supplied by the CTT
depend on the total number of test responses, the number of
test questions, and the inter-item correlation and reliability
measurements. There is no evidence of the specific response
pattern of each test taker to a test item or the correlations
between the students' overall abilities and item difficulty.
Thus, it is necessary to use a different psychometric method
for test analysis that provides deeper and more intricate
insights. The item response theory (IRT) helps to overcome
this constraint since it gives a complete analysis of the
relationship between item difficulty level and student
abilities, as well as other valuable parameters such as item
and person separation estimates, test unidimensionality,
local item independence, differential item functioning, and
item response patterns.

The logistic Rasch model for dichotomous data is one of
the IRT's principal models. It establishes a logistic relation-
ship between item difficulty and student ability (estimated
based on the number of questions answered correctly); the
greater the range, the greater the likelihood that a person
will respond properly to a question.9

Common issues affecting the content and construct
validity of a test include its development with underrepre-
sented learning outcomes or an irrelevant variance (im-
proper assessment tools). Using the test blueprint is thus a
significant and typical method for ensuring a proper
examination in terms of content. In addition, blueprinting
ensures the test's validity. A reliable exam is consistent and
capable of differentiating between good and poor students;
its scores are consistent across varied testing settings.

The test blueprint provides constructive alignment
between the three educational pillars (learning objectives,
teaching and learning activities, and evaluation strategy).
Thus, it assures assessment transparency and that students'
knowledge, and skills are assessed properly using a well-
defined approach.

The two-dimensional matrix (content to process matrix)
design is one of the most often used methods for designing
test blueprints.10 The course content areas and learning
outcomes (displayed on the y-axis) are tabulated against the
learning domains (cognitive, psychomotor, and affective)
displayed on the x-axis using a broad sampling to ensure
sufficient reliability. This approach enables an appropriate
mapping of assessment to the curriculum outcomes and
learning objectives. A sufficient and well-balanced sampling
of course content is obtained, and design and sampling
biases in examinations are minimized.

In order to develop and improve the test design and
quality, the purpose of this study is to examine in detail the
effect of adopting a blueprint for test design on assessment
scores and item response patterns, as well as how the Rasch
analysis model for psychometric evaluation of examination
enables a better understanding and interpretation of exam
data.

Methods

Study design

Comparative cross-sectional study was conducted to detect
the differences in test results, item analysis reports and test
psychometrics between two uro-reproductive course exams.
Of these, the fall 2020 group, test was conducted without
implementing a test blueprint (test one), while that of fall
2021 group (test two); the test was conducted with a well-
constructed test blueprint. The study was conducted among
phase II medical students, College of Medicine & Health
Sciences Sultan Qaboos University (SQU). Phase II contains
four semesters, the first of which covers advanced human
anatomy and physiology. System-based courses with hori-
zontal and vertical integration make up the last three
semesters. The study involved phase II, pre-clerkship
medical students, involved in one of the system-based
courses (the uro-reproductive course).

Study participants

The examination committee of the College of Medicine and
Health Sciences at SQU provided the study's test data. The
data set was comprised of 143 uro-reproductive exam takers
who passed the course's final exam. The cohort of 2020
(Group one) consisted of 72 students, of whom 32 were
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males (44%) and 40 were females (56%), whilst the cohort of
2021 (group two) consisted of 71 students, of which 30 were
males (42%) and 41 were females (58%). Students enrolled in
the course were subject to the enrollment and eligibility
requirements issued by the university's Admission and
Registration Deanship (A&R). Participants were exposed to
comparable educational backgrounds. Except for test design
with and without a test blueprint, all variables that could
affect student performance were relatively constant. Both
courses featured similar outcomes, instructors, educational
resources, and teaching methods.

Test blueprint design

It is crucial to remember that there is no predefined test
blueprint design and implementation template. However,
blueprinting is a method that enables test development that
adequately reflects course learning outcomes and ensures
the use of an appropriate assessment tool. Therefore, the
method used in this study to develop a test blueprint was the
one most effective in achieving the course's learning
objectives.

Steps involved in blueprint design

1. Creating a test blueprint begins with identifying the
blueprint's purpose and scope.

2. Create a two-dimensional matrix listing the course's
subject sections (split into themes) on the y-axis and
the learning domains (levels of cognition, such as
knowledge, understanding, application, etc.) on the x-
axis. This ensures that all course content is covered on
the final examination.

3. Determine the appropriate assessment method for each
learning domain. All examination questions in this study
were MCQs of type A. (for assessing the knowledge and
understanding domains).

4. Determine the relative weight of each content area based
on the amount of time devoted to instruction, the topic's
relative value, the frequency with which it is applied in
practice, and the topic's significance for subsequent
learning.11,12

5. Calculate the total number of test items by dividing the
time given for the entire exam by the time allotted for
each examinee to answer a single test item (time for
answering a recall or a problem-solving question). In this
study, the time allotted for each test was 40 minutes, the
time allotted for each test item was 1.5 minutes, and
students were permitted 2.5 more minutes.

6. Determine the proportional number of test items for each
content area (category) based on its weight as mentioned
previously. Determine the proportionate weight of each
learning domain to be evaluated (knowledge, under-
standing, application, etc.) within each content area
(topic or theme). Table 1 provides an example of the test
blueprint used for test two.

