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ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is considered to be a manifestation of liver metabolic damage and
is related to insulin resistance and genetic susceptibility. Inflammation mediated by Kupffer cells (KCs) is of
critical importance to the development of NAFLD. The primary role of KCs in NAFLD is considered to be the

perturbation of the C-Jun N-terminal kinase (JNK) and nuclear factor-kappa B (NF- B) pathways as a result
of lipopolysaccharide (LPS) recognition by Toll-like receptor 4 (TLR4). Simultaneously, the activation of NF-

B, as mediated by oxidative and endoplasmic reticulum (ER) stress and free fatty acid (FFA) or free cho-
lesterol (FC) crystal formation, heavily relies on NF- B regulatory factors and TLR4. Additionally, the
imbalance of certain pro-inflammatory cytokines and chemokines released by innate immunity is deemed
to promote the steatosis of hepatocytes. In conclusion, this review indicates that the inflammatory and
oxidative stress of KCs play a significant role in the development of NAFLD.
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CONCISE REVIEW

INTRODUCTION

Non-alcoholic fatty liver disease (NAFLD), a type of

metabolic liver damage that has affected Chinese

citizens for years, is related to insulin resistance

and genetic susceptibility.1 NAFLD includes nonal-

coholic fatty liver (NAFL) and nonalcoholic steato-

hepatitis (NASH) and is related to liver cirrhosis

and hepatocellular carcinoma (HCC) according to

its histological classification.2 The emergence of

steatohepatitis without hepatocellular injury is cate-

gorized as NAFL. Meanwhile, NASH is histological-

ly further defined as the emergence of inflammation

and steatohepatitis with injury or fibrosis of hepato-

cytes. The histological shift of NAFL-to-NASH is

primarily known as the “double hit” theory.3 The

“first hit” is characterized by multiple metabolic

syndromes and insulin resistance, which are caused

by free fatty acid (FFA) and lipid accumulation in

peripheral blood and hepatocytes. The “second hit”

refers to a series of innate immune responses in leu-

kocytes, such as Kupffer cells (KCs), that are caused

by the stimulation of lipotoxins and lipopolysaccha-

ride (LPS), ultimately leading to steatohepatitis,

fibrosis and other irreversible liver pathologies.4,5

KCs are the resident macrophages in liver tissue

that prevent harmful endotoxins present in the por-

tal vein from entering into the circulation. Inflam-

mation mediated by KCs is of critical importance in

the development of NAFLD. Using chemicals to de-

lete KCs has been demonstrated to alter the release

of pro-inflammatory cytokines and to alleviate hepa-

tocellular damage.6 Ono and colleagues have sug-

gested that the “second hit” plays a key role in the

NAFL-to-NASH transition.7 They have determined

that the phagocytic dysfunction of KCs can accelerate

inflammatory necrosis during hepatocyte fat accu-

mulation and that the ED2+ KCs play a greater role

in the pathological progression of NAFLD. The

ED2+ KCs, which are also known as alternatively

activated M2 KCs, show higher immunobiologic

activity than ED1+ KCs (classical M1 KCs) with
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close correlation to steatohepatitis severity. Recent

reports suggest that the regulation of the M1/M2

KCs balance in hepatocytes with steatohepatitis,

which results in apoptotic effects of M2 KCs, reverts

KCs toward their M1 KCs counterparts.8,9 However,

little is known about the intracellular signaling

pathways of KCs that are mediated by LPS, FFA

and ER stress, for example, and how they are in-

volved in NAFLD. This topic is the centerpiece of

this review.

