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Introduction  and objectives:  Endurance exercise (EXE)  has  emerged  as  a potent  inducer of  autophagy

essential  in maintaining  cellular  homeostasis  in various tissues;  however, the  functional  significance

and  molecular  mechanisms  of EXE-induced  autophagy in  the  liver  remain  unclear.  Thus, the aim of this

study  is to  examine  the  signaling  nexus  of  hepatic autophagy  pathways occurring  during  acute  EXE and

a  potential crosstalk between autophagy and apoptosis.

Materials  and  methods:  C57BL/6  male  mice  were  randomly  assigned  to sedentary  control  group (CON,

n =  9)  and endurance  exercise (EXE, n =  9).  Mice assigned  to EXE  were  gradually  acclimated  to treadmill

running  and  ran for  60  min  per day  for five  consecutive  days.

Results:  Our  data  showed  that EXE  promoted  hepatic  autophagy via  activation  of canonical autophagy

signaling  pathways via  mediating  microtubule-associated  protein  B-light chain  3  II (LC3-II),  autophagy

protein  7  (ATG7), phosphorylated  adenosine  mono phosphate-activated  protein  kinase  (p-AMPK),

CATHEPSIN L,  lysosome-associated membrane protein  2 (LAMP2),  and a  reduction  in p62.  Interestingly,

this  autophagy promotion  concurred with  enhanced  anabolic  activation  via  AKT-mammalian  target  of

rapamycin  (mTOR)-p70S6K signaling  cascade  and  enhanced antioxidant capacity  such  as  copper zinc

superoxide  dismutase (CuZnSOD),  glutathione  peroxidase  (GPX),  and peroxiredoxin  3 (PRX3),  known  to

be as  antagonists  of autophagy.  Moreover,  exercise-induced  autophagy was inversely  related  to apoptosis

in the  liver.

Conclusions:  Our  findings indicate  that  improved  autophagy and  antioxidant capacity,  and  potentiated

anabolic signaling  may  be a potent  non-pharmacological  therapeutic  strategy against  diverse  liver  dis-

eases.
© 2019  Fundación  Clı́nica  Médica  Sur,  A.C. Published  by Elsevier España, S.L.U. This  is an open  access

article  under  the  CC  BY-NC-ND  license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The liver is one of the largest organs in our  body and plays

a key role in metabolism, immunity, and detoxification of harm-

ful substances in the blood. Unlike other terminally differentiated

organs such as heart and brain, the liver possesses a  great regen-

erative and replicative capacity such that low degree of damage
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to  the liver does not result in a  major health problem. How-

ever, unresolved chronic stresses as a  result of prolonged high-fat

diet and medications along with extended sedentary life style has

been known to  undermine hepatic function, thus contributing to

development of dysfunctional liver. Therefore, a  healthy life style

(e.g., good diet and regular physical activities) is  important to

maintain healthy liver. In this regard, regular endurance exercise

(EXE) has been a  non-pharmacological strategy to  protect the liver

against various liver diseases [1–3]. However, molecular mech-

anisms responsible for EXE-induced hepatic protection remain

poorly understood. Recently, autophagy has emerged as a  poten-

tial mechanism that help maintain cellular homeostasis in various

tissues, as the absence of autophagy results in cellular injuries and

even death including the heart, brain and liver [4–7]. Therefore,
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it is important to explore whether EXE promotes autophagy, and

if so, elucidating signaling nexus of EXE-induced autophagy path-

ways is necessary to understand a potential mechanism of hepatic

homeostasis in response to  EXE.

Autophagy is a  lysosome-dependent catabolic process by which

potentially toxic molecules such as damaged proteins, lipids and

dysfunctional small organelles are safely removed and recycled [8].

Any obstruction in the process of autophagy results in  impairment

of normal cellular function [9–12]; however, excessive autophagy

(too much of good things) can lead to apoptotic cell death.

Autophagy is induced under hypoxia [13,14] and nutrient defi-

ciency [15,16], and growing evidence also shows that EXE is  a strong

inducer of autophagy in  the heart and skeletal muscle [17,18].

Surprisingly, only a few studies reported that EXE improves hep-

atic autophagy; but even these observations were based upon

the combinatory intervention of both EXE and high-fat diet with-

out  EXE only intervention [19,20].  Therefore, very little is known

about hepatic signaling pathways induced by EXE per se. More-

over, because long-term EXE may  alter general autophagy signaling

due to exercise adaptation [21], establishment of acute exercise-

induced autophagy signaling pathways is  important to understand

how endurance exercise induces hepatic autophagy.

