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Introduction  and objectives: Necroptosis  and  endoplasmic  reticulum  (ER) stress has  been  implicated  in

acute  and chronic  liver  injury.  Activated eukaryotic  initiation  factor 2 alpha  (eIF2�) attenuates protein

synthesis  and relieves  the load of protein folding  in the  ER. In  this  study, we  aimed to analyze  the impact

of eIF2� phosphorylation  on hepatocyte  necroptosis  in acute liver  injury.

Materials  and  methods: Male  BALB/c  mice  were  injected with  tunicamycin  or  d-galactosamine,  and  LO2

cells  were incubated with tunicamycin  to  induce acute  liver  injury.  4-Phenylbutyric  acid  (PBA) and salu-

brinal  were  used  to inhibit  ER  stress  and eIF2�  dephosphorylation,  respectively.  We analyzed the  eIF2�

phosphorylation, ER  stress,  and  hepatocyte  necroptosis  in mice  and  cells  model.

Results:  Tunicamycin  or  d-galactosamine  significantly  induced ER  stress  and necroptosis,  as well as  eIF2�

phosphorylation,  in mice  and  LO2 cells  (p  <  0.05).  ER  stress  aggravated  tunicamycin-induced hepatocyte

necroptosis in  mice and  LO2 cells  (p  <  0.05).  Elevated eIF2� phosphorylation  significantly mitigated  hep-

atocyte ER  stress  (p  <  0.05)  and hepatocyte necroptosis  in mice  (34.37 ± 3.39%  vs  22.53  ± 2.18%; p <  0.05)

and  LO2 cells  (1  ± 0.11  vs  0.33  ± 0.05;  p <  0.05).  Interestingly,  tumor necrosis factor receptor (TNFR)  1

protein  levels were  not  completely  synchronized  with  necroptosis.  TNFR1  expression  was reduced  in

d-galactosamine-treated  mice  (p  <  0.05)  and  cells  incubated  with  tunicamycin  for  12  and 24  h  (p  < 0.05).

ER  stress  partially  restored  TNFR1  expression  and  increased  necroptosis  in tunicamycin-incubated  cells

(p  <  0.05).

Conclusions:  These results imply that  ER stress  can  mediate  hepatocyte  necroptosis  independent of TNFR1

signaling  and  elevated eIF2� phosphorylation  can mitigate  ER  stress  during  acute  liver  injury.

© 2019  Fundación  Clı́nica  Médica  Sur,  A.C. Published  by Elsevier España, S.L.U. This  is an open  access

article  under  the  CC  BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The liver is an important metabolic and detoxifying organ of

the body. Due to  its unique function and dual blood supply, it is

often exposed to a  large number of toxins and exogenous sub-

stances including alcohol, drugs, and hepatoviral infections [1].

The metabolism of these toxic substances and liver infections

can cause liver injuries that can progress to end-stage liver dis-

ease. Acute and chronic liver injuries share a common mechanism

that can be attributed to hepatocyte degeneration and cell death

[2,3]. Cell death is  mediated through different modalities, includ-

ing apoptosis, autophagy, necrosis, necroptosis, and cornification
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[4].  Therefore, controlling hepatocyte death can be an effective

strategy to improve liver injury. Necroptosis, a  newly discov-

ered form of cell death, is an inflammatory form of  necrotic cell

death that resembles the morphological features of necrosis, yet

the process is tightly regulated like apoptosis [5].  Hepatocyte

necroptosis has been implicated in the pathogenesis of  various

liver diseases [2,3,6,7],  such as liver injury caused by nonalcoholic

fatty liver disease (NAFLD) or  nonalcoholic steatohepatitis (NASH),

alcohol [8,9],  carbon tetrachloride [10], drug-induced liver injury,

hypoxia-induced liver injury [11],  pyrazinamide, and paracetamol-

induced liver injury [12].  Necroptotic signaling is mediated by

death receptors, such as tumor necrosis factor-alpha (TNF-�),  TNF

receptor 1 (TNFR1), and toll-like receptors (TLR) that  phospho-

rylates the receptor-interacting protein 3 (RIP3), which in turn

recruits and phosphorylates the mixed lineage kinase domain-like

pseudokinase (MLKL). Phosphorylation of MLKL increases the per-

meabilization of the cell membrane [13].  Therefore, RIP3 and MLKL

are considered to be key modulators of necroptosis.
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The endoplasmic reticulum (ER) is an organelle that plays critical

