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A B S T R A C T

The latest studies on the epidemiology of diverse types of cancers have located in the scene the relevance of liver

tumors, particularly hepatocellular carcinoma (HCC). HCC is a life-threatening malignancy triggered by chronic

exposure to hepatitis B and C viruses, excessive alcohol intake, hepatic lipid droplet accumulation, and aflatoxins

that lead to persistent liver damage. The occurrence of such etiological risk factors deeply marks the variability in

the incidence of HCC worldwide reflected by geography, ethnicity, age, and lifestyle factors influenced by cultural

aspects. New perspectives on the primary risk factors and their potential gene-environment interactions (GxE)

have been well-addressed in some cancers; however, it continues to be a partially characterized issue in liver

malignancies. In this review, the epidemiology of the risk factors for HCC are described enhancing the GxE interac-

tions identified in Mexico, which could mark the risk of this liver malignancy among the population and the

measures needed to revert them. Updated healthcare policies focusing on preventive care should be tailored

based on the genetic and environmental risk factors, which may influence the effect of the etiological agents of

HCC. Robust regional investigations related to epidemiological, clinical, and basic studies are warranted to under-

stand this health problem complying with the rules of ethnic, genetic, environmental, and social diversity.

© 2021 Fundación ClínicaMédica Sur, A.C. Published by Elsevier España, S.L.U. This is an open access article under

the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords:

Hepatitis viruses

Alcohol

Metabolic liver disease

Aflatoxins

Diet

1. Introduction

Currently, primary liver cancer in the form of hepatocellular carci-

noma (HCC) is the sixth most diagnosed neoplastic disease and the

third leading cause of cancer-related death worldwide [1,2]. Globally,

906,000 new cases and 830,00 deaths were caused by this malig-

nancy in 2018 [1]. HCC imposes a high disease burden, especially in

low and middle-human development index countries or in risk sub-

populations that lack systematic surveillance programs and timely

diagnostics-to-treatment strategies regardless of socioeconomic level

[1]. It is a potentially life-threatening disease curable by several med-

ical procedures if diagnosed at early stages [3−5]. According to geog-

raphy, it also shows incidence and prevalence variances within

populations [1,2,6,7]. Overall, the main etiologies of HCC are chronic

infections caused by the hepatotropic hepatitis B (HBV) and hepatitis

C (HCV) viruses, alcohol abuse, metabolic fatty liver disease, and

exposure to aflatoxin B1-contaminated foodstuffs [8]. Studies on the

worldwide epidemiology of HCC show that these multiple etiologies

can predominantly act as single risk factors in some regions, but

mostly, they have a synergic pro-oncogenic effect relative to HCC [9].

Furthermore, the fraction of contribution of each predisposing risk

factor varies from one region to another [2,10]. Therefore, identifying

such factors by area and population is relevant to implementing
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primary prevention, early detection, and feasible management strate-

gies.

Except for ambient aflatoxins, the HCC canonical causative agents

activate direct or indirect pathogenic pathways causing liver injury

and cellular inflammation (necroinflammation), leading progres-

sively to multistage fibrosis, cirrhosis, and ultimately HCC [11]. How-

ever, 30% of the HCC cases can occur directly without the

development of cirrhosis. (Fig. 1). The underlying mechanisms that

drive the natural course of liver disease may occur within a lapse of

20 to 30 years since the average age of detection of late-stage HCC is

often above the age of 50. The variations in the global prevalence of

HCC are also influenced by co-factors such as ethnicity, gender, age,

or tobacco smoking [11]. However, the occurrence of HCC will not

depend only on the prevalence of each etiological factor but also on

the measures taken to limit them. Fortunately, most of them are pre-

ventable. For example, the early onset of HCC in children and young

adults in Alaska Natives was eliminated by introducing newborn and

catch-up vaccination schemes that reduced the number of HBV car-

riers [12]. In contrast, within the high endemic regions for HBV infec-

tion in Asia and Africa, the lack of aflatoxin-neutralizing control

measures contributes to higher HCC incidence rates than non-

exposed populations [13].

Latin America (LA), comprising the Spanish and Portuguese-

speaking countries of the American continent, is challenged by sub-

stantial predisposing factors. In this sense, the efforts put in by the

International Agency of Research on Cancer to provide reliable popu-

lation attributable fractions for HCC depend on the quality of the local

cancer registry [2, 7]. This situation is notable in LA, where commit-

ted national registries detailing the epidemiology of liver cancer sta-

tus based on histopathological evidence are lacking; thus, leading to

unintended discrepancies compared to the estimations of HCC pro-

jected by the Global Cancer Observatory (GLOBOCAN) [14]. Further-

more, a pitfall is a reduced number of robust epidemiological studies

(prospective or retrospective) in LA or, in the best of cases, this num-

ber is profusely limited compared to remarkable studies conducted

in Asia, Europe, or the US.