Molecular signaling pathways of autophagy has been widely

corroborated via several mechanistic studies [22,23]. For example,

activation of adenosine monophosphate kinase (AMPK) phos-

phorylates Unc-51 like autophagy activating kinase1 at Ser555

(ULK1ser555), that subsequently activates a  class III phosphatidyli-

nositol 3 kinase (PI3K). This is  an important initiation process for

nucleation of phagophore formation [24].  Following the nucleation,

a rate limiting enzyme of autophagy, ATG7 mediates transloca-

tion of activated microtubule-associated protein 1A/1B-light chain

3-II (LC3-II) to an elongated phagophore [25].  The LC3-II is then

bound to targeted cellular cargos that are  destined for degradation;

thus, modulation of LC3-II levels has been used as a key marker

of autophagy. Since autophagy is a  lysosome-dependent degrada-

tion process, it has been suggested that a  proportional increase in

lysosomal biogenesis concurs with elevated LC3-II levels [26].  In

line with these reports, upregulation of lysosomal proteins such as

lysosome-associated membrane protein 2 (LAMP2) and a  protease

CATHEPSIN have been observed in numerous studies. Also, stud-

ies have demonstrated that a  transcription factor EB (TFEB) plays a

crucial role in LAMP2 and CATHEPSIN [27,28].

While autophagy promotion has been linked to  cellular sur-

vival and health, excessively upregulated autophagy can also

mediate cell death. For example, when autophagy is  overly acti-

vated, cell death (e.g., apoptosis) concur, evidenced by  an increase

in TUNEL positive cells, cysteine-dependent aspartate-directed

protease 3 (CASPASE3) activation, cleavage of poly ADP ribose

polymerase (PARP), and upregulation of oncogenes (e.g., p53 and

p21). Currently, it is unknown whether EXE-induced autophagy

upregulation coincides with or  suppresses apoptosis. In  this study,

we investigated molecular signaling nexus of short-term EXE-

induced autophagy in  the liver and examined potential relationship

between autophagy and apoptosis in response to EXE.

2. Material and methods

2.1. Animals

Males C57BL/6 mice (age: 9 weeks) were purchased from

ENVIGO (Indianapolis, IN), housed in an animal facility at 12 h

light:12 h dark cycle, and fed with a  standard chow diet ad libitum

with free access to water. We  complied with the rule of the Guide

for the Care and Use of Laboratory Animals (1996, published by

National Academy Press, 2101 Constitution Ave. NW,  Washington,

DC 20055, USA), and all procedures required in  this study were

approved by the Institutional Animal Care and Use Committee

(approval number: 2017-004). After one-week of environment

acclimation, the animals were randomly assigned to two  groups:

a sedentary control (CON, n = 9) group and an endurance exercise

(EXE, n =  9) group.

2.2. Treadmill running exercise

Prior to treadmill exercise, mice assigned to a  EXE group

were familiarized with running on a motorized animal treadmill

for 30 min/day for five days, with daily running speed gradually

increased up  to 12 m/min at the last day of acclimation, while mice

assigned to a CON group remained in their cage. After five days of

familiarization with treadmill running, the EXE group performed

five days of treadmill running exercise, starting with 10 min  warm-

ing up  at a  speed of 10 m/min  on a  0% grade after which the speed

was increased at 15 m/min  and maintained for 60 min. The efficacy

of this treadmill exercise has been demonstrated in our previous

study [17].  To preclude possible confounding results that may  be

caused by electrical shocks, we did not use electrical grids but

instead applied soft plastic brushes at the end of each lane. Ani-

mals touching the brush become aroused and continued running.

Animals failing to  run despite continuous touching with the brush

were allowed to  terminate their exercise to eliminate undesired

stress responses.

2.3. Tissue collection and storage

90 min after the last exercise session, animals were sacrificed

by cervical dislocation, and liver tissues were immediately excised

and washed with ice-cold PBS solution to remove remaining blood.

Then, the tissue samples were collected, covered with optimal cut-

ting temperature (OCT) freezing medium, and frozen in  isopentane

pre-cooled with liquid nitrogen. The rest of tissues were wrapped

in  aluminum foil and immediately frozen in  liquid nitrogen and

stored in −80 ◦C until needed.