roles in the synthesis and folding of proteins [14].  In addition, the

ER maintains the calcium homeostasis of cells, as well as it medi-

ates the biosynthesis of phospholipids and cholesterols. Disruption

the function of the ER leads to  the accumulation of unfolded or

misfolded proteins in the ER lumen, which in  return, induces ER

stress [7]. ER stress has been shown to  induce necroptosis [15,16]

through activation of the pro-apoptotic signaling cascade [17]. ER

stress causes the glucose-regulated protein 78 (GRP78) to  com-

petitively bind unfolded or misfolded proteins [18]. In turn, this

leads to the phosphorylation of protein kinase R-like ER kinase

(PERK) and inositol-requiring enzyme 1 alpha (IRE1�), along with

the cleavage of activating transcription factor 6 (ATF6) [19]. Sub-

sequently, activated PERK can phosphorylate the alpha subunit of

eukaryotic initiation factor 2 (eIF2�) at serine 51 [20].  eIF2 is  a

126  kDa protein composed of �, � and � subunits that are essen-

tial for mRNA translation and subsequent protein synthesis [21].

The phosphorylated eIF2� attenuates protein synthesis and thus

relieves the protein folding load in the ER [22]. Simultaneously,

phosphorylated eIF2� activates another cascade that leads to the

dephosphorylation of eIF2�, which creates a  negative feedback

mechanism to restore protein synthesis [23].  Briefly, phosphory-

lated eIF2� up-regulates the translation of activating transcription

factor 4 (ATF4), which in  turn induces the expression of growth

arrest and DNA damage 34 (GADD34) as well as GRP78 and C/EBP

homologous protein (CHOP) [24]. GADD34 binds with protein

phosphatase 1 (PP1), thereby facilitating the dephosphorylation of

eIF2� [25].

ER stress can also be relieved by several chemical reagents.

For example, 4-phenylbutyric acid (PBA) is a chemical chaperone

that has been shown to alleviate ER stress in  different cell models

[26–28]. Salubrinal selectively reduces the dephosphorylation of

eIF2� by suppressing the activity of PP1, therefore maintaining the

phosphorylated eIF2� levels and inhibiting the expression of eIF2

as and minimizing ER stress [29,30].  Furthermore, PERK, ATF6, and

IRE1� can also activate ER-related degradation and promoting cell

survival [31].

Tunicamycin is  a  nucleoside antibiotic that can be used as a

pharmacological inducer of ER stress [32,33]. d-Galactosamine is

a hepatotoxic agent that  causes the inhibition of transcription

and protein synthesis, which leads to  cell death [34].  TNF-� and

ER stress are involved in the pathogenesis of several liver dis-

eases [35]. Previous studies demonstrated that tunicamycin could

induce acute kidney injury by  inducing ER stress [36,37]. Fur-

thermore, tunicamycin can be used to induce acute liver injury

[38].  In this study, we  used tunicamycin and d-galactosamine-

induced acute liver injury mouse models and tunicamycin-induced

ER stress cell models to  investigate the regulatory functions of

eIF2� phosphorylation in  hepatocyte necroptosis in  acute liver

injury.

2. Materials and methods

2.1. Animal

A total of 400 male BALB/c mice (6–8 weeks old, 18 ± 2 g)

were obtained from the Animal Center of Zunyi Medical College

(Guizhou, China). The animals were housed in a specific pathogen-

free facility with the temperature maintained between 20 and 24 ◦C

and an automatic 12-h light/dark cycle with food and water avail-

able ad libitum. The study protocol was approved by  the Animal

Care and Use Committee of the Affiliated Hospital of Zunyi Medical

College (Guizhou Province, China) in accordance with Guidelines

of China Animal Care and Research.