Despite these shortcomings, modern-day LA populations, rich in

biological diversity and multi-cultural heritage, share a common

ancestral linage mainly comprised of Amerindian, Caucasian, and

African ancestors. These characteristics provide an opportunity to

explore the regional gene-environmental (GxE) interactions related

to the onset and outcome of complex multifactorial diseases such as

cancer [15]. Therefore, it is expected that differences in virus geno-

types, the host's genetic variations (single nucleotide polymorphisms,

SNPs), as well as regional dietary components or patterns, may influ-

ence the outcomes of liver disease and consequently the incidence of

HCC. These features set the scene for the complexity of the epidemi-

ology, diagnosis, and treatment of HCC in LA, including Mexico [16].

Currently, novel research revealing the genomic and molecular

characterization of HCC is a fundamental aspect to understand the

link between causal agents (HBV, HCV, alcohol, fatty liver, toxins),

pathobiology, and oncogenesis of HCC. Table 1 summarizes some fea-

tures that mark the difference between different etiological agents

regarding the histological phenotype and clinical outcomes. The rele-

vance of these features is the development of more specific and sensi-

tive diagnostic markers and therapeutic strategies at the early stages

of HCC to lower the morbidity and mortality rate in diseased patients.

However, the knowledge needed to understand the link between any

etiological risk factor and HCC begins by investigating the degree of

regional incidence or prevalence of each one of them [17]. This

review describes the risk factors for HCC enhancing the GxE interac-

tions identified in Mexico that could mark the risk of this liver malig-

nancy among the population and the measures needed to revert

them.

2. Epidemiology of the etiological risk factors for HCC in Mexico

2.1. HBV

A member of the Hepadnaviridae family, human HBV is a rela-

tively small partially double-stranded DNA virus comprising ten dis-

tinct genotypes (A-J) worldwide. HBV's genome contains four open

reading frames (ORFs) denoted as Pre-S/S, Pre-C/C, P, and X encoding

seven viral proteins: small, medium, and large hepatitis B surface

antigens (HBsAg), e-antigen (HBeAg), core-antigen (HBc), polymerase

(Pol) and X (HBx) [11]. The molecular link between HCC and chronic

HBV infection is a multi-step process related to the virus's life cycle.

During persistent infection, the natural selection of mutated quasi-

Fig. 1. The natural course of liver disease is triggered by HBV, HCV, alcohol, or fatty liver. ( ) HCC is a long-term, multi-step process involving initial, intermediate, advanced

fibrosis, and cirrhosis. Fibrosis may be reversible if the insulting agent is withdrawn. ( ) HCC is known to present without cirrhosis.

Table 1

Different clinical features of hepatocellular carcinoma.

Parameter Proliferative class Non-proliferative class

Etiology HBV HCV (genotype 3)

Alcohol consumption

Alpha-fetoprotein levels High Low

Clinical data More aggressive tumors

with poor

differentiation

Less aggressive with

hepatocyte-like cells

Epigenetic signature Global hypomethylation Hypermethylation

Reference 44.
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species encoding truncated and mutated preS/S protein sequences is

produced [18]. These aberrant molecules then activate a series of cel-

lular processes related to the transactivation of transcription factors,

upregulation of the immune-inflammatory response, the unfolded

protein response, as well as the endoplasmic reticulum stress-depen-

dent and stress-independent pathways [19−21]. Furthermore, inte-

gration of the HBx sequence per se causes genetic instability of the

hepatocyte's genome, and the HBx product interacts with other pro-

teins, causing transactivation of viral and cellular genes involved in

inflammation and proliferation pathways [22,23]. Furthermore, hep-

atitis B occult infection, defined as the presence of HBV in the liver

and/or serum of HBsAg negative individuals, is considered a potential

oncogenic co-factor contributing to HCC in different populations

worldwide [9].

From a public health standpoint, the impact of HBV infection on

the potential development of HCC is mainly analyzed in terms of the

endemicity of HBsAg, the age of acquisition, mode of transmission,

and HBV genotype [24−26]. As in most countries, hepatitis B preva-

lence is conventionally reported using HBsAg prevalence despite the

bias it causes in the data analysis. Double positive HBsAg and anti-

HBc antibody markers are evidence of active infection, whereas test-

ing positive to HBsAg alone does not distinguish between acute or

chronic infection. However, in the case of Mexico, another confound-

ing factor related to the allegedly low prevalence of HBsAg is the high

prevalence of occult B infection which has been frequently docu-

mented among Amerindian (Nahuas, Huichols) and admixed popula-

tions in the country [27,28]. Complementary to this fact is the trend

of a relatively higher level of the anti-HBc marker, suggesting that

past HBV infection may be higher than suspected. With this in mind,

we have recommended testing for HBsAg, anti-HBc, and HBV-DNA in

risk patients to prevent underdiagnosis in the clinical setting [29].