2.4. Immunofluorescence microscopy

The tissue preparation for immunohistochemistry was based on

our published work [29]. Briefly, frozen liver tissues were cryo-

sectioned (10 �m) with a  sliding cryotome (Leica, Germany) were

fixed with 4% paraformaldehyde on ice for 15 min, rinsed with

PBS (pH 7.4), and then blocked with 10% normal goat serum for

1 h. A  LC3A/B antibody (1:200) was applied on the tissue sec-

tions and incubated overnight at 4 ◦C. Next day, the sections were

washed with PBS and incubated for 1 h at room temperature with

secondary antibodies (Alexa 488-conjugated goat anti-rabbit, Ther-

moFisher, USA). After the tissue sections were washed with PBS,

nuclei were stained with Hoechst 33342. Then, the sections were

mounted on cover slides with Vectashield (Vector Laboratories,

CA), and digital images were captured at 40X magnification using a

fluorescence microscope (EVOS, ThermoFisher, USA). The number

of LC3-positive puncta on  the images was  manually counted (15

images per tissue).

2.5. Western blotting

Total protein extraction from the liver tissues was based on our

published studies [21,29]. Briefly, the liver tissues were homoge-

nized with glass homogenizer in  T-PER
®

tissue protein extraction

reagent (ThermoFisher Scientific, USA) containing a  HaltTM Pro-

tease and Phosphatase inhibitor cocktail (ThermoFisher, Scientific

USA), incubated on ice for 30 min, and centrifuged at 20,817 × g

(5804R, FA-45-30-11, Eppendorf, Germany) for 20 min  to extract
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proteins. The extracted proteins from the tissues were equally

normalized based up on the Bradford protein assay and prepared

for SDS-PAGE. Proteins were separated by 10% NuPAGETM Bis-

Tris Gel (Life Technology, USA) and transferred to nitrocellulose

membranes. The membranes were blocked with 5%  non-fat milk

for  non-phospho proteins or 5% bovine serum albumin in Tris-

buffered saline solution containing 0.1% Tween 20 (TBST) for 1 h

at room temperature, after which the membranes were incubated

over night at 4 ◦C with designated primary antibodies. The pri-

mary antibodies were as follows: AKT (#9272, 1:1000), AMPK�

(#2532, 1:1000), ATG 7 (#2631, 1:1000), BECLIN-1 (#3738, 1:1000),

BNIP3 (#3769, 1:1000), LC3A/B (#12741, 1:1000), MnSOD (#13194,

1:1000), mTOR (#2972, 1:1000), PARP (#9532, 1:1000), phospho-

AKT at Ser473 (#9271, 1:1000), phospho-AMPK� at thr172 (#2535,

1:1000), phospho-mTOR at Ser2481 (#2974, 1:1000), SQSTM1/p62

(#5114, 1:1000), phospho-ULK-1 at Ser757 (#14202, 1:1000), and

ULK-1 (#8054, 1:1000) from Cell Signaling (Danvers, MA); CATHEP-

SIN L (ab58991, 1:1000) and TFEB (ab2636, 1:1000) from Abcam

(Cambridge, MA); BCL-2 (sc-492, 1:1000), phospho-BCL-2 (sc-

377576, 1:1000), GPX1/2 (sc133160, 1:1000), PGC-1�  (sc-13067,

1:1000), p70S6K� (sc-8418, 1:1000), phospho-p70S6K� (sc-8416,

1:1000), p21 (sc-6246, 1:1000), p53 (sc-393031, 1:1000), and

PRX3 (sc-23973, 1:1000) from Santa Cruz Biotechnology (Santa

Cruz, CA); LAMP2 (PA1-655, 1:1000) from ThermoFisher Sci-

entific (Rockford, IL); CASPASE3 (NB100-56112SS, 1:1000) and

CuZnSOD (NBP2-24915, 1:5000) from NOVUS biological (Littleton,

CO); phospho-ULK-1 at Ser555 (#ABC124, 1:1000) from Millipore

(Temecula, CA). After washing off primary antibodies with TBST, the

membranes were incubated with designated secondary antibodies

(goat anti-mouse or anti-rabbit HRP conjugated: Life Technology,

USA) for 1 h at room temperature and washed with TBST. Digital

blot images of target proteins were acquired using the ECL Western

blotting detection substrates (GE Healthcare, USA) and a  ChemiDoc

XRS imaging system (Bio-Rad, USA). The intensity of target protein

was analyzed and quantified with an Image Lab Software (Bio-Rad,

CA). Each target protein intensity was normalized by  the intensity

of Ponceau-stained proteins, and all protein levels were presented

as fold changes.