THE EFFECT OF
KCS INDUCED BY LPS ON NAFLD

Enterogenous bacterial components such as LPS

play a key role in the pathogenesis of NAFLD, as

previously reported.10-12 Studies suggest that the

gut-liver axis is mainly induced by probiotics in

the pathogenesis of NAFLD.13 Conversely, the increase

in intestinal permeability as a result of a high-

glucose and high-fat diet leads to the accumulation

of enterogenous LPS, which irritates the innate

hepatic immune response.10,11 The binding of LPS

and the receptor complexes on the surface of KCs

activates pro-inflammatory cytokines that then recruit

T lymphocytes, B lymphocytes and other leuko-

cytes.12 The aggregation of immune cells in liver tis-

sue easily triggers steatohepatitis and inflammatory

necrosis in hepatocytes, followed by NASH progres-

sion.14 LPS is eliminated by KCs in the final

barrier preventing the spread of LPS from the por-

tal vein to peripheral circulation.10-11 Using a mouse

model of NAFLD, Imajo, et al. have demonstrated a

hyper-reaction to a small dose of LPS that is medi-

ated by the signal transducers and activators of tran-

scription 3 (STAT3) pathway induced by the leptin

pathway.15 The continuous activation of KCs by

LPS leads to the up-regulation of downstream

signaling molecules, such as tumor necrosis factor

 (TNF- ), which aggravates steatohepatitis and in-

flammatory necrosis in hepatocytes.

CD14, a component of membrane receptor

complexes, is essential for KCs to bind to LPS.

There are two reported types of CD14: mCD14,

which is anchored to the KC membrane via a glyco-

sylphosphatidylinositol tail and sCD14, a serum-sol-

uble form of the protein that lacks glycolipid tail

found in mCD14.16-19 Ogawa and colleagues have re-

cently reported that serum CD14 may be a potential

marker for necrotic liver inflammation in NAFLD

mice.20 Moreover, they also suggest that TNF-  is

increased by the activation of NF- B inhibition fac-

tor kinases (IKK) as a result of the binding of LPS

and CD14 on the membrane of KCs. Tonan, et al.

have demonstrated that CD14 expression correlates

with KCs phagocytic function in vitro.21 The phago-

cytic deficiency prevents KCs from removing LPS,

further promoting the generation of pro-inflammato-

ry cytokines. Fukada, et al. have found that the

LPS-mediated activation of KCs inhibits cell au-

tophagy, which might augment the sensitivity of

KCs to LPS in the model of NAFLD.22 Their report

suggests that the metabolic disorder of lipid and

LPS disrupts KCs in steatohepatitis; however, the

mechanism by which KCs become dysfunctional fol-

lowing attack by LPS and lipids remains unclear.

The identification of pathogen associated toll-like

receptors (TLRs) shows that they participate in the

activation of C-Jun N-terminal kinase (JNK) and

NF- B.23 TLR4 is highly expressed in the NASH

mouse model compared with other types of TLRs.23-24

TLR4 conducts the transmembrane signal as a com-

ponent of the membrane receptor complexes that

bind to LPS.23 Enterogenous endotoxins in NAFLD

mice promote the progress of steatohepatitis via the

myeloid differentiation molecular 88 (MYD88)-de-

pendent TLR4 signaling pathway.25 The binding of

LPS to TLR4 recruits MYD88 to bind interleukin

receptor associative kinases (IRAKs) and tumor

necrosis factor receptor associated factor 6 (TRAF-

6).26,27 Pro-inflammatory cytokines, such as TNF- ,

Interleukin-6 (IL-6) and IL10, are increased by the

activation of JNK/MAPK and IKK. The complex also

activates the MYD88-independent pathway, which is

mediated by the combined action of the Toll/IL-1 re-

ceptor, which is induced by interferon in response to

the IKK ligand binding. Furthermore, the activation

of interferon-  (IFN- ) mediated by the MYD88-inde-

pendent pathway, is involved in the inflammatory

response of NAFLD.28 Thus, the activation of KCs

generates pro-inflammatory cytokines such as TNF- ,

IL-1 , IL-2, IL-6, IL-10 and IFN- , which promote

the infiltration of neutrophils, natural killer cells

(NKCs), natural killer T cells and T cells, among

others.29,30 TNF- , which is released by KCs, accel-

erates the process of NAFLD, triggering monocyte

infiltration through the expression of interferon in-

ducible protein 10 (IP-10) and macrophage chemotactic

protein 1 (MCP-1).30 Ajamieh, et al. have reported that

the expression of adhesion molecules, cytokines, chem-

okines and thromboxane B2 (TXB2) is suppressed by

inhibiting the activation of NF- B through the de-

creased expression of TLR4.31 X-box binding protein 1

(XBP-1), which is TLR4-dependent, is activated by the

oxidative stress caused by the innate immune response

of KCs and strongly promotes the NALF to NASH
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progression.24 The receptor complexes of LPS are es-