In a meta-analysis study, Roman et al. concluded that HBsAg prev-

alence had remained steady since 1976 (to 2010) with a prevalence of

0.3% in which anti-HBc ranged from 3.13% (95% CI, 3.01−3.24) in

blood donors to 27.7% % among hemodialyzed patients [30]. In con-

trast, testing for HBV among samples collected for the National

Health and Nutrition Surveys from the general population has shown

differences. Valdespino J et al. reported a prevalence of 0.21% (95%CI

0.11−0.37) in samples from the year 2000 among adults over 20 years

[31] whereas Lopez-Gatell et al. tested for natural immunity against

HBV infection with a weighted prevalence of 0.23% (Anti-HBsAg and

anti-HBc positive, HBsAg negative) in survey samples of 2012 among

a population aged 10-25 years [32]. However, the accumulated trend

of new cases of HBV infection registered in the national weekly sur-

veillance reports since 2000 shows an incidence rate of 1.7 £ 105

among people between the ages of 25-44 years (https://epidemiolo

gia-salud-gib-mx/anuario/html/incidencia_casos.html).

Furthermore, a recent study by Laguna et al. in West Mexico found

1.0% of HBsAg positivity among outpatients attending a third-level

hospital [33], and Jose-Abrego et al. found 28% in HIV patients with

low socioeconomic status [29]. These data suggest that HBV is still

circulating significantly; thus, chronicity should be confirmed in

HBV-infected patients to decide if periodical screening for HCC is nec-

essary.

Most studies conducted in adults show that horizontal transmis-

sion is the main route of acquisition through unsafe sexual practices

and contaminated biological fluids [30]. In this context, among low

socioeconomic populations, parents with risk factors for HBV infec-

tion may horizontally infect their children, who are not protected by

vaccination, while mother-to-child transmission has not been docu-

mented to date in Mexico [34]. In conjunction, focused catch-up

immunization campaigns should be considered in several subpopula-

tions throughout the country.

The study of the natural history of HBV infection and the inci-

dence of HCC is narrated conventionally to what occurs in popula-

tions outside LA. The Asian HBV/C and the European HBV/D have the

worst prognosis, compared to the respective genotypes B and A

[26,35]. Also, intermediate-high endemicity rates of chronic infection

and mother-to-child vertical transmission are typical in these

regions.

Contrarily, the low incidence of HBV-related HCC [36,37] is attrib-

uted to a low prevalence of HBsAg in Mexico despite the high rates of

anti-HBc antibodies and occult B infection, suggesting that many peo-

ple (nearly 15 million) may have been exposed to the virus with

apparently no severe liver damage [30]. The fact that the HBV/H was

hosted by the endemic Amerindian populations allowed for long-

term immunogenetic adaptations influencing the natural history of

HBV infection in modern-day admixed populations [38,39]. In Sozzi

et al. study, HBV/H showed a low replication phenotype compared to

genotype HBV/D3 [40]. Similarly, Tanaka et al. observed the absence

of inflammation and liver fibrosis in chimeric mice mono-infected

with HBV/H after 24 weeks, compared with mice co-infected with

HBV/G [41]. Such evidence suggests efffectively that the low general

trend of HBV-induced HCC in Mexico coincides with the low risk of

liver damage; however, further investigation is required.

Although HBV/H predominantly circulates, other genotypes have

been detected. HBV/G prevails among men who have sex with men

and patients infected with human immunodeficiency virus (HIV),

whereas HBV/A2 and D4 have been identified among chronically-

infected patients living in urban areas [29,38]. Interestingly, in

patients infected with HIV receiving retroviral therapy, co-infection

with heterologous mixtures of HBV genotypes (H/G/D) and high viral

loads were associated with an increased risk of liver damage [42]

compared to HBV/H mono-infected patients having typical lower

viral loads as previously reported [38]. HBV/H mono-infection

presents a milder course of disease than dual or triple infections that

increase the risk of long-term liver damage. Therefore, the distinct

HBV genotypes circulating among the Mexican population may cause

different outcomes that impact the risk for HCC.

Another common HBV genotype circulating within Central and

South America is HBV/F (F1-F4), the endemic virus among the indige-

nous populations [38,43]. Specifically, HBV genotype F1b has been

associated with HCC in Alaska Natives [25], Argentinians, and

recently in Andean Native Peruvians. In this group, a novel global

DNA hypermethylation pattern and gene expression signature was

reported in opposition to what has been commonly reported [44].

Interestingly, we recently documented the first-time detection of

HBV F1b in the Mexican-Native population [29] and in an admixed

Mexican patient who presented an occult phase at the end of the

acute stage and then recovered [45]. Finally, the role of immune

escape, antiviral resistance, and HCC-associated mutants related to

HBV/H require more research to continue studying this genotype's

dynamic and adaptive behavior among the Mexican population [46].

2.2. HCV

A member of the Flaviviridae family, HCV is a single-stranded RNA

virus encoding a polyprotein precursor cleaved in the hepatocyte by

cellular and viral proteases into ten functional viral proteins [11].

