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A B S T R A C T

In addition to the kidneys and lungs, the liver also plays an important role in the regulation of the Acid-Base

Equilibrium (ABE). The involvement of the liver in the regulation of ABE is crucial because of its role in lactic

acid metabolism, urea production and in protein homeostasis. The main acid-base imbalance that occurs in

patients with liver cirrhosis is Respiratory Alkalosis (RAlk). Due to the fact that in these patients additional

pathophysiological mechanisms that affect the ABE are present, other disorders may appear which compen-

sate or enhance the primary disorder. Conventional ABE reading models fail to identify and assess the under-

lying disorders in patients with liver cirrhosis. This weakness of the classical models led to the creation of

new physicochemical mathematical models that take into account all the known parameters that develop

and affect the ABE. In addition to the RAlk, in patients with liver cirrhosis, metabolic alkalosis (due to hypoal-

buminemia), hyponatremic metabolic acidosis, hyperchloremic metabolic acidosis, lactic acidosis and meta-

bolic alkalosis due to urea metabolism are some of the pathophysiological mechanisms that affect the ABE.
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under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Acid-Base Equilibrium (ABE) is an important parameter within an

organism that determines the relationship between acids and bases

produced daily by both endogenous (cellular) metabolism and (exog-

enous) acids and/or bases taken in through food. The acids of the

organism are represented as the hydrogen ion (H+), while the bases

by the bicarbonate radical (HCO�
3 ).

The systems or organs of the body that are involved in the regula-

tion of ABE are mainly the kidneys and the lungs. However, in recent

years, it is increasingly recognized that the liver participates in regu-

lation of ABE, but not equivalently to the kidneys and lungs [1].

Knowledge of the role of the liver in the production of acids and/or

bases or on the contrary in their reduction, contributes significantly

to the understanding mainly of the mixed disorders of ABE [2]. For

the understanding of ABE disorders in patients with liver diseases,

theoretical data of ABE are presented in the next section.

1.1. Principles of ABE

It is known that the serum concentration of H+ ([H+]) and conse-

quently of the corresponding bases, is expressed through the pH

index. For physiologically acceptable pH (7.4) the [H+] is 40nEq/L [3].

Acidemia is characterized by a condition where the pH is <7.36 and

alkalaemia when the pH is >7.44.

To capture the balance of acids and bases in the blood, mathemati-

cal models based on the physicochemical properties of simple

(water) and mixed solutions (such as blood) have been proposed

from time to time. Of these models, the three main ones will be

briefly outlined below.

A. The traditional ABE fixation model was proposed by Henderson-

Hasselbalch who based on the chemical reaction of the decompo-

sition of an acid [4]:

HA  ! A�½ � þ Hþ
� �

and considering the law of mass action (decomposition constant K),

the state of equilibrium of acids and bases at a given moment is

expressed by the equation:

pH ¼ pKþ log A�½ �= HA½ �

In the above model, H2CO3 is used as the acid, which when decom-

posed gives us a [H+] and a radical [HCO�
3 ], so the previous equation

is formed in:
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pH ¼ pKþ log HCO�
3

� �

= H2HCO3½ �

However, in the above equation, the dissolved plasma CO2 is taken as

acid since the plasma concentration of H2CO3 is minimal (at 37°C for

every mmHg of PaCO2 the naturally dissolved CO2 in the blood is

0.03mEq/L). Therefore, the final equation of the Henderson-Hassel-

balch mathematical model of ABE is:

pH ¼ pKþ log HCO�
3

� �

= 0:03 � PaCO2½ �

Under normal conditions where PaCO2 is 40mmHg, [HCO�
3 ] is 24mEq/

L and the pKH2CO3
¼ 6:1 the pH=7.4.

B. The second physicochemical model of ABE was proposed by Stewart

(1983) and it was based on the view that blood belongs to the cate-

gory of solutions containing CO2 (the other three are: distilled water,

strong ions, and weak bases) [5]. Thus, to calculate the [H+] in the

blood and consequently the pH, at a given moment, the model of

Strong Ions Difference (SID) was developed. This term expresses the

difference between all strong cations and all strong anions. However,

because strong anions are superior to strong cations, the SID is nega-

tive. Whereas the SID is considered to be an indicator representing

the net unbalanced positive charge. The SID, according to the above

model is calculated from the following equation:

SID ¼ Naþ½ � þ Kþ
� �

þ Mgi2þ
h i

þ Cai2þ
h i

� Cl�½ � � Lactate½ �

The SID calculation from the above equation does not consider the

role of weak acids such as albumin, phosphorus, and CO2 in the bal-

ance of electrical charges, so it is best to call the SID indicator appar-

ent (SIDa). The role of weak acids is expressed through the

calculation of the active SID (SID effective, SIDe) from the following

Figge’s equation [6]:

SIDe ¼ 1;000 � 2:46 � 10�11 �
PaCO2

10�pH
þ Alb½ �

� 0:123 � pH � 0:631ð Þ þ ½Phos� � ð0:309 � pH

� 0:496Þ

Theoretically, the difference between SIDa and SIDe should be 0

(equilibrium of electric charge in solution). If there is no electrical

equilibrium, it is expressed as ion gap (SAG) [SIG = SIDa - SIDe] [7].