Importantly, the test blueprint is not used merely as a
measure of test validity; rather, its combination with other
measures in the context, such as post-examination reports,
psychometric parameters, application utility, and expert T
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comments, is used to generate a comprehensive under-
standing of assessments and apply methods for test
improvement.

Study tools

Each group's uro-reproductive examination consisted of 25
multiple-choice questions picked at random from the item
bank. Questions from the item bank pertinent to their item
analysis reports were selected. The adequacy of test items
in terms of difficulty, discrimination, and overall test
reliability (Alpha value) and the reliability value if an item
is omitted (Alpha without, Alpha w/o) from a test was
considered.

Items with a difficulty index (P-value) within the
recommended range of 30 to 70 were selected. On the
basis of their discriminative efficiency (represented by r-PB,
point-biserial correlation product of an individual's response
to an item and the overall test response to all other items),
the cut off values for selection were established as follows:
>0.40 (very good); 0.20–0.29 (fairly good and needs
improvement); and values ≤0.19 (poor) (removed from the
item bank or revised for improvement).13

The test was scored only on the basis of correct
responses; there were no penalties for incorrect answers.
The correct response received a score of one, while the
incorrect response received a score of zero. Students' overall
test scores were computed, and data were expressed as
mean ± standard error in measurement.

Prior to test administration, test items were reassessed
based on their degree of cognitive process complexity
(correspondence with the learning domains; Knowledge,
comprehension, and/or application). Two raters indepen-
dently rated each item. Each item was assigned a score of 1,
2, or 3 based on how well it matched the learning domains
(Knowledge, understanding and application respectively)
Cohen's Kappa was utilized to determine the inter-rater
reliability and degree of agreement between the two raters
(For nominal data that can be distinguished). The Kappa
value was 0.71, and the p-value was less than 0.001, which
was deemed acceptable by Cohen's cutoff.14

Item evaluation and fit statistics

The performance of test items was evaluated based on
measures of difficulty and discrimination, reliability indices,
Rasch model fit, test dimensionality, and degree of
independence. In this study, the Rasch model analysis was
conducted using the WINSTEPS analysis tool, version 5.2.3.15

The Rasch model for dichotomous data establishes a
logistic relationship between individual ability and item
difficulty. The greater the difference, the greater the
likelihood of a correct response.9 We implemented only
one parameter (1PL) for the IRT analysis: the item difficulty
level in addition to the respondent ability trait level. Other
measures, such as item discrimination and pseudo guessing,
were not utilized since our test measures only one domain
level of competency, namely knowledge and its application,
and because all our test items consist of multiple-choice
questions with simple binary responses (students are graded
0 or 1 based on their correctness).

In the Rasch model, item difficulty (P-value) is defined as
the skill level required to have a 50% chance of providing the
correct response. The recommended range is 30 to 70. The
discrimination efficiency of a test item is its capacity to
distinguish between high and low performers. The correct
response must be positively discriminating.

In addition to this, as part of the Rasch analysis, the mean
square indices (MNSQ) of the infit and outfit statistics for
test items were calibrated. The infit MNSQ is an index
sensitive to deviations in test items from the expected
pattern near the difficulty mean. The outfit MNSQ is an
indicator sensitive to deviations in test items among high or
low difficulty outliers.16 The MNSQ is determined by dividing
the test item's Chi-square statistics by their degrees of
freedom.

The infit index is the more accurate of the two indices for
measuring the fit of data to the Rasch model because it finds
data outliers near the item characteristic curve (ICC). For
the evaluation of the MNSQ overfitting and underfitting
indices, respectively, (0.7 and 1.3) were utilized as
respective cutoff values.17 Point-biserial correlation was
used to measure the degree of correlation between the
latent trait and the observed score. The link between item
difficulty and individual (test-takers') performance was
depicted using a Wright map, which is frequently used in
the Rasch model and was calibrated in logits (Log-odd
ratio).18

Test and person reliability

The Rasch analysis model examined the reliability of both
tests and individuals. The reliability index (RI) quantifies the
consistency of a test. It ranges between zero and one. A
threshold of 0.7 is acceptable. It quantifies the proportion of
test score variance attributable to error variance.19 It
measures the precision of individual performance and item
difficulty. Low levels of reliability are associated with high
levels of Standard error of measurement (SEM).

The Rasch analysis also detects the person separation
index as a reliability metric. It is an estimate of the test's
ability to differentiate between individuals with different
degrees of ability. According to Linacre, it runs from zero to
infinity and is a ratio between the standard deviation of test-
takers and their root mean square standard error.20

Test unidimensionality

The Rasch analysis model was used to determine whether
the test measures a single dimension. To test for unidimen-
sionality, the principal component analysis of linearized
Rasch residuals (PCAR) is performed. Residuals are defined
as the difference between the observed student scores and
what the Rasch model predicted.21

The common variance is used by PCAR to identify
components in residuals. In the analysis, the raw variance
unexplained by the Rasch model was employed. A contrast
(component) with three or more items with unexplained
variance clusters together, resulting in the creation of a
subdimension in data that is distinct from the Rasch
dimension. The size of the common variance of these cluster
items is compared to that of the Rasch model. The bigger the
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difference, the greater the likelihood of component sub-
stantiality, and the assumption of test unidimensionality no
longer holds. The Eigenvalue was determined for the
contrasts with unexplained variance; values less than three
were considered non-significant. In the Rasch analysis, this
was depicted as a graph with the item difficulty measures in
logits on the horizontal axis and the extracted component of
linearized Rasch residuals on the vertical (Appendix A). The
spread of objects throughout the whole graph and the
absence of ones that stand out from the rest are considered
evidence of unidimensionality.