2.6. Statistical analysis

All values were expressed as means ± standard error of the

mean (SEM). Data shown in  bar graphs were based upon fold

changes compared to CON group. For statistical analysis, a  student

t-test (unpaired, one tail) was executed using a  Prism 6 software

(GraphPad, USA) to identify statistical significance between groups.

Statistical significance was set at p  <  0.05.

3. Results

3.1. Endurance exercise promotes autophagy flux and a

lysosomal biosynthesis

Autophagy promotion is typically confirmed by  an increase in

LC3-II levels or  a LC3-II/I ratio. Thus, to examine if EXE enhances

hepatic autophagy, we  assessed both LC3-II contents and the ratio

of LC3-II to LC3-I in liver tissues of EXE-trained and sedentary ani-

mals. We found that EXE-trained animals significantly elevated LC3

positive puncta in the cryo-sectioned liver tissues examined by

immunofluorescence microscopy (Fig. 1A and B). In  addition, the

EXE group displayed elevated LC3-II levels as well as LC3-II-/I ratio,

compared to CON group (Fig. 1C–E). Since disruption of a fusion

process between autophagosomes and lysosomes rather than truly

enhanced autophagy flux can lead to LC3-II accumulation and thus

misinterpretation of autophagy flux, we measured an autophagy

adaptor protein p62 that is irreversibly degraded by lysosomes

and has been recommended for the measurement of autophagy

flux [30].  With reduction in p62 with LC3-II elevation suggesting

enhanced autophagy flux, we observed that EXE resulted in the

decline of p62 levels (Fig. 1C and F). In addition, since an increase

in lysosomal elements contributes to facilitating autophagy flux, we

measured lysosomal proteins (LAMP2 and CAPTHEPSIN L) and a  key

lysosomal transcription factor, TFEB and found that these proteins

were upregulated in  response to EXE (Fig. 1C and G–I).

3.2. Initiation of autophagy by endurance exercise corresponds to

canonical signaling pathways

Next, we attempted to examine molecular signaling pathways

of EXE-induced hepatic autophagy. Our data showed that EXE ele-

vated phosphorylation levels of AMPK without modulating total

AMPK levels (Fig.  2A and B).  We  next measured the phosphorylation

state of ULK1, which is a  downstream target of AMPK and found that

ULK1 phosphorylation was  slightly higher (approximately 15–20%)

in response to EXE, compared to  those in CON (Fig. 2A and C).

BECLIN-1 is an important protein involved in an initial

step in phagophore formation, and its dissociation from BCL2-

BECLIN1 complexes upon BCL2 phosphorylation is  also critical for

autophagy. Our data confirmed that EXE not only upregulated

BECLIN1 proteins (Fig.  2D and E)  but  also remarkably elevated

BCL2 phosphorylation levels as well as p-BLC2/t-BLC2 ratio, despite

reduced levels of total BCL2 proteins (Fig. 2D and F–H). Since ATG7

and BNIP3 have been suggested to  enhance autophagy, we ana-

lyzed these proteins and observed that both ATG7 and BNIP3 were

upregulated in  response to EXE (Fig. 2D, I  and J).

3.3. Exercise-induced autophagy concurs with anabolic activation

Endurance exercise has been reported to stimulate poten-

tiation of anabolic signaling cascades (e.g., AKT-mTOR axis) in

several different tissues [31,32]. In general, activation of this sig-

naling interferes in  autophagy, but some studies show EXE-induced

autophagy in parallel with anabolic activation in hearts. Currently,

whether this phenomenon is universally observed in liver remains

unknown. Our data revealed that  EXE significantly raised phos-

phorylation levels of AKT and p-AKT/t-AKT ratio without alteration

of t-AKT (Fig. 3A  and B)  as wells as its downstream target, mTOR

(Fig.  3A  and C). We further examined if activated mTOR  induces

phosphorylation of its downstream target, ULK1 at Ser757 that is

known to  hinder autophagy induction. Intriguingly, with mTOR

activation present, ULK1 phosphorylation levels were unchanged

in  response to EXE (Fig. 3A  and D).