C. The third physicochemical model was developed by Gilfix in an

attempt to interpret and evaluate ABE since Stewart's model is

not easily applicable to everyday clinical practice [8]. The model

introduces the term ''Base Excess'' (BE) and includes the following

parameters: i) water (H2O) [in particular sodium (Na+) (in dilution

and concentration); ii) chloride (Cl�); iii) albumin (Alb); iv) lactic

acid (lactate) and v) unmeasured anions (UMA). Positive or nega-

tive values of the BE indicator characterise alkalinisation or acidi-

fication respectively (Fig. 1) [9].

In more detail,

i. Dilution of plasma, due to excess water, causes changes in serum

Na+ concentration and leads to Metabolic Acidosis (MAc), in con-

trast to Metabolic Alkalosis (MAlk) from contraction. The BENa+ is

calculated from the equation:

BENaþ ¼ 0:3 � ½Naþmeasured � Naþnormal� ðmEq=LÞ

The parameter 0.3, results from the division of SID (normal

40mEq/L) and serum [Na+] which is normally 140mEq/L) (serum

[Na+] <133mEq/L is characterized as hyponatraemia).

ii. Changes in the concentration of HCO�
3 , (decrease <22 mEq/L char-

acterizes acidosis while increase >26 mEq/L characterises alkalo-

sis), followed by reverse changes of Cl�, leading to the appearance

of hyperchloremic MAc (serum Cl� >109 mEq/L) and hypochlore-

mic MAlk respectively. The BECl� is calculated from the equation:

BECl� ¼ Cl�normal � ½Cl�observed � Naþnormal = Naþobserved� ðmEq=LÞ

iii. Albumin belongs to the category of non-volatile acids. Thus, hypo-

albuminemia indicates loss of acid (weak acid) which results in

the appearance of hypoalbuminemia MAlk. The BEAlb is calculated

from the equation:

BEAlb� ¼ ð0:148 � pH � 0:818Þ � ðAlbnormal

� AlbobservedÞ ðmmol=LÞ

BE albumin >5 mmol/l is characterized as hypoalbulinemic

alkalosis

iv. Increased lactic acid production and consequently hyperlactemia

leads to the appearance of Lactic MAc. The BELactate is calculated

from the equation:

BELactate ¼ Lactatenormal � Lactateobserved ðmmol=LÞ

v. A change in BE that is not due to changes in H2O, Na
+, Cl�, Alb Lac-

tate, is characterized by changes in UMA (e.g. ketones, organic

acids). The BEUMA is calculated from the equation:

BEUMA ¼ BEtotal� � ½BENaþ þ BECl� þ BEAlb þ BENaþ

þ BELactate� ðmEq=LÞ

The elements calcium, magnesium, potassium and phosphorus do

not seem to play a significant role in ABE as their concentrations are

relatively very small compared to those of sodium and chloride [10].

A BEUMA value of < or =-5mEq/L is defined as a clinically significant

presence of unmeasured anions.

1.2. Liver and ABE

The liver is involved in the regulation of ABE through four patho-

physiological mechanisms, a) lactic acid metabolism; b) albumin

homeostasis; c) ketogenesis and d) urea production

In more detail,

a) The liver is the main site in the metabolism of lactic acid produced

per day (70%) [11]. Lactic acid in the liver is firstly metabolized to

pyruvic acid and then converted to glucose by gluconeogenesis.

Both the release of lactic acid from the muscles and its metabolism

into glucose is called the Cori cycle. This complete process results

in the equivalent release of an [HCO�
3 � radical [12]. Lactic acidosis,

which is commonly seen in patients admitted to Intensive Care

Units (ICU), is a result of reduced lactic acid degradation from the

site of production, due to tissue hypoxia (reduced perfusion).

The latter is caused by vasoconstriction which is due to theFig. 1. Schematic representation of the ions’ normal values contributing in ABE
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stimulation of the sympathetic-adrenergic axis. Thus, the non-

degradation of lactic acid by the muscles, its non-transfer to the

liver, reduced metabolism, and the non-production of bases leads

to the appearance of lactic acidosis.

b) Under normal conditions, albumin is considered to belong to the

weak acids. Hypoalbuminemia, either from reduced production

(liver failure) or from increased loss (nephrotic syndrome), results

in mild MAlk, while hyperalbuminemia, which occurs mainly in

dehydrated conditions, is accompanied by mild MAc [13].

c) Oxidation of fats in the liver (mitochondria), leads to the produc-

tion of keto acids (3-hydroxybutyric and acetoacetic acid) that are

broken down into ions of H+, which then are excreted by the kid-

neys. The production and excretion of keto acids is regulated by a

reciprocating mechanism. Thus, a decrease of the pH (acidic envi-

ronment) leads to a decrease in the production of keto acids [14].