2.2. Experimental design

Mice were allowed one week to acclimatize before commenc-

ing the experimental procedures. Next, the mice were randomly

divided into different experimental groups. The control group

mice (n  = 10 mice) received an intraperitoneal injection of phos-

phate buffer saline (PBS, 10 mL/kg). To induce acute liver injury,

mice either received an intraperitoneal injection of tunicamycin

(2 mg/kg, Sigma) in  the tunicamycin group (n = 10 mice) or d-

galactosamine (1000 mg/kg, Sigma) in the d-galactosamine-treated

mice (n =  10 mice). To pharmacologically alleviate the ER stress,

mice were pretreated with an intraperitoneal injection of PBA

(150 mg/kg, Sigma) or  salubrinal (1 mg/kg, Sigma) for 2  h. Sub-

sequently, the mice were administered tunicamycin resulting in

PBA +  tunicamycin, and salubrinal + tunicamycin treatment groups

(n = 10 mice per group). Alternatively, the PBS, PBA, and salubrinal

treated mice were given a  PBS injection to serve as control and PBA

or salubrinal groups, respectively (n =  10 mice per group).

2.3. Cell culture and ER stress induction

The human hepatocyte LO2 cell line was  obtained from

the Cell Bank of the Type Culture Collection of the Chinese

Academy of Sciences (Shanghai, China). LO2 cells were cultured

in  RPMI-1640 supplemented with 10% fetal bovine serum and 1%

penicillin/streptomycin. To investigate the impact of tunicamycin

on ER stress and necroptosis, LO2 cells were treated with PBS or

tunicamycin (1 �g/mL, Sigma) for 12, 24, or 48 h.  Similarly, PBA and

salubrinal were used to alleviate ER stress. Briefly, LO2 cells were

pretreated with PBA (10 mM) or salubrinal (20  �M, Sigma) for 2 h

and then incubated with PBS (control) or  tunicamycin (1 �g/mL,

Sigma).

2.4. Western blot

Mice were sacrificed, and the livers were dissected and homog-

enized in  immunoprecipitation assay lysis buffer (10 mg/mL,

R0010, Solarbio, Beijing, China). Following centrifugation, individ-

ual liver lysates (40 �g) were separated on 10% sodium dodecyl

sulfate polyacrylamide gels by electrophoresis (SDS-PAGE) and

transferred to polyvinylidene fluoride (PVDF) membranes (Mil-

lipore, Billerica, MA,  USA). Membranes were blocked with 5%

skim milk in TBS and probed with the following mouse mon-

oclonal antibodies against �-actin (sc-58673, 1:10000, sc: Santa

Cruz Biotechnology), CHOP (ab11419, 1:10000), eIF2� (sc-133132,

1:10000), GRP78 (sc-376768, 1:10000), phosphorylated PERK (p-

PERK, MA5-15033, 1:10000, Thermo Fisher Scientific, USA), PERK

(sc-377400, 1:10000), RIP3 (sc-374639, 1:10000) and TNFR1 (sc-

374186, 1:10000) or rabbit monoclonal antibodies against cleaved

caspase-3 (9664, 1:10000, Cell Signaling Technology) and phospho-

rylated eIF2� (p-eIF2�, 3398, 1:10000, Cell Signaling Technology)

at 4 ◦C overnight. Next, the bound antibodies were detected

with horseradish peroxidase (HRP)-conjugated anti-mouse or anti-

rabbit IgG and visualized using enhanced chemiluminescence. The

relative level of each target protein was calculated by  densitomet-

ric analysis using the Quantity One software (Bio-Rad, Hercules, CA,

USA).

2.5. Cell viability assay

Cell viability was assessed using the MTS

[3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-

2-(4-sulfophenyl)-2H-tetrazolium] method with the Cell Titer

96 AQueous One Solution Cell Proliferation Assay kit (Promega

Corporation, Madison, WI,  USA) according to the manufacturer’s

protocol. Briefly, the LO2 cells were incubated with 20 �L  of  MTS
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solution for 3 h at 37 ◦C,  and the absorbance was  measured at

490 nm on a microplate reader (Bio-Rad model 680; Bio-Rad,

Hercules, CA, United States). LO2 cell viability was normalized as a

percentage of the control.