Endurance exercise suppresses apoptosis and enhances

antioxidant capacity

Autophagy is an essential avenue to  sustain favorable cellular

hemostasis; however, too much of autophagy is  also linked to  cell

death. In order to  determine whether EXE-induced autophagy pro-

motion is beneficial or detrimental to  liver tissues, we examined

pro-apoptotic signaling pathways. EXE resulted in downregulation

of pro-apoptotic proteins p53, p21, and BAX (Fig. 4A–D). Also, a

cell death executioner, CASPASE3 (cleaved or  active form) levels

were diminished, whereas levels of an intact form of  DNA repair-

ing enzyme, PARP remained upregulated (Fig. 4A, and E–G). We

next measured levels of endogenous antioxidant enzymes because

improved antioxidant capacity is  critically linked to protection of

cell from apoptosis. EXE elevated levels of mitochondrial antioxi-

dant enzyme, PRX3, and cytosolic antioxidant enzymes, CuZnSOD,

and GPX, respectively (Fig. 4H–K). Supporting the increased antiox-

idant capacity, EXE reduced lipid peroxidation in  the liver of
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Fig. 1. Endurance exercise enhances hepatic autophagy and lysosomal biogenesis. (A) Representative images of fluorescence microscopy showing accumulation of autophago-

somes. Green color presents LC3-positive puncta. (B) Quantitative assessment of autophagosomes (numbers of green fluorescent puncta/area) (n =  3  per  group). (C)

Representative images displaying protein expressions. Liver tissue homogenates were immunoblotted for LC3-I, LC3-II, p62, LAMP2, CATHEPSIN L, and TFEB. (D–I) Quantifi-

cation of proteins listed in (C) (n = 9 per group). Ponceau-stained proteins on  the nitrocellulose membrane were used as an  internal control to ensure equal loading. Each

target protein was  normalized by the loading control. Data are presented as a mean ± SEM. * Indicates a  statistical difference, compared to  CON (p <  0.05). Con: sedentary

control,  EXE: Endurance Exercise, SEM: standard of the  mean.

EXE-trained animals, compared to that of CON animals (Fig. 4L and

M).

4. Discussion

EXE has been recognized as a potent inducer of autophagy

in various tissues including skeletal muscle [33],  heart [34],  and

brain [35]; surprisingly, very limited data are available about EXE-

induced liver autophagy. In the present study, we demonstrate a

remarkable increase in  hepatic autophagy in response to  short-

term EXE and establish its detailed signaling pathways. In addition,

our data show possible functional significance of EXE-induced

autophagy in the liver since increased autophagy concurs with

suppressed apoptosis in  conjunction with enhanced antioxidant

capacity.

Previous studies have reported that an acute bout of 60 min  of

moderate intensity EXE serves as a  strong inducer of  autophagy

in  the heart and skeletal muscle [17,36,37]; however, it was  very
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interesting that we  did not observe any changes in autophagy lev-

els in the liver with the acute bout of EXE protocol used in  above

studies; more interestingly, autophagy levels were not modulated

up  to four consecutive days of EXE (data not shown). We started

observing upregulation of autophagy at the fifth day of EXE. There-

fore, in this study, we chose five consecutive days of EXE to examine

acute-EXE hepatic autophagy signaling pathways.

An increase in  LC3-II is  considered as a  key indicator of enhanced

autophagy in many studies including our present study. However,

since LC3-II can be accumulated upon dysfunctional autophagy

(e.g., defects in lysosomal fusion with autophagosomes or  in prote-

olytic process) rather than through truly improved autophagy flux,

additional measurement such as p62 has been recommended. For

example, since p62 binds to cellular cargo molecules as well as to

LC3-II and is degraded by  lysosomes [38,39],  diminished p62 levels

in parallel with elevated LC3-II levels have been considered as an

indicative of bona fide autophagy flux in  most studies [40,41].  Con-

sistent with these studies, our data also showed a  reduced p62 level

in the presence of LC3-II upregulation in  the liver of EXE-trained

animals, suggesting that EXE-mediated autophagy may  not  be due

to  interrupted autophagy process but to enhanced autophagic flux.