Local item independence is another assumption of the
Rasch measuring method. It is determined using the Pearson
correlation analysis of linearized Rasch residuals. A value of
0.5 is considered significant and an indicator of threatening
local independence.22 It can be interpreted to indicate that
the probability of response to one item depends on the
likelihood of response to another.

Ethical approval

After approval, test results and details of test psychomet-
rics, including item analysis reports, were received from
administrative reports. Data confidentiality was maintained
throughout the study. The Medical Research Ethics Commit-
tee (MREC) of SQU approved the study's design and protocol
in February 2022. (REF.NO. SQU-EC/038/2022; MREC

2686).

Results

The primary goal of this research was to identify potential
differences in response patterns across two uro reproductive
courses tests using the Rasch measurement model. The first
exam was administered without a test blueprint, whereas
the second exam was designed with a test blueprint. For
each measure, the following headings will be used to present
the Rasch analysis results:

Test unidimensionality

PCAR was conducted to determine the unidimensionality of
the test. For both tests, the Rasch factor explained 9.10 and
11.92 (Eigenvalues) of the raw variance. The first contrast's
unexplained variance was 2.66 and 2.1 for the two tests,
respectively. None of the first contrast's item residuals
clustered together (Values less than 3 in both tests)
(Appendix A). This is verified by the observation that the
variance explained by the Rasch factor is between nine and
twelve times larger than the dimension recovered from the
residuals. With a wider disparity in the second test (with a
blueprint). Thus, the unidimensionality assumption is sup-
ported in both tests.

Local item independence

Analyses were conducted on the Pearson correlations
between item standardized residuals. With an intercorrela-
tion of 0.5, the local independence assumption is violated. In
the first test, observed correlations ranged between 0.24

and 0.53, whereas in the second, all values were less than
0.35. In test one, Items 16 and 18 had an intercorrelation of
0.53; hence, the probability of responding to one of these
questions is dependent on the response to the other (the
local item independence assumption is violated); the
sequence of these two items may influence the degree of
difficulty associated with their interpretation.

Reliability and separation estimate

Item reliability coefficients were 0.87 and 0.90 for the first
and second test, respectively. Item separation measures
were 2.63 and 3.01 for test one and two respectively
(Table 2). Person separation indices were 1.17 and 0.98 for
the first and second tests, respectively.

Fit of items to the Rasch model

Tables 3 and 4 depict the MNSQ indices for infit and outfit
(test one and two, respectively). The infit statistics for the
first test varied from 0.78 to 1.29, with a mean of (0.99 ±
0.11). All of the infit MNSQs fall within the range of 0.7 to 1.3
as indicated by Bond and Fox,34 indicating that the data does
not contain any unexpected responses. The average MNSQ
for outfit measurements was 0.99 ± 0.42, with items 21, 19,
2, 23, 25, 5, 1, and 17 falling outside the Rasch model's
acceptable fitting range. All point measure correlations (PT-
measures) for test items varied from 0.17 to 0.54, with all
positive values showing a correlation between test items.

Table 4 displays the test two item fit characteristics to the
Rasch model. The infit MNSQ values demonstrate that all items
fall within the acceptable range, with a mean value of 1 ± 0.11
SD. Numerous test items (16,21,22,4,6,12,13,18,5, and 10)
exhibit MNSQ values around or equal to 1.0, indicating an
excellent fit of test items to the Rasch model with few
unexpected response patterns.

The average outfit MNSQ was 0.98± 0.33, with items 16,
1, 19, 15, and 17 falling outside of the Rasch model's
acceptable ranges. These items had unexpected response
patterns and did not support the test's underlying construct.

Participants with unexpected responses

The item's observed score and the score predicted by the
Rasch model were analyzed. The findings of test one
indicate the occurrence of 21 items with unexpected
responses, with item two being the most frequent (6
unexpected responses). Whether, on test two, 19 questions
have unexpected responses, with item one occurring most
frequently (6 unexpected responses).

Item characteristic curve

Fig. 1 illustrates the item characteristic curve for the entire
examination, as well as the curves for the easiest and most
difficult questions separately.

The range of item difficulty measures in test two is
broader than in test one. Questions 2 and 5 on test one
have the lowest and highest logit degrees of difficulty,
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respectively. Questions 22 and 4 in the test two are the most
difficult and easiest, respectively (Fig. 1, B and D).

Test information function

Fig. 2 depicts the relevant test information values for the
first and second tests. The test information curve is the sum
of item information measures (reliability indices) at differ-
ent student ability levels (measured in logits). According to
both curves, students with low and high abilities have low
levels of effective test measurement values, whilst students
with average abilities (zero logits) demonstrate the highest
levels of effective test measurement values.

Item-person map

Fig. 2 (C and D) exhibits concurrent item-person map. In log-
odd units, the values on the graph's left side represent
students' abilities and item difficulties (logits from −3 to 5).
M represents the mean, whereas S and T are separated from

the mean by one and two standard deviations (SD),
respectively. Exam questions range from basic (at the
bottom) to difficult (at the top), and test-takers range
from poor performers (at the bottom) to high performers (at
the top).