sential in the initiation of the innate immune re-

sponse. Prolonged inflammation, as mediated by LPS

irritation, easily induces irreversible necrosis and fi-

brosis in hepatocytes (Figure 1).

Liver X receptor  (LXR ), a member of metabolic

nuclear receptors, plays a significant role in lipid me-

tabolism, especially in the regulation of cholesterol se-

cretion and metabolism.32 Recently, studies have

suggested that LXR  plays a protective role in

NAFLD and bridges fat metabolism with inflammato-

ry responses in the liver.33 LXR  exerts an anti-in-

flammatory effect through the NF- B pathway in KCs.

TLR4, IL-1  and TNF , which are activated by NF- B

signaling pathways, are suppressed by the activation

of LXR .34,35 The down-regulation of glutamate recep-

tors interacting with protein3 (GRIP3), interferon reg-

ulatory factor3 (IRF3) and IRAK4 on KCs reduces

hepatic injury in NAFLD mice.36 IL-1 , cyclooxygen-

ase 2 (COX-2), inducible nitric oxide synthase (iNOS),

matrix metalloprotease 9 (MMP-9) and others are in-

hibited by ligand-activated LXR .37 Xu, et al. consider

LXR /sterol regulatory element binding protein1-c

(SREBP1-c) to be the most significant point in the pro-

tective mechanism of LXR  in NAFLD.38 SREBP1-c is

up-regulated in the process of lipid synthesis and

increases the expression of LXR .39 SREBP1-c is highly

expressed in both adipose and liver tissue and is

known to be the key molecular signal in insulin resist-

ance.40 SREBP-1c is highly expressed in hepatocytes

with steatohepatitis to increase fatty acid synthesis

and to inhibit -oxidation by TNF .41-43 The target

genes of LXR  in the regulation of inflammation and

lipid metabolism are unclear. However, high levels of

oxygen oxysterol, the ligand of LXR  in the peripheral

circulation, may be important in insulin resistance.

THE INFLUENCE OF FFA AND
FC ASSEMBLED IN KCS

KCs are not increased in liver tissue bordering

steatohepatitis; however, fat-laden KCs or KCs with

a significant accumulation of intracellular toxic

lipids were found in a mouse model of NAFLD.44

TNF-  is highly expressed by the FFA-activated

NF- B pathway in fat-laden KCs.45 The immunolog-

ical competence of KCs is disrupted by the excess

lipid accumulation in liver tissue via the following

mechanisms. Leukocytes in the liver sinusoids rein-

force the inflammatory response of KCs in micro-

vascular vessels i.e., the liver innate immune

response.46 Lipids regulate inflammation and insu-

lin resistance by their interaction with receptors,

such as TLR4 and LXR , on either the inside or

outside of KCs.47 Excessive lipid accumulation in

the cellular plasma membrane changes the structure

of the lipid rafts and influences the aggregation and

function of cell membrane receptors. This accumula-

tion also affects the function of cholesterol-free plas-

ma membranes, such as mitochondria, resulting in

oxidative and endoplasmic reticulum (ER) stress.48

Abnormal lipid accumulation interferes with the

identification of KCs for hepatocytes with the fat

degeneration, which may be associated with the

dysfunctional phagocytosis of KCs.49

The binding of extracellular FFA by TLRs on

KCs activates the JNK and NF- B pathways. Adhe-

sion molecules and MCP-1 are up-regulated by acti-

Figure 1. The details regarding the mechanisms involved in KCs-mediated NAFLD development are in the text.
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vated NF- B, which recruits CD11b+ macrophages