Core protein and envelope glycoproteins E1 and E2 are structural

proteins required to assemble the virions. In contrast, the remaining

non-structural (NS) proteins (p7 viroporin, NS2 protease, NS3-4A

complex harboring protease-NTPase/RNA helicase activities, NS4B,

NS5A, and the NS5B RNA-dependent RNA polymerase) are involved

in replication activities [20, 21]. All HCV encoding proteins contribute

to the oncogenic pathways [47].

HCV genome manifests a high degree of inter-host genetic hetero-

geneity represented by 8 genotypes and 90 subtypes as of 2019 that

are distributed among the human populations worldwide [48]. Fur-

thermore, intra-host nucleotide diversity due to the lack of proof-

reading activity of the viral RNA-dependent RNA polymerase

generates in the infected host a quasi-species cloud, a viral "colony"
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containing many mutated genomes with immune escape capability

and baseline resistance-associated substitutions [49]. These intra-

host HCV quasi-species have clinical implications related to chronic-

ity that, together with a tumorigenic cellular microenvironment, has

been associated with HCC [50]. HCV-induced HCC comprises multi-

factorial and complex processes between the virus (genotype), the

liver immune system, and the host's metabolic status [47]. In this

sense, the relationship between lipid structures and metabolism,

spontaneous clearance, and chronicity has been considered [51,52]

and will be discussed in this review.

HCV infection affects 71 million people worldwide [53], and the

availability of the highly effective direct-acting antivirals (DAAs) led

the WHO's Global Health Sector Strategy program to target the goal

of its elimination by 2030. Undoubtfully, epidemiological data

regarding the endemicity among low and high risks populations is

required among all nations to conveniently deliver these drugs to all

eligible patients regardless of socioeconomic status. However, studies

regarding the retrospective or prospective association between HCV

and HCC have not been conducted explicitly in LA.

In Mexico, 0.27% of anti-HCV antibodies were detected in samples

taken among the general population for the 2012 National Health

and Nutrition Survey [54]. In an updated meta-analysis (2008-2019),

anti-HCV positivity ranged from 0.77% to 2.5% among low-risk Mexi-

can groups compared to 11.8% to 39.6% in high-risk groups that

included prison inmates, injection drug users, and dialyzed patients

[55]. In a hospital-based study in West Mexico, 3.9% of anti-HCV anti-

bodies were detected [33]. Genotyping assays performed during the

same study period found genotypes 3a, 4a/c/d, and 5a. This data indi-

cates that a re-shaping of the molecular epidemiology landscape has

impacted the regional genotype distribution in the last decade. Some

studies have suggested that the propensity to develop HCC is related

to HCV genotype [56]; however, the role of HCV genotypes remains

debatable. Nonetheless, the predominant prevalence of the HCV

genotype 1 and the emerging of 3a in Mexico may become a risk for

HCC development in chronically-infected HCV patients if synergistic

co-factors are prevalent [57]. These changes are mainly due to the

emerging parenteral transmission of HCV by injection drug use and

unsafe tattooing that has increased in the last decade among incar-

cerated people and the low-risk general population [55].

Regarding the role of the host's genetic susceptibility for the clear-

ance or chronicity of HCV infection, another critical factor is the influ-

ence of IL28B gene polymorphisms, mainly in response to pegylated

interferon plus ribavirin antiviral therapy in HCV genotype 1-infected

patients during the pre-DAAs era [58]. In the relationship between

IL28B SNPs and HCV clearance, the role of ethnicity has been under-

scored. Currently, the new DAAs are considered pan-genotypic, mini-

mizing the role of HCV genotypes. However, IL28B (rs12979860) T

risk allele was associated with liver cirrhosis in Egyptian HCV-

infected patients treated with DAAs but was not a predictor for HCC

[59]. In the case of Mexico, the rate of carriers with the IL28B

(rs12979860/rs8099917) T/G risk haplotype is higher among Mexi-

can Amerindian populations than in admixed Caucasians [60]. How-

ever, it is unclear if treated patients are at higher risk for cirrhosis or

HCC. Further studies are needed to clarify the relationship between

HCV�s molecular evolution and quasi-species dynamics, and the

genetic susceptibility for HCV-induced HCC in chronically-infected

patients.

2.3.Alcohol-related liver disease

Alcohol-related liver disease is a nosological spectrum generated

by excessive chronic alcohol consumption causing liver injury. The

pathological accumulation of lipids into the hepatocytes (steatosis)

followed by chronic inflammation (steatohepatitis) are the two cell

processes that activate the fibrogenic and oncogenic pathways

towards cirrhosis and HCC respectively [61]. Alcohol-induced liver

cirrhosis is a leading hallmark for HCC in countries in which HBV or

HCV infections are at low prevalence; however, it is a synergistic

oncogenic factor in the setting of chronic viral infections [62].