The map demonstrates that test two questions cover a
wider range of difficulty, from −2.76 to 3.87 logits (with a
mean of 0.00 ±1.59). While the item difficulty measure-
ments for test one vary from −2.06 to 2.68 logits (with a
mean of 0.00 ± 1.18).

A person's ability is measured on a scale ranging from
−0.12 to 5.11 logits (with a mean of 2.04 ± 1.15) on the first
test. On the second test (with blueprint), students' abilities
range from 0.12 to 4.27 logits on average, with a standard
deviation of 0.88 logits.

Besides, as shown in Fig. 2, student ability exceeds item
difficulty on both examinations; hence, students are more
likely to correctly respond to questions.

Some test items with difficulty measures are below the
student with the lowest ability on both exams, but none is

Table 2 Person and item reliability and separation estimate in Test one (A, without blueprint) and test two (B, with blueprint).

A: Test one (without blueprint)

Person 72 Input 72 Measured Infit Outfit

Total Count Measure Real SE IMNSQ ZSTD OMNSQ ZSTD

Mean 20.1 25 2.04 0.69 0.98 0.1 0.99 0.11

P. SD 3.3 −2 1.15 0.26 0.27 1.1 0.77 1

Real

RMSE

0.74 True SD 0.88 Separation: 1.18* Person Reliability:

0.58*

Item 25 1nput 25 Measured Infit Outfit

Total Count Measure Real SE IMNSQ ZSTD MNSQ ZSTD

Mean 57.8 71.9 0 0.4 0.99 0.1 0.99 0.1

P. SD 10.7 0.3 1.18 0.13 0.11 0.7 0.42 1

Real RMSE 0.42 True SD 1.1 Separation : 2.63* Item Reliability:

0.87*

B: Test two (with blueprint)

Person 72 Input 72 Measured Infit Outfit

Total Count Measure Real SE IMNSQ ZSTD OMNSQ ZSTD

Mean 19.4 25 1.88 0.64 0.99 0.1 0.98 0.2

P.SD 2.7 0 0.92 0.14 0.25 0.7 0.72 0.7

Real RMSE 0.65 True SD 0.64 Separation: 0.99* Person reliability:

0.49*

Item 25 1nput 25 Measured Infit OUTFIT

Total Count Measure Real SE IMNSQ ZSTD OHNSQ ZSTD

Mean 55.8 72 0 0.44 1 0.1 0.98 1

P. SD 14.5 0 1.59 0.24 0.11 0.8 0.33 1

Real RMSE 0.5 True SD 1.51 Separation: 3.01* Item reliability:

0.9*

Person separation index [(PSI= √r/ (1-r)] was 1.17 and 0.98, and Person separation estimate was 1.18 and 0.99 for test one and two
respectively, indicating that the test was not sensitive enough to distinguish between two groups of students with varying levels of ability.

Measures of item reliability and item separation indices for tests one and two were 0.87 and 0.90, and 2.63 and 3.01, respectively, showing

the presence of three distinct levels of difficulty in test two items. Values are expressed with *.

IMNSQ = Infit mean square values; OMNSQ = Outfit mean square values; ZSTD = Value of t-test; RMSE = Root mean square error (average
measurement error of reported measures).
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above the student with the highest ability. In both
examinations, the majority of questions and test-takers
cluster around their respective means.

In addition, there are more gaps in the item hierarchy of
test one and items vary in their level of difficulty when
compared to test two items; the majority of test items are
placed on the easier portion of the map, away from where
students' abilities are located.

Discussion

Assessment plays a crucial part in the medical school
curriculum because it provides a way of assessing student
progress toward the desired learning outcomes. To ensure
that assessments are aligned with course goals and address
important learning outcomes in a balanced manner, it is
imperative that they are designed according to a well-
considered approach.23

Validity, reliability, and efficiency (within the limitations
of time, cost, and number of students) are the attributes of
an effective assessment.24 Multiple variables can influence a
test's validity and reliability; nevertheless, construct under-
representation and construct-irrelevant variance are two of

the biggest concerns in terms of validity. Therefore, these
significant test-related threats may be mitigated with a
well-constructed test blueprint. It addresses the expected
level of competency in each learning domain and the precise
measures to be used to evaluate the progress.25

In order to enhance and improve the test design and quality,
the purpose of this study was to examine in detail the effect of
using a blueprint for test design on assessment scores and item
response measures, as well as how the Rasch analysis model for
psychometric evaluation of examination enables a better
understanding and interpretation of exam data.

The dimensionality of a test was evaluated using the
Rasch model's principal component analysis of residuals
(PCAR).21 This was the initial phase of analyzing exam data.
This indicates whether the test assesses a single construct
(cognitive or a psychomotor ability). The Rasch factor
analysis (raw variance explained by the Rasch model) for
the first test (without blueprint) and the second test (with
blueprint) yielded the values 9.2 and 11.92, respectively
(Eigenvalue units). After removing the data contributing to
this factor and examining the residuals, the initial compar-
ison between the two groups revealed values of 2.66 and
2.21, in the first contrast respectively. Therefore, since the
observed values in the first contrast are less than 3, it may

Table 3 Fit of items to the Rasch model (Fit statistics) for Test one (without blueprint).

