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Abstract

Oxidative stress (OS) is a biological entity quoted as re-
sponsible for several pathologies including diabetes. Di-
abetes mellitus (DM) has been also associated to human
cirrhosis. The present work was designed to study the
occurrence of OS as well as morphologic alterations in
rat livers following induction of DM. Two groups of
rats were used: Control and Diabetic. DM was induced
in the second group by streptozotocin (STZ) in a single
dose of 60 mg/kg, injected i.p. The occurrence of OS
was determined in liver homogenates by measuring the
hydroperoxide-initiated chemiluminescence and the ac-
tivity of antioxidant enzymes (superoxide dismutase,
catalase and glutathione peroxidase). Liver sinusoids
were morphometrically analyzed. In conclusion, livers
from the diabetic group did not show evidence of the
occurrence of OS, as it would be expected, but dilation
of hepatic sinusoids was documented and it was signifi-
cantly different from control group.

Key words: Diabetes, liver, chemiluminescence, free
radicals, sinusoids.

Introduction

Several experimental models of type 1 and type 2 diabe-

tes mellitus (DM) are available in rats.1). Streptozotocin
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(STZ) is a frequently used drug that exerts a diabetogenic

effect through a specific damage of the pancreatic beta

cells, mimicking type 1 DM. It also induces systemic mi-

crovascular alterations, as observed in retina and kidney.2,3

The liver constitutes an important parenchyma whose

functions have been found altered in patients with DM.4

Oxidative stress (OS) can be associated to an increased

rate of reactive oxygen species (ROS) generation, a de-

crease of antioxidant defences or a combination of both.

ROS-mediated alterations include damage to cells, tissues

or organs and are proposed as a major factor in the mech-

anism of several diseases including atherosclerosis,5

DM6,7 and chronic alcoholic intoxication.

An increased production of oxygen-derived free radi-

cals as well as a decrease in the activity of free radical

scavenger systems have been reported in DM.8 It has also

been proposed that an increase in OS could contribute to

tissue damage in DM.9 Moreover, OS is an important fac-

tor in the etiology and pathogenesis of DM.10 Hepatic glu-

tathione levels were found decreased in STZ-diabetic

rats.11 Recently, lipid peroxide levels were found in-

creased and superoxide dismutase activity decreased in

liver homogenates of STZ-diabetic rats12 and the levels of

the antioxidant enzymes catalase, glutathione peroxidase

and superoxide dismutase are diminished in liver of ex-

perimental diabetic rats.13

The aim of the present work was to study the occur-

rence of OS and morphological alterations in rat livers

following induction of chronic STZ DM.

Methods

Animals

Wistar male rats weighing 240-270 g were used. All

animals were housed individually in an environmentally

controlled room and allowed free access to food and wa-

ter. This experiment was performed according to the

Guidelines for Animal Experiment of the School of Phar-

macy and Biochemistry, University of Bs. As.

Experimental model

The animals were divided at random into 2 groups

(n=5):
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� Group I, control.

� Group II, diabetic

Experimental diabetes

Experimental diabetes was induced in rats by the ad-

ministration of a single injection of STZ (60 mg/ kg; ip).

Before the assays were performed, rats of Group II were

maintained during 3 months, recording body weight and

glycemia weekly.

Biochemical parameters

Blood samples were obtained before sacrifice and

processed for determination of glycemia and tissue

damage markers. Levels of glucose, aspartate ami-

notransferase (AST) and alanine aminotransferase

(ALT) activities were measured in serum samples us-

ing conventional laboratory kits. Glycemia values are

given in mg/dL of blood and the enzyme activities in

U/L of serum.

Tissue homogenates

Liver samples processed for the determination of hy-

droperoxide-initiated chemiluminescence (0.5-1.0 g of

wet weight) were homogenized in 120 mM KCI, 30 mM

phosphate buffer (pH 7.4) at 0-4 ºC. The suspension was

centrifuged at 600 x g for 10 min at 0-4 ºC to remove nu-

clei and cell debris. The pellet was discarded and the su-

pernatant was used as ‘homogenate’ (MM3)14 and for the

measure of antioxidant enzyme activities.

Hydroperoxide-initiated chemiluminescence

Hydroperoxide-initiated chemiluminescence of rat ho-

mogenates was measured in a liquid scintillation counter.

Homogenates were placed in 25 mm diameter and 50 mm

height low potassium glass vials. Reaction medium con-

tained 120 mM KCI, 30 mM phosphate buffer (pH adjust-

ed to 7.5). Protein content was adjusted at 1.0 mg/mL of

protein homogenate. Chemiluminescence measurements

were made after the addition of 3 mM tert-butyl hydrop-

eroxide to the reaction medium.15 Measurements were

carried out at 30 ºC. Results are expressed as counts per

minute (cpm)/mg of protein.