2.6. Histology and immunohistochemistry

Liver tissues were fixed in 10% formalin, embedded in  paraffin,

and sectioned at 5 �m thickness on a  microtome (Leica). Following

deparaffinization and rehydration, the tissue sections were stained

with hematoxylin and eosin (H&E) according to the standard pro-

tocols. Alternatively, the sections were blocked and subsequently

immunostained using monoclonal antibodies against RIP3 (sc-

374639, 1:200) and TNFR1 (sc-374186, 1:200). The signal was

visualized using the DAB reagent under a  light microscope.

2.7. Serum alanine aminotransferase level

Following euthanasia, sera samples were obtained from the

blood of each mouse. Serum alanine aminotransferase (ALT) levels

were determined using the rate method with the Beckman Coul-

ter Auto Analyzer (Model AU5800, USA) according to the standard

protocols.

2.8. Statistical analysis

The differences between the examined groups were calcu-

lated using Student’s t-test. Numerical data were expressed as

mean ± standard deviation (SD). Survival rate was estimated using

the Kaplan–Meier method and the log-rank test. A p-value <0.05

was considered to  be statistically significant.

3. Results

3.1. Tunicamycin and d-galactosamine induces ER stress and

necroptosis in mice

Tunicamycin disrupts protein folding in the ER, resulting in ER

stress and hepatocyte injury. TNF-� induces necroptosis through

binding of TNFR1. Therefore, we challenged male BALB/c mice

with tunicamycin or d-galactosamine injections to  induce acute

liver injury and analyzed the relative protein levels of  intrahep-

atic TNFR1, p-eIF2�, eIF2�, GRP78, RIP3, and p-MLKL. In the livers

of tunicamycin-treated mice, the expression of TNFR1, GRP78,

and RIP3, and phosphorylated levels of eIF2�  and MLKL were

increased (p < 0.05; Fig. 1a). Similarly, signs of hepatocyte necrosis

were confirmed by H&E staining especially at 24 and 48  h post-

injection (p < 0.05; Fig. 1b). Compared to the control group, the

intrahepatic expression of TNFR1 and RIP3 were upregulated in the

tunicamycin-treated mice, especially around the central vein of a

hepatic lobule at 24 and 48 h post tunicamycin injection (p < 0.05;

Fig. 1c). These results clearly demonstrate that tunicamycin admin-

istration induces ER stress, hepatocyte TNFR1 expression, eIF2�
phosphorylation, and necroptosis in mice.

Similarly, d-galactosamine administration increased RIP3 and

GRP78 expression, as well as phosphorylated eIF2� and MLKL levels

in mice (p <  0.05; Fig. 1d). Nevertheless, d-galactosamine treatment

reduced the intrahepatic expression of TNFR1 compared to  the

control mice (p <  0.05; Fig. 1d). These data demonstrate that d-

galactosamine induces ER stress and necroptosis in  mice without

up-regulating hepatic TNFR1 expression. Therefore, it is plausi-

ble to speculate that hepatocyte necroptosis can be mediated by

TNFR1-independent pathways.

Fig. 1. Tunicamycin or d-galactosamine administration induces ER stress and hepatocyte necroptosis in mice. Male BALB/c mice were injected with either PBS (control

group), tunicamycin (tunicamycin group), or d-galactosamine (d-galactosamine group). (a) The relative expression of intrahepatic TNFR1, p-eIF2�, eIF2�, GRP78, RIP3, and

p-MLKL  were determined by Western blot at 12, 24 and 48  h post tunicamycin injection (n = 10 mice per group). (b) Hepatocyte necrosis was detected by in H&E staining

in  paraffin-embedded sections. (c) Immunohistochemical staining of intrahepatic TNFR1 and RIP3 expression in mice (magnification 100×). (d) The relative expression of

intrahepatic TNFR1, p-eIF2�, eIF2�, GRP78, RIP3, and p-MLKL was determined by Western blot at 12, 24 and 48 h  post d-galactosamine administration (n  = 10 mice per

group). *p  < 0.05, **p  <  0.01 versus the control group.
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Fig. 2. Tunicamycin treatment induces hepatocyte ER stress and necroptosis in LO2 cells. LO2  cells were treated with PBS (control group) or tunicamycin (tunicamycin

group). (a) The relative expression of intrahepatic TNFR1, p-eIF2�, eIF2�,  GRP78, RIP3, and p-MLKL were determined by Western blot in LO2 cells at 12, 24  and 48 h  post

incubation with tunicamycin. (b) Viability of LO2 cells was  determined by  MTS  assay. Histograms represent mean ± SD of five independent experiments. *p <  0.05, **p < 0.01

versus  the control group.