Entry Total Item

Difficulty

Model Infit OUTFIT PT-MEASURE Exact match

Item Score S.E. MNSQ ZSTD MNSQ ZSTD Corr. EXOP. OBS. % Exp.%

Q21 67 −1.05 0.48 0.92 −0.10 2.19* 1. 57 A .23 0.23 92.9 92.9

Q19 63 −0.34 0.38 1.05 .26 1.88* 1. 70 8 .20 0.3 87.1 87.2

Q2 27 2.68 0.28 1.29 2.36 1.66* 3.13 C .20 0.47 64.3 71.5

Q23 64 −0.49 0.4 1.1 0.44 1.38* 0.86 D .17 0.28 88.6 88.6

Q7 33 2.23 0.27 1.16 1.48 1.21 1.44 E .34 0.47 65.7 69.5

Q20 61 −0.07 0.35 1.08 0.46 1.19 0.58 F .24 0.32 82.9 84.3

Q13 42 1.59 0.27 1.08 0.72 1.04 0.33 G .40 0.45 65.7 69.9

Q14 62 −0.2 0.36 1.08 0.40 1.05 0.27 H .26 0.31 85.7 85. 7

Q4 63 −. 34 0.38 1.06 0.32 1.02 .20 I .25 0.3 87.1 87.2

O18 66 −0.84 0.44 1.04 0.22 0.84 −0.08 J .24 0.25 91.4 91.4

Q8 51 0.91 0.29 1.01 0.14 0.96 −0.1 K .41 0.41 74.3 74.2

Q12 51 0.91 0.29 1.01 0.12 .9S −0.15 L .41 0.41 77.1 74.2

Q16 69 −1.62 0.6 1.01 0.19 0.86 0.14 M .18 0.18 95. 7 95. 7

Q11 67 −1.05 0.48 1 0.12 0.92 0.11 1 .24 0.23 92.9 92.9

Q25 67 −1.27 0.53 0.99 0.12 0.63* −0.3 k .25 0.21 94.2 94.2

Q22 60 0.05 0.34 0.97 −0.09 0.85 −0.3 j .38 0.34 81.4 83

Q5 70 −2.06 0.73 0.95 0.14 0.49* −0.22 1 .22 0.15 97.1 97.1

Q6 53 0.74 0.29 0.93 −0.50 0.74 −1.13 h .48 0.4 75.7 75.7

O3 59 0.08 0.34 0.91 −0.43 0.7 −0.8 g .43 0.34 84.1 82.8

Q10 55 0.56 0.3 0.91 −0.55 0.88 −0.39 f .45 0.38 80 77.6

Q9 50 0.99 0.28 0.9 −0.78 −0.78 −1.09 e .51 0.42 77.1 73.5

Q24 61 −0.07 0.35 0.89 −0.50 0.82 − .35 d .41 0.32 85.7 84.3

Q1 70 −2.06 0.73 0.88 0.02 0.25* −0.67 C .30 0.15 97.1 97.1

O15 55 0.56 0.3 0.88 −0.78 0.81 −0.67 b .48 0.38 77.1 77.6

Q17 59 0.16 0.33 0.78 −1.25 0.53* −1.56 a .54 0.35 84.3 81.8

Mean 57.8 0 0.39 0.99 0.10 0.99 0.1 83.4 83.6

P.SD 10.7 1.18 0.13 0.11 0.71 0.42 1.01 9.4 8.6

The infit and outfit mean square statistics (MNSQ) are displayed. According to the Rasch model, values between 0.7 and 1.3 fall within the
acceptable range for fitting. The infit MNSQ values show that all items fall within the acceptable range, with a mean value of 0.99 ± 0.11

SD. The average outfit MNSQ was 0.99 ± 0.42. * indicate items outside the fitting range to the Rasch model. SE = Standard error; ZSTD =

Value of t-test (values between −2.00 and +2.00 are within acceptable range to the Rasch model); PT-measure = Point-measure

correlations; Obs. = observed score; Exp. = Expected score.
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be concluded that items in this dimension did not support a
single underlying construct, and test unidimensionality was
supported in both groups. Linacre described this.20 By
revising these items in the first contrast for both tests,
non-meaningful differences were discovered in terms of
item content. This suggests that discrepancies in responses
to these test items may have been the result of chance.
Unidimensionality was supported in both knowledge-based
assessments.

Local item independence was also determined by mea-
suring the Pearson correlation of linearized Rasch residuals.
Fan and Bond stated that test unidimensionality is closely
connected with item dependency and could be determined
by analyzing the Rasch model residuals.26

In this study, it was determined that the inter-item
correlations in the second test (with blueprint) were all less
than 0.35, however in the first test (without blueprint),
items 16 and 18 have a 0.53 intercorrelation, indicating that
responses to one item depend on responses to the other.
Accordingly, it may be inferred that all questions on the
second test were locally independent and that discrepancies
in item responses were due to differences in the trait being
measured. This is consistent with Cohen and Sweedik's
findings.27 However, in the first test, two items exhibited

significant intercorrelation scores, indicating that the
chance of responding to one item depends on the other.
Therefore, both questions were necessary for the exam. As
stated by Aryadost and his colleagues, local independence
among test items might contribute to bias in assessing
person and item parameters.28 Consequently, blueprinting
improved the degree of item independence in the test.

Using Rasch analysis, both item and student reliability
measures were determined. As there is a relationship
between the student's ability and the item's difficulty,
numerous values could be reported.