and promotes lipid synthesis, thereby elevating the

transcription of activating protein 1 (AP-1) and pro-

inflammatory cytokine.45,50,51 Excessive FFA in KCs

impairs -oxidation and other functions of mito-

chondria.52 Alternatively, oxidative and ER stress

are provoked by the JNK and NF- B pathways, in-

ducing pro-inflammatory signals and insulin resist-

ance.51 Fat-laden KCs evolve into M2 KCs, which

enrich lymphocytes by LPS stimulation.44 In fact,

this phenotype of KCs is important during the early

stages of innate immunity in steatohepatitis (Figure 1).

The downstream molecular signals of active NF-

B are perturbed as a direct or indirect effect of FC

crystals on IKK.14 Accumulating FC has been prov-

en to be the lipotoxin in fatty liver that is the main

cause of insulin resistance.53-55 Interestingly,

Bieghs, et al. have insisted that the distribution of

cholesterol in vivo is under the control of CD36 and

macrophage scavenger receptors on KCs. These

receptors are closely related to the lysosome pathway.56

Goudriaan, et al. have discovered that liver insulin

resistance may be induced by CD36 deficiency but

that insulin sensitivity increases in the muscle of

CD36-/- mice.57 However, this mechanism could

stimulate the inflammatory response of NAFLD,

indicating that triglycerides may play an important

role in disease progression. However, current stud-

ies suggest that excessive triglycerides protect the

liver from NAFLD via the high expression of LXRa,

rather than injuring hepatocytes through inflamma-

tion or fibrosis.14,58

THE FUNCTION OF
OXIDATIVE STRESS IN KCS ON NAFLD

The excessive aggregation of FFA and FC in KCs

leads to steatohepatitis and the formation of fat-

laden KCs.44 Oxidative stress is induced by insufficient

FFA -oxidation or dysfunction resulting in the lipo-

toxicity of the mitochondria, which triggers the acti-

vation of the NF- B/JNK pathway, high mobility

group box 1 (HMGB-1)/TLRs, cytokines and chem-

okines.14,44,56,59 Our group has demonstrated that

LPS induces the relocation and release of HMGB1

by activating the NF- B signaling pathway.60

Further evidence suggests that the imbalance of

antioxidants and peroxide in fat-laden KCs leads to

membrane damage, DNA or protein synthesis in

hepatocytes and cytokine cascade dysregulation

eventually prompting the progression of hepatic fi-

brosis.61-63 Uncoupling protein 2 (UCP-2), which is

largely inhibited by KCs, is anchored in the mito-

chondrial inner membrane of hepatocytes and is in-

duced by FFA via PPAR- .64-66 In an ER laden with

excess FFA, ER stress is induced by an insufficiency

or dysfunction in the unfolded protein response

element (UPRE), which in turn activates the JNK/

NF- B/(C/EBP) pathway. Insulin resistance is initi-

ated by the activation of insulin receptor substrate

1(IRS-1) and IRS-2 via the JNK pathway.14,67 Bcl-2,

an apoptotic inhibitory factor, is inhibited by

C/EBP, which increases the viability of the pro-

apoptotic protein Bim.68 Apoptosis and fibrosis in

hepatocytes are hallmark pathological features of

NAFLD. However, the mechanism by which FFA

accumulation in the ER of KCs induces ER stress

is unclear, and there is insufficient evidence for a

relationship of metabolic syndrome with NAFLD

(Figure 1).

