After RE-Y90, there were no complications and the patients were discharged after 24 hours.

Control Computed Axial Tomography was performed with good response, without disease progression at 3 and 6 months, asymptomatic.

**Conclusions:** RE-Y90 for the treatment of BCLC stage B HCC is a good therapeutic option in well selected patient.

**Conflicts of interest:** The authors have no conflicts of interest to declare.



## https://doi.org/10.1016/j.aohep.2020.08.046

#### 46

## Aspartate aminotransferase as predictor of severity in SARSCoV-2 infection: linear regression model

A. Servín-Caamaño, D. Reyes-Herrera,

- A. Flores-López, E.J.A. Robiou-Vivero,
- F. Martínez-Rivera, V. Galindo-Hernández,
- C. Casillas-Suárez, O. Chapa-Azuela,
- A. Chávez-Morales, V.H. Rosales-Salyano,
- B. Jiménez-Bobadilla, M.L. Hernández-Medel,
- B. Orozco-Zúñiga, J.R. Zacarías-Ezzat,
- S. Camacho-Hernández, J.L. Pérez-Hernández,

F. Higuera-de la Tijera

Hospital General de México "Dr. Eduardo Liceaga", México

**Background and aim:** Some patients with SARSCov-2 infection develop severe disease (SARS); however, the factors associated with severity are not yet fully understood. Some reports indicate that liver injury may be a poor prognostic factor. AIM: To identify the biochemical factors related to the development of SARS with mechanical ventilation (MV) requirement in patients with SARSCov-2 and COVID-19.

**Methods.** Type of study: Observational. Cohort study. Procedure: Data from COVID-19 patients were collected at admission time to a tertiary care center. Differential factors were identified between seriously ill SARS+MV patients versus stable patients without MV. Transformation to the natural logarithm of significant variables was performed and multiple linear regression was applied, then a predictive model of severity called AAD (*Age-AST-D dimer*) was constructed.

**Results:** 166 patients were included, 114(68.7%) men, mean age  $50.6 \pm 13.3$  years-old, 27(16.3%) developed SARS+MV. In the comparative analysis between those with SARS+MV versus stable patients without MV we found significant raises of ALT (225.4 \pm 341.2 vs. 41.3 \pm 41.1; P=0.003), AST 325.3 \pm 382.4 vs. 52.8 \pm 47.1; P=0.001), LDH (764.6 \pm 401.9 vs. 461.0 \pm 185.6; P=0.001), D dimer (7765 \pm 9109 vs. 1871 \pm 4146; P=0.003), age (58.6 \pm 12.7 vs. 49.1 \pm 12.8; P=0-001). The results of the regression are shown in the Table, where model 3 was the one that best explained the development of SARS+MV; with these variables was constructed the model called AAD, where: [AAD = 3.896 + ln(age)x-0.218 + ln(AST)x-0.185 + ln(DD)x0.070], where a value  $\leq$  2.75 had sensitivity = 0.797 and 1-specificity = 0.391, AUROC = 0.74 (95%CI:

0.62-0.86; *P*<0.0001), to predict the risk of developing SARS+MV (OR = 5.8, 95%CI: 2.2-15.4; *P*=0.001).

**Conclusions:** Elevation of AST (probable marker of liver damage) is an important predictor of progression to SARS, together with elevation of D-dimer and age early (at admission) and efficiently predict which patients will potentially require MV.

**Conflicts of interest:** The authors have no conflicts of interest to declare.

| Multiple linear regression models predictive of SARS development in patients with COVID-19 and |  |
|------------------------------------------------------------------------------------------------|--|
| requirement for intubation                                                                     |  |