Liver diseases are the fourth cause of death in Mexico; alcoholic

liver disease accounted for about 35% of liver disease mortality in

2019 [63], with an incidence rate of 3.2 £ 105 inhabitants [64]. How-

ever, the amount of alcohol per capita per year, alcoholic liver dis-

ease, and alcohol-induced HCC may not be linearly related. This

paradox may be explained by a combination of genetic and environ-

mental factors that may increase the risk for liver cirrhosis in some

populations.

The WHO's Global Health Observatory reported in 2016 an alcohol

consumption of 5.6 L of pure alcohol per capita that raised to 15.6 L

among drinkers in Mexico [64], lower than countries such as Russia

or even France. However, the pattern of alcohol consumption consist-

ing of light to moderate beer drinking on weekends during youth can

gradually raise to daily consumption of hard spirits (tequila, mezcal)

in the lapse of one or two decades [65]. Heavy drinking (300 g/occa-

sion) was associated with a relatively higher frequency of the DRD2/

ANKK1 (rs1800497) A1/A1 risk genotype among Amerindian groups

[66] and the novel TAS2R38 (AVV/AVV) risk haplotype associated to

drinkers compared to non-drinkers among mestizos [67]. In relation

to liver damage, early onset of liver cirrhosis in alcoholic patients was

associated with dyslipidemia and being a carrier of the APOE, e2 allele

[68]. Likewise, ADH, ALDH, and CYP2E1 are highly polymorphic genes

encoding alcohol-metabolizing enzymes modulating acetaldehyde

production. Interestingly, the risk or protective alleles of these genes

are inherited differentially among Amerindian and mestizos Mexi-

cans in the form of slow-, intermediate- and fast-metabolizer profiles

[69] that may influence the course of alcohol-induced liver damage

and cause early death due to complications of cirrhosis rather than

the development of HCC, thus not reaching the stage of overt cancer

malignancy [37] .

In light of this, the Latin American Association for the Study of the

Liver (ALEH) endorses the need for future studies to implement strat-

egies for managing alcohol-related liver disease based on regional

variances in genetic susceptibility and cultural determinants of alco-

hol consumption [70]. This proposal could spark the implementation

of systematic multi-center and collaborative studies between

regional researchers and medical specialists to decipher the role

these risk factors have on alcohol-induced liver disease and HCC.

2.4. Metabolic-related liver disease

In the last decade, the world trends of hepatitis B and C virus

infections have decreased due to vaccination and more effective

treatment strategies. However, an increasing incidence of HCC

related to obesity and fatty liver has emerged, and with the global

obesity epidemic, the incidence is unlikely to improve [71]. Non-alco-

holic fatty liver or steatosis (once excessive alcohol intake is dis-

carded) and the subsequent oxidative stress leading to

steatohepatitis are important hallmarks for HCC, acting as synergistic

co-factors in patients with viral hepatitis or alcohol-related liver dis-

ease. The mechanistic link between metabolic steatohepatitis and

HCC has been widely studied. Insulin resistance and dyslipidemia are

conditions that trigger inflammatory, fibrogenic, and oncogenic path-

ways. In this context, imbalanced dietary intake or unhealthy dietary

patterns leading to dyslipidemia and obesity may play an essential

role in the long-term development of HCC pathogenesis.

2.4.1. Diet and liver disease

The association between regional dietary patterns containing spe-

cific risk or protective nutrients and the development of HCC has

been intensively studied, coinciding with the role of fat content [72].

In this regard, most traditional diets of LA contain regional staple

foods that are considered healthier than the modern-day globalized
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diets. In Mexico, traditional diets containing dishes prepared with

prehispanic ingredients are viewed as nutritionally balanced because

they include cereals, legumes, fruits, vegetables, seeds, nuts, and fiber

that provide plant-based proteins and fats, low-glycemic complex

carbohydrates, adequate vitamins and minerals with a lower content

of animal fats or high-fat meats. Formerly, these dietary ingredients

were obtained by traditional husbandry techniques and contained

fewer processed components [73]. Currently, there is an epidemio-

logical transition, leading to the coexistence of two opposite nutri-

tion-related concerns: malnutrition and overweight/obesity.

Similarly, as mentioned for the other risk factors, this situation is a

serious concern in LA due to the increasing global incidence of non-

communicable diseases, including cancer [74,75].

According to the 2020 National Health and Nutrition Survey,

36.0% of the adult population, 18.6% of children (5-11 years), and

17.0% of adolescents (12-19 years) are obese [75]. Regional genetic

and environmental factors in Mexico may be contributing to this

alarming rise of obesity and obesity-related co-morbidities. Mainly, a

high prevalence of dyslipidemias, hypertriglyceridemia (49%), and

hypercholesterolemia (26.1%) have been reported nationwide, which

relates to the increase in obesity, type 2 diabetes, liver steatosis, and

cardiovascular diseases [76].