Superoxide dismutase

Superoxide dismutase activity was determined spec-

trophotometrically in plasma samples by measuring the

inhibition of the rate of autocatalytic adrenochrome for-

mation at 480 nm in a reaction medium containing 1 mM

epinephrine and 50 mM glycine - buffer (pH adjusted to

10.2 with NaOH 1M). The enzymatic activity is ex-

pressed as SOD units (U) per mg of protein. One SOD

unit is defined as the amount of enzyme that inhibits the

rate of adenochrome formation in 50%.16

Catalase

Catalase activity was measured in the homogenates treat-

ed with Triton X-100 by following the decrease of absorp-

tion at 240 nm. The reaction medium consisted of 50 mM

phosphate buffer (pH adjusted to 7.2) and 10 mM H
2
0

2
. The

results are expressed as pmol catalase/ mg of protein.17

Glutathione peroxidase

Glutathione peroxidase activity was measured in the ho-

mogenates by following NADPH oxidation at 340 nm as

described by Flohé and Gunzler.18 The reaction medium

consisted of 30 mM phosphate buffer (pH adjusted to 7.0),

0.17 mM GSH, 0.2 U/ mL glutathione reductase and 0.5

mM tert-butyl hydroperoxide. The glutathione peroxidase

activity is expressed as mU/mg of protein. One unit corre-

sponds to 1 umol NADPH per min per mg of protein.

Protein determination

Protein concentration in homogenates was measured

by the method of Lowry et al19 using bovine serum albu-

min as standard.

Microscopy and image analysis

After sacrifice, livers were removed, weighed and

fixed in buffered formalin, included in Paraplast and

stained with hematoxilin-eosin, PAS and Masson´s

trichromic.

The hepatic sinusoidal area was measured by an auto-

matic computerized semiquantitative method using the

Scion Image Beta 0.4 software, coupled to an optical mi-

croscope equipped with a VCC video camera. Results

were expressed as the inverse log of intensity per sinusoi-

dal area (ILGV/area). These soft images are properly

standardized for background lighting ILGV/area results

proportional to the unweighted average optical density,

which is then used to determine optical density and sinu-

soidal area. At least 9 sections per rat were analysed at the

level of the 3 zones of the liver lobular histology.20 Select-

ed areas for quantification were measured as pixels per

area (square inches). Standard referenced area utilized

was 8.33 square inches.21

For High resolution Optic Microscopy (HROM) tissue was

fixed in 3% glutaraldehyde buffered with sodium cacodylate,

embedded in epoxy and stained with toluidine blue.

Statistical analysis

The results are expressed as the mean ± standard error

of the mean (SEM). Each value represents one animal,
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data were statistically analyzed by factorial analysis of

variance (ANOVA) followed by the Neumann-Keuls test

for comparison of means. Differences were considered

significant at p <0.05 in the bilateral situation.

Results

The general conditions of the animals were assessed

by the evaluation of clinical parameters. As shown in Fig-

ure 1A, fasting glycemia values in the diabetic animals

were significantly higher when compared to controls. Se-

rum levels of tissue damage marker enzymes AST (Fig-
ure 1B) and ALT (Figure 1C) were significantly in-

creased in the diabetic rats as compared to the controls.

No change was found for serum creatinine levels (data

not shown).

The presence of oxidative damage can be evaluated by

the determination of tert-butyl hydroperoxide-initiated

chemiluminescence in liver homogenates (Figure 2). Hy-

droperoxide-initiated chemiluminescence showed no

modifications in diabetic rats.

The antioxidant system in diabetic rats liver homoge-

nates showed an increased SOD activity as compared to

the control (3.4 ± 0.2 USOD/mg prot, Figure 3A). When

catalase activity (CA) in liver homogenates was mea-

sured, it was found to be significantly decreased in dia-

betics as compared to the controls (Figure 3B). Also glu-

tathione peroxidase activity in diabetic liver homogenates

decreased significantly (p< 0.001) when compared to

controls (42 ± 2 mU/mg prot.). Enzyme activity de-

creased 38 % in the diabetic liver, as shown in Figure 3C.

As can be seen in Table I, significant differences were

found in the sinusoidal area of diabetic animals when

compared with controls. These results, recorded on a

frame work area of 8.33 inches,22,23 show that sinusoidal

area determined at three zones expressed the same phe-

nomena (no significant differences were registered in the

different zones).

Light microscopy showed normal features in group I

(Figure 4), while group II showed sinusoidal dilation in

the pericentral vein zone as the major changes (Figure 5).

Discussion

Liver was selected as a target for oxidative stress eval-

uation because its important metabolic functions and role

in DM. The occurrence of OS was evaluated by measure-

ment of tert-butyl hydroperoxide-initiated chemilumines-

cence and the antioxidant enzymes activities.