| requirement for intubution     |                                                                                                                    |                                                                                                                                                                                              |                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |                           |  |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------|--|
| Non-standarized<br>Coeficients | Standarized<br>Coeficients                                                                                         |                                                                                                                                                                                              | Standarized<br>Coeficients                                                                                                                                                                                   |                                                                                                                                                                                                                                                     | Р                                                                                                                                                                                                                                                                                                                                                                                   | 95% Confi<br>Interval fo                                                                                                                                                                                                                                                                                                                                                         | 95% Confidence<br>Interval for B                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  | Colinearity<br>statistics |  |
| Error Desv.                    | Beta                                                                                                               |                                                                                                                                                                                              |                                                                                                                                                                                                              | Inferior<br>limit                                                                                                                                                                                                                                   | Superior<br>limit                                                                                                                                                                                                                                                                                                                                                                   | Tolerance                                                                                                                                                                                                                                                                                                                                                                        | VIF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |                           |  |
| 2.721                          | .131                                                                                                               |                                                                                                                                                                                              | .000                                                                                                                                                                                                         | 2.462                                                                                                                                                                                                                                               | 2.980                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |                           |  |
| 229                            | .033                                                                                                               | 512                                                                                                                                                                                          | .000                                                                                                                                                                                                         | 293                                                                                                                                                                                                                                                 | 164                                                                                                                                                                                                                                                                                                                                                                                 | 1.000                                                                                                                                                                                                                                                                                                                                                                            | 1.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |                           |  |
| 3.161                          | .198                                                                                                               |                                                                                                                                                                                              | .000                                                                                                                                                                                                         | 2.770                                                                                                                                                                                                                                               | 3.551                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |                           |  |
| 194                            | .034                                                                                                               | 435                                                                                                                                                                                          | .000                                                                                                                                                                                                         | 261                                                                                                                                                                                                                                                 | 127                                                                                                                                                                                                                                                                                                                                                                                 | .878                                                                                                                                                                                                                                                                                                                                                                             | 1.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |                           |  |
| 081                            | .028                                                                                                               | 221                                                                                                                                                                                          | .004                                                                                                                                                                                                         | 135                                                                                                                                                                                                                                                 | 026                                                                                                                                                                                                                                                                                                                                                                                 | .878                                                                                                                                                                                                                                                                                                                                                                             | 1.139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |                           |  |
| 3.896                          | .414                                                                                                               |                                                                                                                                                                                              | .000                                                                                                                                                                                                         | 3.077                                                                                                                                                                                                                                               | 4.714                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |                           |  |
| 185                            | .034                                                                                                               | 413                                                                                                                                                                                          | .000                                                                                                                                                                                                         | 252                                                                                                                                                                                                                                                 | 118                                                                                                                                                                                                                                                                                                                                                                                 | .860                                                                                                                                                                                                                                                                                                                                                                             | 1.163                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |                           |  |
| 070                            | .028                                                                                                               | 190                                                                                                                                                                                          | .014                                                                                                                                                                                                         | 125                                                                                                                                                                                                                                                 | 014                                                                                                                                                                                                                                                                                                                                                                                 | .844                                                                                                                                                                                                                                                                                                                                                                             | 1.185                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |                           |  |
| 218                            | .108                                                                                                               | 148                                                                                                                                                                                          | .046                                                                                                                                                                                                         | 433                                                                                                                                                                                                                                                 | 004                                                                                                                                                                                                                                                                                                                                                                                 | .915                                                                                                                                                                                                                                                                                                                                                                             | 1.093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |                           |  |
|                                | Non-standarized<br>Coeficients<br>Error Desv.<br>2.721<br>229<br>3.161<br>194<br>081<br>3.896<br>185<br>070<br>218 | Non-standarized  Standarized    Coefficients  Coefficients    Error Desv.  Beta    2.721  .131    -229  .033    3.161  .198    -194  .034   081  .028    3.896  .414   185  .034   070  .028 | Non-standarized<br>Coeficients  Standarized<br>Coeficients    Error Desv.  Beta    2.721  .131   229  .033 512    3.161  .198   194  .034 435   081  .028 221    3.896  .414   185  .034 413   070  .028 198 | Non-standarized<br>Coeficients  Standarized<br>Coeficients  P    2.721  .131  .000    -229  .033 512  .000    3.161  .198  .000  .001   081  .028 221  .004   081  .028 221  .004   185  .034 413  .000   195  .034 413  .001   218  .108 148  .046 | Non-standarized<br>Coeficients  Standarized<br>Coeficients  P  95% Confi<br>Interval fe    Error Desv.  Beta  Inferior<br>limit    2.721  .131  .000  2.462   229  .033 512  .000 293    3.161  .198  .000  2.770   194  .034 435  .000 261   081  .028 221  .004 135    3.896  .414  .000  3.077  .185  .034  .413  .000 252   070  .028  .190  .014 125  .218  .108 148  .046 433 | Non-standarized<br>Coeficients  Standarized<br>Coeficients  P<br>Coeficients  95% Confidence<br>Interval for B    2.721  .131  .000  2.462  2.980    3.161  .198  .000 223 164    3.161  .198  .000  2.770  3.551   081  .028 221  .004 135 026    3.896  .414  .000  3.077  4.714   185  .034 413  .000 252 118   070  .028 190  .014 125 014   218  .108  .148  .046 433  .004 | Non-standarized<br>Coeficients  Standarized<br>Coeficients  P  95% Confidence<br>Interval for B  Colinearit<br>statistics    2.721  .131  .000  2.462  2.980  Tolerance   229  .033 512  .000 263 164  1.000    3.161  .198  .000  2.770  3.551  .000 261 127  .878   081  .028 221  .004 135 026  .878    3.896  .414  .000  3.077  4.714  .185  .034 413  .000 252 118  .860   070  .028 190  .014 125 014  .844   185  .034 413  .000 252 118  .860   070  .028 190  .014 125 014  .844 |  |                           |  |

AST, aspartate aminotransferase; C, constant; DD, D dimer; VIF, variance inflation factors.

Resume of the model:

R = 0.512,  $r^2 = 0.262$ ,  $r^2$  adjusted = 0.256, standard error = 0.331.

R = 0.552, r<sup>2</sup> = 0.305, r<sup>2</sup> adjusted = 0.294, standard error = 0.322.

R = 0.570,  $r^2$  = 0.325,  $r^2$  adjusted = 0.310, standard error = 0.318. Durbin-Watson = 1.53.





## https://doi.org/10.1016/j.aohep.2020.08.047

#### 47

# Classification of alcohol consumption pattern in the Mexican population

M. Martínez-Castillo, D. Rosique-Oramas, Z. Medina Ávila, G. Gutiérrez-Reyes

Liver, Pancreas and Motility laboratory, Unit of Experimental Medicine, School of Medicine, National Autonomous University of Mexico (UNAM), General Hospital of Mexico, Mexico City

**Background and aim:** The evaluation of alcohol consumption is estimate by the evaluation of frequency and the concentration of