Furthermore, several host genetic alleles modulating liver disease

have been identified in patients with chronic liver disease. For exam-

ple, the oral fat-sensing taste receptor CD36 (rs1761667) G>A poly-

morphism is associated with liver fibrosis and consuming high

dietary fat and cholesterol in patients infected with HCV [77]. In con-

trast, a protective role of the APOE e4 allele related to less liver dam-

age in patients with spontaneous clearance and

hypercholesterolemia [78] has been reported. Interestingly, choles-

terol and its derivatives show immunomodulating effects on the

course of HCV infection related to spontaneous clearance [79]. Addi-

tionally, increasing evidence shows that liver lipid dynamics are

modulated by the PNPLA3 (rs738409) C>G polymorphism. More

importantly, this polymorphism has a differential global allele distri-

bution that impacts the outcomes of alcohol and metabolic-related

cirrhosis and even HCC [70,80].

Interestingly, the HCV viral particle containing a lipid membrane

envelope has a hypolipidemic-like effect on plasmatic lipids and con-

comitantly induces an intrahepatocyte lipid-rich micro-environment

to enhance replication [35,79]. Regarding this point, we were able to

characterize the effect of the adherence to a typical diet containing

more than 4.9% of poli-unsaturated fats and less than 21.5 gr/d of

fiber associated with lower viral load in patients with HCV infection

[81]. These findings may have implications for the nutritional man-

agement of both treatment-naive and post-treated patients.

Further insights on the characteristics of the hepatopathogenic

diet frequently consumed by young and obese Mexicans show that

an unbalanced ratio of saturated/unsaturated fats and cholesterol,

among other nutrients, is associated with fatty liver and histologically

confirmed steatohepatitis [82]. Therefore, diet composition may play

a key role as a modifiable lifestyle factor to avoid chronic liver disease

[83].

With this evidence, we have proposed consuming the GENOMEX

diet containing traditional food components (nutrients) consistent

with the Mexican adaptive gene polymorphisms and food culture

[73]. Patient adherence to the GENOMEX diet significantly improved

anthropometric and metabolic parameters, including weight, lipid

profile, and insulin resistance in a 24-week intervention study [84].

This diet was tailored to provide regional nutritional support in Mexi-

can patients with chronic disease to avoid relying on foreign dietary

strategies [85].

Nonetheless, further regional large-scale and prospective studies

are needed to provide evidence regarding the long-term effect of this

diet on the onset and progression of metabolic abnormalities related

to obesity and other co-morbidities, including HCC.

2.4.2. Cholesterol and HCC

High lipid diets, particularly those enriched in cholesterol, are

critical determinants in HCC as tumor inducers and promoters. HCC

requires excessive lipid content because they are needed as building

blocks for new membranes in the proliferative process, fuel supply,

and intermediaries for post-translational modification of essential

proteins such as Ras. Therefore, it is common to find a high depen-

dence on free fatty acids and cholesterol in HCC tumors [86].

Studies carried out in mice models have proved that dietary cho-

lesterol accelerates the hepatocarcinogenic process by a mechanism

dependent on the generation of reactive oxygen species (ROS), DNA

damage (judged by increased levels of 8-hydroxyguanine), and the

decrement in the expression of the leading DNA repair enzymes such

as p53, ATM, CHK1, CHK2, among others [87]. Mitochondria

impairment also seems targeted by cholesterol overload, as previ-

ously proved [88]. Furthermore, controlling the cholesterol content

by experimental therapeutic approaches using GDF11 improved

mitochondrial functionality, increased ATP synthesis, and ROS decre-

ment. These features were associated with a lesser aggressivity phe-

notype in human HCC cell lines [89, 90]. These data show that dietary

cholesterol is a significant risk factor for the initiation of HCC.

Although the role of cholesterol in the expression or activation of

these genes remains elusive, it is clear that GxE interactions are act-

ing at the carcinogenic level.

We recently proved that cholesterol-enriched diets, similar to the

westernized or high cholesterol diet (1.0% cholesterol), conditioned

the development of a subtype of HCC tumors with high aggressivity

and poor prognosis using massive RNA sequencing analysis in a

mouse model [91]. The specific signature revealed 62 genes differen-

tially expressed and conserved between experimental diets. Addi-

tionally, human HCC signatures showed significant enrichment in

HCCs with the following features: poor survival, hepatoblast traits,

activation of c-Met/HGF, and late TGF-b signaling pathways. Even

more, a comparison with a specific group of human HCCs (n= 101)

revealed a significant decrease in overall survival for patients

included in the cluster with the cholesterol-associated signature

compared with cholesterol-independent HCCs (p= 0.01).