3.2. Tunicamycin treatment induces ER stress and necroptosis

while reducing TNFR1 expression in LO2 cells

The results outlined above suggest that hepatocyte necrop-

tosis can be mediated via TNF-�/TNFR1-independent pathways.

Therefore, we treated LO2 cells with tunicamycin to  investigate

the impact of ER stress on TNFR1 expression and necroptosis.

Next, we examined the relative expression of TNFR1, p-eIF2�,

eIF2�, GRP78, RIP3 and p-MLKL by Western blot. Tunicamycin

treatment increased GRP78 and RIP3 expression, as well as phos-

phorylated eIF2� and MLKL levels when compared with the

control cells (p  <  0.05; Fig. 2a). Additionally, tunicamycin treat-

ment significantly down-regulated the TNFR1 protein expression

at 12 and 24 h,  then increased its expression at 48 h. It also

reduced the LO2 cell viability at 24 and 48 h as compared

to the control cells (p <  0.05; Fig. 2b). These data demonstrate

that tunicamycin treatment can induce ER stress and hep-

atocyte necroptosis via TNFR1-independent pathways in LO2

cells.

3.3. PBA pretreatment moderates tunicamycin-induced ER stress

and necroptosis

PBA alleviates ER stress, which produces hepatoprotective

effects. To confirm this hypothesis, male BALB/c mice were pre-

treated with PBS or PBA and injected with tunicamycin or PBS.

Compared with the tunicamycin-treated mice, the cumulative sur-

vival was significantly improved in mice pretreated with PBA before

tunicamycin injection (p <  0.05; Fig. 3

a). However, PBA treatment did not significantly affect the

mortality rate in the control mice (Fig. 3a). Tunicamycin treat-

ment significantly increased serum ALT levels when compared with

the control or PBA treated mice. Tunicamycin with PBA pretreat-

ment significantly reduced the serum ALT levels in  mice (p < 0.05;

Fig.  3b). Similarly, tunicamycin with PBA pretreatment improved

the hepatic necrosis as revealed by H&E staining (p <  0.05; Fig. 3c).

Interestingly, PBA treatment did not  significantly change eIF2�
phosphorylation levels or  RIP3 expression levels in  mice when

compared with the control group without ER stress (Fig. 3d). On
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Fig. 3. PBA pretreatment moderates tunicamycin-induced ER stress and hepatocyte necroptosis in mice and LO2 cells. Male BALB/c mice were pretreated with PBS or

PBA  for 2 h, and then injected with PBS or tunicamycin for 24 h. LO2  cells were pretreated with PBS or PBA for 2 h, and then injected with PBS or tunicamycin. (a)  The

cumulative survival of each mouse group was investigated at  0, 12, 24, 36 and 48 h (n = 10 mice per group). (b) Serum ALT levels were detected using the rate method in

the  control (PBS and PBS), PBA (PBA pretreatment and PBS injection), tunicamycin (PBS and tunicamycin injection), and the PBA + tunicamycin (PBA pre-treatment and

tunicamycin injection) groups (n =  10 mice per group). (c) Histological examination of hepatocyte necrosis in the mice livers of tunicamycin and tunicamycin/PBA pretreated

group  (n = 10 mice per  group). (d) The relative expression intrahepatic p-eIF2�,  eIF2�, and RIP3 post-PBA treatment in mice compared to  the control mice. (e) The relative

expression of intrahepatic TNFR1, p-eIF2�,  eIF2�,  GRP78, RIP3, and p-MLKL were determined by Western blot in the tunicamycin group and the tunicamycin/PBA pretreated

mice.  (f) Immunohistochemical analysis of intrahepatic TNFR1 and RIP3 expression in the paraffin-embedded liver tissues (magnification 100×, n =  10 mice per group). (g)