Aside from p62, upregulation of lysosomal proteins such as LAMP2

[42,43] and CATHEPSIN L [44] strongly correlate with enhanced

autophagy flux. Supporting this notion, our data showed upregula-

tion of LAMP2 as well as CATHEPSIN L levels in  EXE-trained animals

concurrent with elevated LC3-II levels. To further explore the mech-

anism responsible for EXE-mediated upregulation of  the lysosomal

proteins, we  next examined the effect of EXE on TFEB because

this transcription factor has been identified as a master transcrip-

tion regulator of most lysosomal proteins [45,46].  Our findings

show that EXE upregulates TFEB levels, and this increase is asso-

ciated with lysosomal protein overexpression. Importantly, given

a recent exquisite study demonstrating that activated (dephos-

phorylated) TFEB by a  phosphatase CALCINEURIN translocates to

nucleus and initiates transcription of lysosome-related genes [45],

it is  important to elucidate in  future studies if post-translational
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modifications of TFEB is  essential for the EXE-mediated lysoso-

mal. Taken together, our findings suggest that enhanced hepatic

autophagy in response to  EXE may  be due to the accelerated induc-

tion of autophagy as well as the elevated lysosomal degradation.

However, since the present did not examine whether the rate of

autophagy flux (more accumulation of autophagosomes) increases

in the presence of lysosome inhibitor chloroquine in  response to

EXE, future studies using a  chloroquine are warranted to prove a

definite phenomenon of EXE-induced autophagy.

While EXE has been recognized as a  potent inducer of autophagy

in various tissues, signaling nexus of EXE-induced autophagy path-

ways in the liver remains poorly understood. Multiple studies

have revealed that activation (phosphorylation) of AMPK and its

downstream kinase ULK1Ser555 is an essential step in autophagy

induction [47,48]. Our data provide important evidence that

EXE-mediated autophagy is  also linked to  AMPK-ULK1 activation,

suggesting that AMPK phosphorylation is a crucial factor for

induction of EXE-mediated autophagy. Our findings are also con-

sistent with other studies showing a  critical association of AMPK

phosphorylation with autophagy in  response to EXE in different

tissues such as the heart and brain [17,36] In contrast to our  study,

a study by Alex et al. shows conflicting results that three weeks of

EXE does not alter AMPK activities, resulting in  no autophagy in

the liver [49]. This discrepant observation may  be explained by two

main differential factors: (1) our study uses five-day consecutive

days of EXE rather than three weeks; and (2) we  collect tissue

samples 1.5 h after the last session of EXE rather than 24 h. Of

the two, the tissue collection time seems to be a  primary factor

that generates the opposing observation, given recent studies

demonstrating a  gradual decline in autophagy as the time of tissue

collection elapses after reaching maximum levels between 60 min

and 90 min  post exercise in other tissues [17,36]. Further studies

are necessary to verify the phenomenon in the liver.

In addition to AMPK potentiation, a  recent study by He et al.

reveals the essential role of BECLIN1 in EXE-induced autophagy

[36].  For  example, the authors show that inhibition of  dissocia-

tion of BECLIN1 from a  BCL2-BECLIN1complex by hindering BCL2

phosphorylation completely abolished EXE-induced autophagy,

suggesting BCL2 phosphorylation is necessary for BECLIN1 to par-

ticipate in EXE-induce autophagy in heart and skeletal muscles.

Currently, no studies have been conducted yet as to  whether the

observed results occur in the liver in  response to EXE. Our  study,

for the first time, shows that EXE promotes BCL2 phosphoryla-

tion and BECLIN1 upregulation, supporting the notion above that

BCL2 phosphorylation would be substantial in the liver as well for

the EXE-induced autophagy. Moreover, BNIP3 and ATG7 have been

identified as key inducers of EXE-induced autophagy in various tis-

sues [18,50]. Our present study supports the current literature by

providing evidence of elevated levels of BNIP3 and ATG7 in  the

liver in response to  EXE.  These results suggest that potentiation

of inductive processes of autophagy as revealed in  other studies is

important for EXE-mediated autophagy in the liver.