Based on the GxE interactions, the mouse model study discovered

four remarkable genes, Slc41a3, Fabp5, Mthfd1, and Igdcc4, with high

predictable strength (Fig. 2). A close view of these genes reveals, as

expected, a profound impact on metabolic control. Slc41a3 is a mito-

chondrial cation transmembrane transporter involved in Mg2+

homeostasis and is required to meet the need for aberrant prolifera-

tion in cancer [92]. Fabp5, fatty acid-binding protein 5, transports

intracellular lipids for storage purposes, providing building blocks for

membrane construction and energy supply, both highly required in

proliferating cells. It is also involved in epithelial-mesenchymal tran-

sition [93]. Expression of folate cycle enzyme Mthfd1l, methylenete-

trahydrofolate dehydrogenase 1 like, has been associated with poor

prognosis in HCC coffering metabolic advantages due to the relevance

of folates in purine synthesis and translation initiation [94]. Finally,

Igdcc4 encodes the neighbor of Punc E11, also known as Nope. It is

barely detected in the adult liver, and it is a sensitive marker of HCC

associated with stemness. Nope protein has been demonstrated to be

a confident marker for HCC in the clinic because it could be highly

detected in AFP-positive and AFP-negative tumors [95].

Cholesterol overload in the liver also elicits this specific four-gene

signature associated with a poor prognosis in patients with HCC

(n=371) compared with non-tumor liver tissues (n=50). Also, a com-

parison between cholesterol-associated HCC and non-cholesterol-

associated HCC showed significant differences in median months of

overall survival (45.11 vs. 69.57 mo) [91]. This signature could be

helpful in the clinical setting for making decisions in terms of diagno-

sis, prognosis, and treatment (Fig. 2). The study provides clear evi-

dence of GxE interactions favoring HCC progression and aggressivity.

This scenario is particularly relevant in societies undergoing nutrition

5

L.E. Gomez-Quiroz and S. Roman Annals of Hepatology 27 (2022) 100649



transition where dietary changes consist of high-lipid diets, particu-

larly cholesterol.

2.5. Ambient toxins

2.5.1. Aflatoxins

Mycotoxins are secondary metabolites produced by certain fungi

of the Aspergillus family, particularly A. flavus, A niger, or A. parasiticus,

contaminating crops such as corn, peanuts, and walnuts, among

others and food derived from these. Among these, mycotoxins fumo-

nisins, zearalenone and aflatoxins are particularly relevant as con-

taminants. Mycotoxins could be produced during harvesting or

storage. In LA, contamination of foods by fungi is favored by tropical

and subtropical environmental conditions, such as constant warm

temperature and humidity [96].

Aflatoxins are potent hepatocarcinogens, particularly aflatoxin B1

(AFB1), acting through DNA oxidative damage and adduct formation

(Aflatoxin-N7-guanine adduct); this is particularly relevant in the

liver because it is the main site for its biotransformation producing

the aflatoxin epoxide with a high affinity for DNA and protein modifi-

cations (lysine adducts, for example, and aflatoxin-albumin, which is

a clinical biomarker) (Fig. 3).

A significant association between dietary AFB1 and the develop-

ment of HCC has been reported, particularly in countries of LA with

high production of peanuts, such as Brazil, Argentina, Uruguay, and

Paraguay. Still, aflatoxin contamination is more significant in Colom-

bia and Ecuador [96], and aflatoxin contamination in corn is particu-

larly relevant in Venezuela and Guatemala. Recent studies in

Guatemala, a country with alarming HCC incidence and death in LA,

have revealed a positive association between aflatoxin exposure and

cirrhosis [97] and elevated albumin-aflatoxin levels among adults.

This was closely related to tortilla consumption rather than

maize [98]. Some retrospective case-control studies evidenced

the GxE interactions between AFB1-albumin and AFB1-DNA adducts

and genetic variants of the RecA/Rad51 family DNA repair enzymes

[99, 100].

The well-known tumor-suppressive protein p53 has been widely

associated with AFB1-induced liver cancer. A 53% of HCCs studied in

patients from areas with high exposure to AFB1 have revealed muta-

tions in the p53 gene (TP53) [101]. AFB1 directly targets TP53 induc-

ing G:C!T:A transversion in the third base of codon 249 as shown in

vitro studies [102]. In LA, there seems to be some conflicting evi-

dence; for example, a recent study showed no evidence of TP53 vari-

ant in 69 HCC samples (0/69 cases) [103], but a pioneering study

conducted in the mid-90s in the state of Nuevo Leon in Mexico

explored a limited cohort of HCC samples (n=21), finding only 3/21

cases with the mutational hotspot at codon 249 in the TP53 gene

[104]. Recently, a cross-sectional study conducted in Guatemala in

HCC tissues (n=91) revealed 47% of the tumoral tissues had a TP53

mutation, being more prevalent the variant R249S mutation (24%)

[105].

Nonetheless, it is important to emphasize the fact that chronic

HBV infection and AFB1 exposure act synergistically in HCC [97,106].

In addition to TP53, more evidence of the GxE interactions in

AFB1-induced HCC arrives from the biotransformation pathways

of the aflatoxins. Phase I and II detoxification routes transform

Fig. 3. Detoxifying route of Aflatoxin B1 (AFB1) and potential effects in the liver.