The item reliability coefficients for the first and second
tests were 0.87 and 0.90, indicating that 87% and 90% of the
variation among test measures is a reliable variance and that
only 13% and 10% of the variance in test one and test two is
attributed to measurement errors, respectively. The item
separation values for tests one and two were 2.63 and 3.01,
respectively, showing three distinct degrees of difficulty
among the second test's items (with a blueprint). Conse-
quently, it may be inferred that a well-designed test
blueprint produced test items with a greater degree of
difficulty level variation. These findings align with those of
Gill and Sen, who found that a test blueprint facilitates the
alignment of assessment and learning objectives. It assists in

Table 4 Fit of items to the Rasch model (Fit statistics) for Test two (with blueprint).

Entry Total Difficulty Model Infit OUTFIT PT-MEASURE Exact match

Item Score S.E. MNSQ ZSTD MNSQ ZSTD Corr. EXP. OBS. % Exp.%

Q16 61 −0.1 0.34 1 0.06 1.83* 1.99 A .23 0.29 84.7 84.81

Q1 63 −0.36 0.37 1.19 0.81 1.66* 1.47 B .01 0.26 87.5 87.51

Q19 60 0.01 0.33 1.21 1.07 1.52* 1.45 C .04 0.3 83.3 83.41

Q15 35 1.94 0.26 1.31 3.01 1.39* 3.02 D .08 0.4 55.6 67.31

Q21 65 −0.66 0.41 1.09 0.4 1.22 0.58 E .13 0.24 90.3 90.31

Q22 11 3.87 0.34 1.08 0.45 1.13 0.47 F .2 0.38 86.1 85.01

Q4 71 −2.76 1.01 1.03 0.35 1.12 0.53 G .03 0.09 98.6 98.61

Q6 49 0.98 0.27 1.02 0.24 0.99 0.03 H .36 0.37 72.2 71.71

Q12 70 −2.04 0.73 1.02 0.25 0.81 0.12 I.12 0.13 97.2 97.21

Q13 71 −2.76 1.01 1.02 0.34 0.85 0.31 J .07 0.09 98.6 98.61

Q18 33 2.08 0.26 1.01 0.12 0.98 −0.09 K .40 0.4 61.1 67.61

Q3 32 2.14 0.26 0.95 −0.53 1 0.02 L .44 0.4 76.4 67.81

Q5 63 −0.36 0.37 1 0.9 0.78 −0.45 M .30 0.26 87.5 87.51

Q10 71 −2.76 1.01 1 0.32 0.51 −0.03 I.14 0.09 98.6 98.61

Q7 66 −0.84 0.44 0.97 0.81 0.99 0.17 k .25 0.22 91.7 91.71

Q9 57 0.32 0.31 0.98 −0.05 0.82 −0.58 j .37 0.32 80.6 79.31

Q23 49 0.98 0.27 0.97 −0.25 0.92 −0.4 i .41 0.37 77.8 71.71

Q2 59 0.12 0.32 0.96 −0.15 0.8 −0.58 h .37 0.31 81.9 82.01

Q8 59 0.12 0.32 0.95 −0.19 0.76 −0.71 g .39 0.31 81.9 82.01

Q11 67 −1.05 0.48 0.94 −0.05 0.79 0.18 f .28 0.2 93.1 93.11

Q26 68 −1.3 0.53 0.93 −0.02 0.49 −0.69 e .31 0.18 94.4 94.51

Q25 58 0.22 0.32 0.88 −0.65 0.81 −0.6 d .44 0.32 81.9 80.71

Q14 54 0.59 0.29 0.86 −0.98 0.76 −1.02 c.5 0.35 81.9 75.91

Q24 47 1.13 0.27 0.86 −1.29 0.84 −0.97 b .52 0.38 79.2 70.61

Q17 55 0.5 0.3 0.83 −1.2 0.68* −1.4 a.53 0.34 81.9 77

Mean 55.8 72 0.43 1 0.09 0.98 0.1 84.2 83.41

P. SD. 14.5 0 0.24 0.11 0.81 0.33 0.991 10.5 10.1

The infit and outfit mean square statistics (MNSQ) are displayed. According to the Rasch model, values between 0.7 and 1.3 fall within the
acceptable range for fitting. The infit MNSQ values show that all items fall within the acceptable range, with a mean value of 1.00 ± 0.11

SD. The average outfit MNSQ was 0.98 ± 0.33. * indicate items outside the fitting range to the Rasch model. SE = Standard error; ZSTD =

Value of t-test (values between −2 and +2 are within acceptable range to the Rasch model); PT-measure = Point-measure correlations;

Obs. = observed score; Exp. = Expected score.
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overcoming the primary threats of a test, which include test
designs with insufficiently sampled content or structures
with irrelevant and biased content, which may be dependent
on the bias of the paper's setter and the affinity for specific
themes and topics.29

Person separation indices for the first and second tests
were 1.17 and 0.98, respectively, showing that neither test
was sensitive enough to distinguish between two groups of
students with different levels of performance (abilities
relative to test items). This was noted by Bond and Fox, who
said that the greater the PSI score (>2), the more distinct the
student cohort may be.18 Our findings may have been
attributable to the small number of test items (25 items) and
the fact that each question assessed the same construct
(knowledge-based assessments). Similarly, it was observed
that in certain instances, low-ability test takers prefer to
randomly guess the correct response, and this data suggests

that items with a high ability to differentiate may not function
well for the subgroup that prefers to reply to questions by
guessing. This is consistent with the findings of Aryadoust
et al., who discovered that students who answer questions by
guessing might skew test results because they tend to take
greater risks when confronted with a challenge or difficulty.28