The relative expression of p-eIF2�, eIF2�,  and RIP3 were determined by  Western blot in the untreated, control (PBS and PBS incubation), and tunicamycin (PBS and tunicamycin
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the other hand, PBA pretreatment before tunicamycin significantly

reduced TNFR1, RIP3 and GRP78 expression, as well as eIF2� and

MLKL phosphorylation (p <  0.05; Fig. 3e). Similarly, PBA pretreat-

ment before tunicamycin decreased the expression of TNFR1 and

RIP3 in the liver samples as compared to  the tunicamycin-treated

mice (p < 0.05; Fig. 3f).  These data clearly demonstrate that PBA pre-

treatment alleviates tunicamycin-induced liver injury, hepatocyte

ER stress, necroptosis, while also down-regulating TNFR1 expres-

sion in mice.

To further confirm our hypothesis, the LO2 cells were pre-

treated with PBS or PBA, and then incubated with tunicamycin

or PBS. PBA treatment did  not change eIF2� phosphorylation

or RIP3 expression in LO2 cells compared to  the control LO2

without ER stress (Fig. 3g). However, tunicamycin incubation

increased eIF2�phosphorylation and RIP3 expression in LO2 cells.

Interestingly, PBA pretreatment before tunicamycin incubation sig-

nificantly reduced GRP78 and RIP3 expression, as well as eIF2�
and MLKL phosphorylation (p <  0.05; Fig. 3h). In contrast, it signifi-

cantly restored the TNFR1 expression in LO2 cells. In addition, LO2

viability was significantly enhanced in the tunicamycin/PBA pre-

treated group compared to  the tunicamycin group (p <  0.05, Fig.  3i).

These results demonstrate that PBA pretreatment can moderate

tunicamycin-induced ER stress and hepatocyte necroptosis in a

manner independent of TNF-�/TNFR1 signaling in LO2 cells.

3.4. Salubrinal pretreatment elevates tunicamycin-induced eIF2˛

phosphorylation and reduces ER  stress and necroptosis

In cells, ER stress triggers eIF2�  phosphorylation. Therefore, we

used salubrinal to  selectively inhibit eIF2� dephosphorylation and

reduce ER stress to  investigate the role of eIF2� phosphorylation in

hepatocyte necroptosis and ER stress in an acute liver injury model.

To this end, male BALB/c mice were pretreated with PBS or salubri-

nal before they were injected with tunicamycin or PBS. Compared

to the tunicamycin treatment group, the cumulative survival was

significantly improved in  mice pretreated with salubrinal before

tunicamycin injection (p <  0.05; Fig. 4

a). Tunicamycin treatment significantly increased serum ALT

levels compared to  the control or PBA treated, while tunicamycin

with salubrinal pretreatment significantly reduced serum ALT

levels (p < 0.05; Fig. 4b). Salubrinal pretreatment before tuni-

camycin administration significantly reduced hepatocyte necrosis

as verified by H&E staining (p <  0.05; Fig. 4c). Importantly,

salubrinal-alone did  not change the cumulative mortality (Fig. 4a).

Similarly, salubrinal treatment-alone did not  change the serum

ALT levels (Fig. 4b) or eIF2� phosphorylation and RIP3 expres-

sion (Fig. 4d) when compared to  the control mice without liver

injury. In contrast, salubrinal pretreatment before tunicamycin

administration significantly increased intrahepatic eIF2� phos-

phorylation, and reduced TNFR1, RIP3, GRP78 expression, as

well as MLKL phosphorylation (p <  0.05; Fig. 4e), when compared

to the tunicamycin-treated mice. In  agreement, compared with

tunicamycin-treatment, the relative expression levels of TNFR1

and RIP3 were reduced in  the tunicamycin/salubrinal pretreatment

group as verified by immunohistochemical staining (34.37 ±  3.39%

vs 22.53 ± 2.18%; p < 0.05; Fig. 4f). These data indicate that

enhanced eIF2� phosphorylation mitigates tunicamycin-induced

hepatocyte ER stress, TNFR1 expression, and necroptosis in mice.