The determination of tert-butyl hydroperoxide initiat-

ed chemiluminescence is a sensitive assay that has been

applied to detect OS associated to experimental patholog-

ical situations such as ethanol treatment in rats,24 barbital

treatment in mice,25 tumor-bearing in mice,26 and adria-

mycin cardiotoxicity in rats, mice and rabbits.27,28 The ra-

tionale of the assay is that two samples of tissue with sim-

ilar characteristics will yield higher or lower chemilumi-

nescence depending on the levels of endogenous antioxi-

dants. A lower level of antioxidants as a consequence of a

previous situation of oxidative stress will correspond to a

higher chemiluminescence and this will indicate the oc-

currence of oxidative stress.

Tert-butyl hydroperoxide-initiated chemiluminescence,

recorded in the livers of diabetic rats showed the same val-

ues observed in controls. These results are not in accor-

dance with other authors that stated that OS was present

as a contributory factor to diabetic pathology.29 It must be

Figure 1. Biochemical parameters. Glycemia, as mg/dL of blood (A),

aspartate aminotransferase (AST, B) and alanine aminotransferase, as

U/ L of serum (ALT, C) in control (open bars, n=5) and diabetic (filled

bars, n=5) rats. Data are the mean ± SEM. *P<0.01 compared with the

control group.
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Figure 2. Chemiluminescence. Chemiluminescence as cpm/mg of pro-

tein in liver homogenates from control (open bars, n=5) and diabetic

(filled bars, n=5) rats. Data are the mean ± SEM.

Figure 3. Oxidative stress parameters. A: Superoxide dismutase (SOD)

activity as U/mg of protein in liver homogenates from control (open

bars, n=5) and diabetic (filled bars, n=5) rats. Data are the mean ±

SEM. B: Catalase activity as pmol/mg of protein in liver homogenates

from control (open bars, n=5) and diabetic (filled bars, n=5) rats. Data

are the mean ± SEM. *P<0.01 compared with the control group. C:

Glutathione peroxidase activity as mU/mg of protein in liver homoge-

nates from control (open bars, n=5) and diabetic (filled bars, n=5) rats.

Data are the mean ± SEM. *P<0.01 compared with the control group.
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recalled that the decreased activity of catalase and glu-

tathione peroxidase found in the diabetic group could

possibly means an enzyme consuming effect. On the oth-

er hand, other authors reported that OS is not overtly or

systematically increased in DM, except in final stages of

its evolution when complications appear.30 Another possi-

ble explanation for these results could be that chronic di-

abetic rat livers could produce some unknown antioxidant

agent.

It can also be suggested that STZ-induced diabetes

produced a sort of antioxidant effect through an unknown

metabolite, glucose or advanced glycation end products.21

Liver antioxidant enzymatic defences were evaluated

to determine parenchyma responses to the possible pres-

ence of OS in these pathologies. The results obtained by

measuring antioxidant enzymes, were also intriguing. Di-

abetic animals showed that liver catalase and glutathion

peroxidase activity decreased significantly.

It is difficult to assess in what extent liver microcir-

culation, including its endothelial cells, participate in

the vascular damage produced by chronic diabetes as

occurred in other vascular beds.31-34 Besides, is not clear

if liver microvascular system is even more modified.

The endothelial damage described by other authors1,35

could be the first event in vascular injury, producing

cellular alterations. Accordingly to Huszka et al,36 NO

production is reduced in diabetes in correlation with en-

dothelial damage.

Nitric oxide (NO), heme oxygenase 1 (HO1) and car-

bon monoxide (CO) are endogenous compounds that acti-

vate guanylate cyclase,35 leading to the generation of cy-

clic guanosine monophosphate, which in turn mediates

various physiological functions. Moreover, an excessive

production of CO, as a consequence of HO-1 overexpres-

sion, could play an important role in the modulation of

vascular tone under different pathological situations.1,2

Beside this, cytokines play also an important role an

endothelin 3 is the major factor involved in the regulation

of vascular resistance in the liver. All the former path-

ways should be explored to achieve a comprehensive

state of the sinusoidal modulation under the present ex-

perimental conditions.

It can be concluded that under these experimental con-

ditions chronic diabetic rats do not suffer liver OS, as

could be expected.
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Table I. Liver sinusoidal area quantification.

Group Sinusoidal area/field

Control (n = 87) 27,263.37 ± 698.64

Diabetic (n = 63) 35,364.43 ± 867.20a

t & p test t T = 7.32 - 0.0001

The selected areas for quantification were measured as pixels per area. The standard

area used was 8.33 square inch.
a, indicate significant difference (P < 0.0001) according to student t test, two-sided P value.

n: number of fields measured.

Figure 4. Light micrograph from a control rat liver. Large arrow shows

a central vein and small arrow shows normal parenchymal cells (Mag-

nification 600 X).

Figure 5. Light micrograph from a diabetic rat liver. Large arrow

shows a central vein and small arrow shows a dilated sinusoid. (Magni-

fication 600 X).
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