For each test item, the infit and outfit mean square
indices (MNSQ) were calculated. They evaluate the fit of the
data to the Rasch model, i.e., how student ability and item
difficulty tend to assess the same construct.17 According to
Linacre, the infit MNSQ is an inlier sensitive index that
measures unexpected responses to test items that are close
to the student's average ability level, while the outfit
statistics is an outlier sensitive index that measures the
unusual observed data of students' responses that are far
from the student's average ability level (too easy and too
difficult items).17

Fig. 1 Item characteristic curve. A and C: entire test. B and D: for test one and two's easiest and difficult items. Test one's most

difficult and easiest questions are 2 and 5, with 2.68 and −2.06 logits, respectively (B component of the fig.). Question 22 and 4 are

the difficult and easiest items in test two (D component of the fig.) with 3.87 and −2.76 logits, respectively. As seen by the curves,

test two has a wider range of item difficulty measures.

H. Abdellatif

10



It was found that in test one (without blueprint), the infit
MNSQ results indicate that all items fall within the
acceptable range, with a mean value of 0.99 logits ± 0.11
standard deviations (SD). The outfit MNSQ was 0.99 ± 0.42
logits, with items 21, 19, 2, 23, 25, 5, 1, and 17 above the
Rasch model's fitting limit (Table 3). However, in test two,
the infit MNSQ values indicate that all items fall within the
acceptable range (0.7-1.3), with a mean value of 1± 0.11 SD.

The average outfit MNSQ was 0.98 ± 0.33, with items 16, 1,
19, 15 and 17 not fitting the Rasch model.

Based on these results, it can be concluded that a well-
designed test blueprint improved the Rasch model fit of items
in the second test. Only five items go outside the outfit range,
with values between 0.68 and 1.83 (corresponding to a 47% and
45% larger and smaller divergence in the observed score,
respectively, than predicted by the model) (degree of noise).

Fig. 2 Test information function (TIF), (A and B for test one and two), and Item-person map (C and D for test one and two). In A and

B, as inferred from both curves, students with low and high abilities have low levels of effective test measurement values, whilst

students with average abilities (zero logits) demonstrate the highest levels of effective test measurement values. Test two has a

slightly broader curve as well as a broader range of effective measurements across test takers. Whereas, In C and D, the abilities of

the students are presented in relation to the item difficulty for tests one and two. In both tests, students' abilities (measured in logits)

are greater than item difficulties, with a wider range of abilities among group 2 test-takers (1.88 ± 0.92 on average, with a maximum

of 4.27). Each X stands for two students. The values on the left show students' abilities and item difficulty in logits (from −3 to 5).

M represents the mean; S and T are one and two standard deviations (SD) distant from the mean, respectively.
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In addition, as indicated by Wright and Linacre, this noise raises
the measurement standard error.22

In the first test (without a blueprint), eight items were
found outside the expected outfit range, with values ranging
from 2.19 to 0.53 (representing a 54% and 88% deviation in
the observed score, respectively, from the model's predic-
tion). Consequently, these items have a higher level of
noise. Hence, the test reveals a greater number of
measurement errors. These items beyond the fitting range
must be explored since they did not support the test's
underlying construct. These items show an unexpected
variation in test scores that may be attributable to guessing.
This is consistent with Wright and Linacre's assertion that
test items tend to overfit the Rasch model when many high-
ability test-takers and few low-ability test-takers likely to
answer the question correctly, and underfit the Rasch model
when the opposite happens.22

A blueprint provided improved alignment and develop-
ment of a test and helped exam content validation by
ensuring that test scores were relevant to the topic of
interest. This was confirmed by the improved fit of test two
items to the Rasch model with limited noise and measure-
ment errors compared to test one (without blueprinting).
Examining the item characteristic curve allowed for a
comparison of the test's easy and difficult questions
(Fig. 1). The ICC displays the probability that a student will
answer a question correctly as a function of item difficulty
and student ability.41

The range of item difficulty was broader on test two
(from −2.76 to 3.87) than on test one (from −2.06 to 2.68),
with averages of 0.00 ± 1.59 and 0.00 ± 1.18 logits for tests
two and one, respectively. Broader range of item difficulty
measures in test two (with blueprinting) shows a better
construction of test items with a more reliable degree of
variance among test scores.

Based on the curves. It may be concluded that students
with average ability (0.00 logits) on test two are more likely
to answer questions with the same degree of difficulty on
test one. Therefore, blueprinting improves the overall
performance of students on tests. The probabilities deduced
from the ICC can be employed in future standard-setting
studies to enhance the accuracy and reliability of pass marks
and cut-off grades. This is consistent with what Tavakol and
Dennick stated in their work titled "Psychometric evaluation
of a knowledge-based examination using Rasch analysis: an
illustrative guide".7

Fig. 2 (A and B) displays the test information function
(sum of effective test measurement values) for both tests
one and two. These graphs demonstrate the relationship
between the abilities of students (measured in logits) and
the sum of the test information measures (index of test
reliability and effective variance among test scores). These
fig.s indicate that both exams have lower levels of reliability
among students with high and low levels of ability. In
addition, it may be inferred that curve two (representing
test two with blueprint) shows a broader range of effective
measurements among test takers. Thus, test two demon-
strates better reliability and effective test measures when
evaluating students with varying levels of ability than test
one (without blueprint).