Next, we repeated the same model in LO2 cells to further

investigate the impact of eIF2� phosphorylation on  ER stress and

necroptosis in vitro.  LO2 cells were pretreated with PBS or salu-

brinal, and then incubated with tunicamycin or PBS. Salubrinal

treatment-alone did not change the eIF2� phosphorylation or

RIP3 expression in LO2 cells without ER stress (Fig. 4g). However,

salubrinal pretreatment before tunicamycin significantly increased

eIF2� phosphorylation and reduced the CHOP and RIP3 expres-

sion (p <  0.05), as well as MLKL phosphorylation levels, as compared

to tunicamycin-treated cells (p < 0.05; Fig. 4h). In addition, it par-

tially restored TNFR1 expression and LO2 cell viability (p <  0.05;

Fig.  4i).  These data confirm that eIF2� phosphorylation mitigated

tunicamycin-induced ER stress and necroptosis in LO2 cells.

4. Discussion

In  the present study, we demonstrated that tunicamycin and

d-galactosamine successfully induced ER stress and hepatocyte

necroptosis, as well as eIF2�  phosphorylation, in  BALB/c mice and

LO2 cells. Moreover, d-galactosamine could induce ER stress and

necroptosis without up-regulating TNFR1 expression, indicating

that ER stress and necroptosis can be mediated via TNF�/TNFR1-

independent pathways in hepatocytes. Pretreatment with PBA

mitigated tunicamycin-induced hepatocyte necroptosis in mice

and LO2 cells by alleviating ER stress, while salubrinal pretreatment

mitigated tunicamycin-induced ER stress and hepatocyte necrop-

tosis by inhibiting eIF2� dephosphorylation and increasing p-eIF2�
levels. In  addition, PBA and salubrinal pretreatment alleviated ER

stress and necroptosis, but it partially restored TNFR1 expression

in  LO2 cells challenged with tunicamycin. Together, these results

demonstrate the crucial role of eIF2� phosphorylation in mitigat-

ing ER stress and necroptosis independent of TNFR1 signaling in  an

acute liver injury model. To the best of our knowledge, this is the

first study that reveals the beneficial role of eIF2� phosphorylation

in alleviating hepatocyte necroptosis and ER stress in  an acute liver

injury.

TNF-� is a  pleiotropic cytokine involved in  inflammation and

cell injury [39]. TNF-� function is  mediated by TNFR1 signaling

[30,40].  TNFR1 mediates cell injury via the “death domain” and

up-regulates the TNFR1 expression may  enhance the cell sensi-

tivity to TNF-�-induced cell injury. Effective control of ER stress

can mitigate liver injury [41].  Our results demonstrate that ER

stress inhibits TNFR1 expression in tunicamycin-incubated LO2

cells and d-galactosamine-treated mice, suggesting that TNFR1

signaling may  not be necessary to trigger hepatocyte necrosis.

Moreover, tunicamycin or d-galactosamine administration signif-

icantly induced hepatocyte ER stress and necroptosis in mice.

PBA pretreatment significantly mitigated the tunicamycin-induced

hepatocyte ER stress and necroptosis in  mice. In addition, tuni-

camycin treatment induced ER stress and necroptosis, and reduced

LO2 cells viability. These effects were moderated by PBA pre-

treatment. These results not only support that  ER stress mediates

hepatocyte necroptosis, but also suggest that ER stress can induce

necroptosis independent of TNFR1 signaling in  acute liver injury

[15].  Moreover, our  data showed that ER stress affects TNFR1

expression differently, indicating that ER stress may  have multiple

ways to regulate TNFR1 expression. Future investigations should

focus on dissecting the underlying molecular mechanism.

incubation) LO2 cells. (h) The relative expression of TNFR1, p-eIF2�,  eIF2�, GRP78, RIP3, and p-MLKL were determined by Western blot in the tunicamycin group and the

tunicamycin/PBA pretreated LO2 cells. Protein samples were electrophoresed in duplicate lanes. (i) Viability of LO2 cells as determined by  MTS  assay in the control (PBS and