In general, enhanced anabolic signaling via activation of AKT-

mTOR anabolic axis interrupts autophagy induction; for instance,

activation of mTOR by AKT retards autophagy induction via mTOR’s

ability to phosphorylate ULK at Serine757, whereas inhibition of

mTOR via rapamycin promotes autophagy [51–53].  Surprisingly,

despite an increase in  EXE-induced autophagy, phosphorylation
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levels of mTOR concurs, suggesting that EXE-induced autophagy

occurs independent of anabolic activation. Supporting our  observa-

tion, a recent study led by Lee at al. shows similar results in the heart

of EXE-trained animals [17]. Currently, no studies are available to

explain how EXE bypasses anabolic activation-induced autophagy

suppression and upregulates autophagy. Evidently, finding a  new

regulatory switch of autophagy by revealing mechanisms of EXE-

induced autophagy would be an interesting topic in  future studies.

Our present study reveals that EXE significantly increases

autophagy in the liver and provides detailed pathways of  EXE-

induced autophagy. However, in  light of recent studies showing

the chronic upregulation of autophagy is rather harmful and even

a  critical source of apoptotic cell death [54,55],  it seems critical

to  examine whether enhanced autophagy by EXE is  beneficial or

detrimental to  hepatocytes. In this regard, our study, for the first

time, provides important evidence that EXE-induced autophagy
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Fig. 5. Summary of a  potential protective mechanism of endurance exercise in the

liver.  Potentiated anabolic signaling, enhanced autophagy, and improved antioxi-

dant capacity as a result of endurance exercise ensue in anti-apoptosis, suggesting

that the reshuffle of favorable cellular environment by  endurance exercise may  be

a critical source for hepatic protection.

confers beneficial effects in that EXE maintains lower levels of

apoptotic signaling molecules; for example, EXE downregulates

pro-apoptotic proteins such as p53, p21, and BAX. It  is completely

unknown how EXE represses these protein expression, but accord-

ing  to several studies showing p53 is a  target of a  E3 ubiquitin ligase,

Mdm2 [56,57], we assume that EXE may  increase a proteolytic sys-

tem (e.g., ubiquitin-proteasome) via Mdm2  for the degradation of

p53 or suppress its transcription. In  addition to the suppressed pro-

apoptotic protein levels, EXE also exhibits significantly lower levels

of active (cleaved) forms of CASPASE3.

To further understand how EXE maintains low levels of apo-

ptosis, we sought to examine antioxidant capacity since oxidative

stress has been known to  be linked to apoptosis. Growing evi-

dence demonstrates that mitochondria [58,59] and NADPH oxidase

[60,61] are major sources of superoxide anion (a free radical) pro-

duction in the liver. However, endogenous antioxidant system

prevents unfavorable oxidative stress; for example, superoxide

anion molecules produced from mitochondria and NADPH oxidase

are initially converted to  a  mild oxidant, hydrogen peroxide (H2O2)

molecule by a manganese superoxide dismutase (MnSOD) [62,63]

or a copper zinc dismutase (CuZnSOD) [64]. Then, H2O2 is detoxi-

fied by other antioxidant enzymes such as peroxiredoxin 3 (PRX3)

[65,66] in mitochondria and glutathione peroxidases (GPX) in cyto-

plasm [67]. Our study shows that EXE upregulates endogenous

antioxidant levels associated with both mitochondria (e.g., PRX3)

and cytosol (e.g., CuZnSOD and GPX1/2) in  parallel with reduced

levels of lipid peroxidation. Consistent with our findings, other

studies have also reported that EXE improves hepatic antioxidant

capacity [68,69].  By contrast, other studies have shown no  changes

or even reductions in antioxidant levels after EXE [70,71]. Unfortu-

nately, clear delineation of these discrepant results is  not available

yet, but several possible factors such as duration (short-term vs.

long-term), modes (treadmill running exercise vs. swimming), and

time of sacrifice (1 h vs. 24–48 h post exercise) may  affect the status

of antioxidant levels.

In conclusion, as illustrated in  Fig. 5,  our study shows that

acute EXE results in enhanced hepatic autophagy during the early

recovery periods and that EXE-induced autophagy coincides with

activation of anabolic signaling (AKT-mTOR) and suppression of

anti-apoptosis. Moreover, we report that EXE promotes antioxida-

tive capacity. Taken together, our  study suggests that  EXE-induced

autophagy and improved antioxidative capacity prohibits unnec-

essary apoptosis and thus provides suitable cellular environment.

This favorable cellular adaptation acquired by regular EXE may  be

a critical underlying mechanism necessary for maintenance of  a

healthy liver.
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