Finally, the item person map was displayed in Fig. 2 (C
and D). It gives a visual and quantitative representation of

the relationship between item difficulty and student
ability.7 It presents a comparison between the student's
ability and the item's difficulty, indicating whether the item
is easier or more difficult than the student's ability.
According to Tavakol and Dennick, a perfect test that
conforms to the Rasch model is one in which both item
difficulty and student ability are centered around an
average of 0.00 logits.7

In this study, it was found that the range of item difficulty
on test two is from −2.76 to 3.87 logits, with a mean of 0.00±
1.59, whereas on test one, the range was from −2.06 to 2.68
logits, with a mean of 0.00 ±1.18. Thus, it may be concluded
that the second test's standard deviation and item difficulty
spread were greater than the first. This distribution allows
the assessment of students with differing levels of ability.

For the first test, student ability was measured on a scale
ranging from −0.12 to 5.11 logits (with a mean of 2.04 ±
1.15). In the second test (with blueprint), students’ abilities
range from 0.12 to 4.27 logits with a mean of 1.88± 0.91. It
may be deduced that test one is less difficult than test two.

According to the map, the majority of test one items are
placed between −1.18 and 1.18 logits (SD), whereas test two
items are located between −1.59 and 1.59 logits. The
majority of test one and test two ability scores fell between
the ranges of −1.15 to 1.15 and −0.91 to 0.91 logits,
respectively. Consequently, the standard deviation and
distribution of item difficulty are larger than the standard
deviation and distribution of student ability for both tests,
with the difference being more evident on test two. As a
result, it can be concluded that the distribution of test items
is not as optimal as it should be, given that a large proportion
of test items are on the easier end of the scale (1 and 2 ± SD
from the mean), with the number of easy items being more
frequent in test one (without blueprint).

Further, compared to test two, a greater number of gaps
were seen in the item difficulty hierarchy in test one (fig. 2).
As a result, there are inadequate items to evaluate the
various abilities of test-takers, especially at one standard
deviation from the mean, where the majority of test-takers
are placed. In context of this, creating a test with a carefully
thought-out test blueprint allowed for a more constructive
alignment of the test with the course learning outcomes,
increased the test's construct and content validity,30 and
therefore allowed for a better fit of the test items to the
Rasch model when considering the item difficulty and
student ability levels.

A number of limitations should be addressed while
reporting this work. First, every assessment has an intrinsic
measurement error, which may influence its outcomes. Due
to the rigorous entry criteria, medical students are inher-
ently strong achievers; consequently, they may compensate
for any intervention through their own motivations, charac-
ter traits, and academic abilities. Third, the inherent or
latent variables such as academic abilities, gender, and IQ
(Intelligence quotient) level that might influence test
performance were not measured, which could be a disad-
vantage. Fourth, the number of test items is relatively low;
this was determined by the number of topics and learning
outcomes; a test blueprint was created based on this;
learning outcomes and the percentage of each learning
domain (Knowledge, understanding, and application) were
measured; and the test was created accordingly. In addition,
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in the analysis based on the IRT and Rasch model, test items
are evaluated individually and student answers to each item
are assessed. This varies from the traditional analysis based
on the CTT, in which the overall response to the entire test is
measured, with the number of test items dictating the
measurement. Numerous approaches for blueprinting are
utilized (either content-oriented or process-oriented), and
in this study, the content-by-process matrix was employed
to incorporate these two ways into a single framework. A
different way of blueprinting may affect the results. Lastly,
notwithstanding the relevance of our findings, the applica-
tion of blueprinting and the adoption of the Rasch model for
analysis need to be applied to a larger number of courses and
other medical institutions in order to generalize the results.

With the development of the new competency-based
curriculum, assessment has become an integral aspect of
medical education. Thus, it goes much beyond only testing
the students' knowledge to the extent that it also enhances
their professionalism and competence. When developing a
test, it is crucial to ensure that the method and type of
assessment are appropriate for the entire curriculum.
Alignment between the test's content and the learning
curriculum is a crucial part of test validity. Currently, a test
blueprint is an integral part of assessment, significantly
enhancing the content and construct validity of a test. It
specifies what to assess, the learning domain, and the
appropriate test modality. In addition to its role in test
content validation, it serves as a tool for enhancing teaching
effectiveness and promotes curriculum mapping.

The Rasch model is an effective analysis tool that goes
beyond classical test theory to determine the correlation
between item difficulty and student ability. A psychometri-
cally sound test that fits the Rasch model should be reliable,
unidimensional, differentiating, have a high degree of item
independence, and have item measures that fit the Rasch
model well. In the current study, the adoption of a test
blueprint enhanced the accuracy of test scores, the test's
ability to differentiate, and the degree of local item
independence. Creating a test with a high degree of
correlation between the students' abilities and the level of
difficulty of the test items using a test blueprint assists in
minimizing the extent of measurement errors. Different
blueprint design matrices and their usage in various tests, as
well as the employment of the Rasch model for psychometric
analysis in tests that do not merely assess the knowledge
domain, require additional investigation.
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