THE OTHER FUNCTIONS
OF KCS ON NAFLD

During steatohepatitis, KCs highly express mem-

brane receptors and generate excessive levels of

cytokines, chemokines, arachidonic acid, proteolytic

enzymes, peroxide and nitric oxide.69 The recruit-

ment of lymphocytes, leukocytes and macrophages

during steatosis increases cytotoxicity and the in-

nate immune response, thereby promoting

NAFLD.14 IL-1 and IL-18 are produced by KCs

recruiting T lymphocytes and natural killer cells to

the liver, while INF-  kills the steatotic hepatocytes

and regulates active T cells responses.70 However,

the subset of cells and the specific pathological effect

of T cells on the progression of NAFLD remain

unknown. Tang, et al. have demonstrated that the

number of M2 KCs increases in mice fed a high-fat

diet, secreting TNF-  to activate NKCs that hepato-

cytes.71 Neutrophils have been reported to cause

hepatic necroinflammation in the NAFLD mouse

model, but this mechanism remains unclear.72

In conclusion, the mechanisms involved in KCs-

mediated NAFLD development are as follows: KCs

are activated by the binding of LPS or FFA to TLRs

and release cytokines and chemokines via the NF- B

signaling pathway. The activation of the NF- B sign-

aling pathway is also directly induced by oxidative or

ER stress when LPS or FFA binds to TLRs. Several

pro-inflammatory cytokines, such as TNF- , IL-1 ,

IL-6, C-C chemokine receptors 2 (CCR-2), macro-

phage inflammatory protein 1 (MIP-1), COX-2, MCP-

1 and intercellular adhesion molecule/vascular

adhesion molecule (ICAM/VCAM), are produced by

the activated NF- B pathway. NKCs, natural killer T
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cells and neutrophils are assembled by the aforemen-

tioned pro-inflammatory cytokines and infiltrate the

live tissue, resulting in an imbalance of downstream

signaling molecules. These pro-inflammatory cy-

tokines, particularly TNF- , are released by KCs and

lead to cytolysis, dead hepatocytes and inflammatory

necrosis, eventually resulting in insulin resistance

and liver fibrosis. Furthermore, TNF-  antibodies

that target KCs are proposed to be an effective treat-

ment for severe NAFLD patients in the near future.30

Meanwhile, pentoxifylline, which suppresses TNF-

synthesis, attenuates free radical mediated excessive

lipid oxidation in NASH patients.73 Despite small

scale experiments in humans that have indicated that

pentoxifylline may be a valid NAFLD therapy, em-

ploying this drug in clinical practice has yet reveal

the “smoking gun”.74,75

ABBREVIATIONS

� AP-1: activating protein 1.

� CCR-2: C-C chemokine receptors 2.

� COX-2: cyclooxygenase 2.

� ER: endoplasmic reticulum.

� FC: free cholesterol.

� FFA: free fatty acid.

� GRIP3: glutamate receptors interacting with

protein3.

� HMGB-1: high mobility group box1.

� HCC: hepatocellular carcinoma.

� ICAM/VCAM: intercellular adhesion molecule/

vascular adhesion molecule.

� IFN: interferon.

� IKK: NF- B inhibition factors kinase.

� IL: interleukin.

� IP-10: inducible protein.

� IRAKs: interleukin receptor associative kinases.

� IRF3: interferon regulatory factor3.

� IRS-1: insulin receptor substrate 1.

� JNK: C-Jun N-terminal kinase.

� KCs: Kuffer cells.

� LPS: lipopolysaccharide.

� LXR : liver X receptor a.

� MCP-1: macrophage chemotactic protein 1.

� MIP-1: Macrophage Inflammatory Protein 1.

� MYD88: myeloid differentiation molecular 88.

� NAFL: nonalcoholic fatty liver.

� NAFLD: nonalcoholic fatty liver disease.

� NASH: nonalcoholic steatohepatitis.

� NF- B: nuclear factor-kappa B.

� NKCs: natural killer cells.

� SREBP1-c: sterol regulatory element binding

protein1-c.

� TLRs: Toll-like receptors.

� TNF- : tumor necrosis factor a.

� TRAF-6: tumor necrosis factor receptor associ-

ated factors 6.

� TXB2: thromboxane B2.

� XBP-1: X-box binding protein1.

� UCP-2: Uncoupling protein 2.

� UPRE: unfolded protein response element.
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