Fig. 2. Cholesterol-associated four-gene signature defines a subtype of human liver cancer with a poor prognosis. Overall survival, according to Simoni-Nieves et al. 2021 [91].
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the AFB1, and the exploration of critical genes in these pathways

could show relevant information. Genetic variation in epoxide

hydroxylase and glutathione S-transferase were contrasted with

AFB1-albumin in HCC; data showed that both genes were signifi-

cantly repressed in patients with HCC [107]. These findings leave

clear that genetic susceptibility to environmental AFB1 could play

a synergistic role with hepatotropic viruses or cholesterol over-

load, mainly due to the consumption of the hepatopathogenic

diet mentioned before.

2.5.2. Nixtamalization and aflatoxins changes

Nixtamalization is the alkaline cooking process of maize kernels

traditionally implemented in LA, particularly in countries of the

ancient Mesoamerica: Mexico and Central America [37,108] and

recorded in historical documents (Fig. 4). Nixtamalization consists of

cooking the dry maize kernels with 2% lime (called "cal"; Ca(OH)2,

reaching pH > 10) at an average temperature of 92 °C for 1-2 h, fol-

lowed by a wash with water [108]. This process eliminates the fungi

contamination and aflatoxins (particularly in the lime broth or

Nejayote). Aflatoxins are also subjected to physical and (bio)chemical

transformation, reducing the molecule, significatively decreasing its

toxicity and carcinogenic potential. Aflatoxin's inactivation could also

be done in the process of cooking the flat disk of dough in a hot pan

(Fig. 5, red curve arrows indicate potential exit or chemical transfor-

mation of aflatoxins). This procedure may relate to the low rate of

aflatoxin-induced HCC registered in Mexico, although further studies

are warranted [37].

3. Closing remarks

This review described relevant GxE interactions modulating

the role of the main risk factors related to HCC in Mexico. HBV/H

is the endemic genotype of Mexico, showing a low risk for

chronic infection, cirrhosis, and HCC among the general popula-

tion. Nonetheless, HIV patients with co-infection with genotype

mixtures containing non-H genotypes display high viral loads and

liver damage. HCV genotypes 1 and 3a are the main genotypes

circulating to date in the country, although the former has risen

due to an increase in injection drug use, and HCV prevalence

remains high among incarcerated people and drug addicts. Addi-

tionally, non-endemic genotypes 4 and 5 have been detected.

Alcoholic liver disease remains a risk factor for cirrhosis due to

interactions between genetic susceptibility related to alcoholism

and cultural determinants influencing the pattern of drinking

among the population.

Just a decade ago, the leading causes were HCV and alcoholic

liver disease, and, to date, the prevalence of metabolic liver dis-

ease driven mainly by the obesity pandemic is moving upward as

the leading risk factor for HCC development, even in the absence

of cirrhosis. Metabolic liver disease will increase if measures are

not taken to revert the escalating prevalence of overweight and

obesity in children, adolescents, and adults. This liver disease is a

critical condition for a worse tumor presentation in terms of

aggressivity and prognosis due to the high content of lipids (rich-

cholesterol) found in westernized dietary patterns that are repre-

sentative of the nutrition transition occurring in the country. Die-

tary aflatoxin remains a risk factor in many countries of LA,

although, in Mexico, the process of maize nixtamalization seems

to curb the risk of aflatoxin-induced HCC. Lastly, an important

reminder is that these etiological factors can silently cause liver

disease for years until detected and act synergically. Therefore,

strategies for early diagnostics in risk patients are necessary.

Decreasing the burden of diseases is a complex process. However,

in the case of HCC, the first step is vaccination against HBV and antivi-

ral therapy for HCV. It is of utmost importance to re-enforce health

policies, prevention strategies, and awareness programs for hepatitis

viruses of Mexico [109]. More updated medical and nutritional edu-

cational health programs at all levels of society are required to offset

the marketing favoring excessive alcohol drinking and the consump-

tion of unhealthy foods.

In conclusion, updated healthcare policies focusing on the

needs of preventive care should be tailored based on the genetic

and environmental risk factors that influence the effect of the

Fig. 4. Mexica woman throws corn kernels into the pot for nixtamalization. Florentine

Codex, book 5, 16r.

Fig. 5. Scheme of the steps in the typical process of nixtamalization of maize kernels to produce "tortillas." Red arrows indicate the potential points of elimination or (bio)chemical

transformation of Aflatoxins. Nejayote is the liquid or "lime broth ashes" discarded after steeping cooked maize containing aflatoxins. Ca(OH)2 is in the form of lime.
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etiological agents related to the incidence and prevalence rate of

HCC. Robust regional investigations related to epidemiological,

clinical, and basic studies are warranted to understand this health

problem complying with the rules of ethnic, genetic, environmen-

tal, and social diversity.
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