PBS  incubation), PBA (PBA pretreatment and PBS incubation), tunicamycin (PBS and tunicamycin incubation), and the  PBA  +  tunicamycin (PBA pretreatment and tunicamycin

incubation) groups. Histograms represent mean ± SD of four independent experiments (n = 10 mice per  group). †p < 0.05 versus the tunicamycin group.
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Fig. 4. Salubrinal pretreatment elevates tunicamycin-induced eIF2� phosphorylation and mitigates hepatocyte ER stress and necroptosis. Male BALB/c mice were pretreated

with  PBS or salubrinal for 2 h, and then injected with PBS or tunicamycin for 24  h. LO2 cells were pretreated with PBS or salubrinal for 2 h, and then incubated with PBS or

tunicamycin. (a) The cumulative survival of each mice  group was investigated at 0, 12, 24, 36  and 48  h  (n = 10 mice per group). (b) Serum ALT levels were detected using the rate

method  in the control (PBS and PBS), salubrinal (salubrinal pretreatment and PBS injection), tunicamycin (PBS and tunicamycin injection) and the  salubrinal +  tunicamycin

(salubrinal pretreatment and tunicamycin injection) groups. (c)  Histological examination of hepatocyte necrosis in the livers of tunicamycin and tunicamycin/salubrinal

pretreated group (n = 10 mice per group). (d) The relative expression of intrahepatic p-eIF2�, eIF2� and RIP3 in the untreated, tunicamycin (PBS and tunicamycin injection),

control (PBS and PBS injection), and salubrinal (salubrinal pretreatment and PBS injection) mice. (e) The relative expression of intrahepatic TNFR1, phosphorylated eIF2�,

total  eIF2�, GRP78, RIP3, and phosphorylated MLKL in the salubrinal (salubrinal pretreatment and PBS injection) and the salubrinal +  tunicamycin (salubrinal pretreatment

and  tunicamycin injection) mice. Protein samples were electrophoresed in duplicate lanes. (f) Immunohistochemical analysis of intrahepatic TNFR1 and RIP3 expression in the
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eIF2� phosphorylation can inhibit protein synthesis and up-

regulate ATF4 expression [42].  Inhibition of protein synthesis can

reduce the protein folding load in the ER [43].  In this study,

tunicamycin and d-galactosamine significantly induced hepatocyte

ER stress and eIF2� phosphorylation. Interestingly, pretreatment

with salubrinal significantly elevated eIF2� phosphorylation and

reduced tunicamycin-induced ER stress, as well as necroptosis, in

mice and LO2 cells. On the other hand, PBA pretreatment decreased

eIF2� phosphorylation and necroptosis. These data suggest that

eIF2� phosphorylation does not  directly modulate hepatocyte

necroptosis, but it indirectly mitigates tunicamycin-induced ER

stress and regulates hepatocyte necroptosis. This discrepancy can

be attributed to  the fact that PBA acts as a chemical molecular

chaperone that reduces ER stress by  reducing the need for eIF2�
phosphorylation [44].  Previously, Wang et al. demonstrated that

up-regulating phosphorylated eIF2� by  salubrinal administration

attenuated ER stress and improved necroptosis [45].

Hepatocyte necroptosis has been implicated in different acute

and chronic pathological conditions, including NAFLD or NASH,

alcohol-induced liver injury, drug-induced liver injury, as well as

hepatitis B and C  viral infections [46]. ER stress also has been

implicated in a variety of liver diseases, including NAFLD, alcohol-

induced liver injury, drug-induced liver injury, hepatic insulin

resistance, ischemia-reperfusion injury and hepatitis viral infec-

tions [47–49]. However, whether ER stress is  directly regulated

to necroptosis has not been fully elucidated. Our data shows that

inhibition of ER stress can reduce hepatocyte necroptosis by up-

regulating eIF2� phosphorylation, thus decreasing liver injury. This

mechanism may  also explain the relationship of ER stress and

necroptosis in other liver diseases besides liver injury, which may

be a therapeutic target for the treatment of liver diseases.

Taken together, we observed that the selective elevation of

eIF2� phosphorylation could regulate ER stress through a  feedback

mechanism, which consequently reduces hepatocyte necroptosis,

thus  mitigating the acute liver injury. These results provide new

insights into the underlying molecular mechanisms that regulate

acute liver injury.
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