On the contrary, increasing the pH increases the production of

keto acids [15]. The involvement of hepatic ketogenesis, under

normal conditions, in the regulation of ABE is minimal. However,

in situations of starvation or alcoholism, the body's attempt to

produce energy through fat metabolism, leads to the appearance

of a severe degree of MAc.

d) In a diet of 100g of protein per day, the produced NH4 (weak neu-

rotoxic acid) amounts to 1mol (1,000mmol). In the liver, NH4 is

metabolized to urea, which is excreted by the kidneys. The con-

version of NH4 requires the consumption of an equivalent amount

of strong base [HCO�
3 ] [16]. Therefore, the production of urea, as

an acidification process, plays an important role in the regulation

of ABE [17,18].

1.3. Acidifying and alkalinizing factors in hepatic diseases

From what has been mentioned, it appears that the liver is

actively involved in the regulation of ABE. Therefore, diseases of the

liver, (cirrhosis, ICU patients with cirrhosis, acute or chronic liver fail-

ure with or without cirrhosis), result in ABE disorders in one way or

another [19]. Furthermore, damage to other organs or systems of the

body due to hepatic impairment (kidney failure and hepatic encepha-

lopathy) can exacerbate the already established disorders of ABE [20].

Studies using the usual techniques for approaching ABE disorders in

liver disease could not reveal either metabolic or respiratory ABE dis-

orders [10,21]. In contrast, studies using physicochemical models

have shown significant ABE disorders in liver disease [5,22]. Follow-

ing, we will briefly refer to the acidifying and alkalinizing factors

which are involved in ABE in liver diseases and in particular in liver

cirrhosis.

1) Alkalinizing factors

a) The disorder of ABE in liver diseases which has been identified by

both the usual technical and the physicochemical models is

Respiratory Alkalosis (RAlk) with marked hypocapnia (Fig. 2)

[9,21,23−25]. Growing ascites to a significant degree in combina-

tion with hepatic hydrothorax initially causes shortness of breath

and hypoxia [26]. Attempting to compensate the body leads to

shortness of breath and hyperventilation in the remaining pulmo-

nary parenchyma resulting in hypocapnia. A 55-year-old cirrhotic

patient presented by Scheiner at al., appeared to have alkalemic

pH with hypocapnia, an indicator of respiratory alkalosis where

encephalopathy, ascites and dyspnoea were considered as main

factors [9]. Both the increase in the concentration of NH4 and the

accompanying development of hepatic encephalopathy, contrib-

ute to the hyperventilation of the lungs in the aforementioned

pathological condition [27]. A Lustik study has shown that

increased concentrations of progesterone and estradiol (reduced

hepatic catabolism) may stimulate hyperventilation by stimulat-

ing progesterone receptors in the Central Nervous System (CNS)

[28].

b) The reduced production of urea implies the reduced consumption

of [HCO�
3 ] and therefore the appearance of MAlk [29,30]. How-

ever, MAlk is not observed in these patients unless diuretics, ant-

acids are administered, if secondary hyperaldosteronism has

developed or they have severe hypokalaemia [23,31].

c) Hypoalbuminemia is perhaps the most important factor in the

development of hypoalbuminemic MAlk in patients with liver cir-

rhosis. For each decrease of albumin by 1g/dl there is an increase

of bases (HCO�
3 Þ by 3.7mEq/L [8,32]. It should be noted that the

reduction of albumin begins in the early stages of liver cirrhosis

due to the reduced intake of protein through food which alters

the metabolism of proteins and amino acids.[33] It should also be

noted that hypoalbuminemia is the main cause of MAlk in ICU

patients [10,34].

2) Acidifying factors

a) Hyponatremia (serum Na+<135mEq/L) is a common (>50%) elec-

trolyte disorder in patients with cirrhosis and ascites [35,36].

Hyponatraemia results from increased reabsorption of H2O by the

kidneys (as it is observed in hepatorenal syndrome), through the

stimulation of the Renin-Angiotensin system as well as the stimu-

lation of the antidiuretic hormone, due to the reduction of effec-

tive circulating blood volume [34,35]. In addition to the increased

reabsorption of H2O, repeated therapeutic punctures of ascites

play an important role [37]. Dilution hyponatraemia [free water

ion H2O retention (pH=7.00), as occurs in patients with liver cir-

rhosis and ascites], acts as an acidifying factor and consequently

leads to acidosis, known as hyponatraemic acidosis [10,27].

b) The replacement of HCO�
3 by Cl� (equilibrium of electric poten-

tials) leads to the appearance of hyperchloramic MAc, another

acidifying factor observed in patients with liver cirrhosis and asci-

tes [38,39]. Scheiner et al. present a case of a 46-year-old cirrhotic

patient with negative BE and acidaemic pH, indicating metabolic

acidosis and after chloride-rich infusions, a hyperchloramic acido-

sis was observed [9]. In stabilized patients the hyperchloremic

MAc, compensates for the main disorder of ABE, which is RAlk. In

acute RAlk, the counteraction is almost immediate (5-10min)

with the protein and phosphorus (Pi) regulatory systems playing

an important role [22,40]. In contrast, in chronic RAlk the com-

pensation (which takes 2-3 days to start acting), is done through

the kidneys through two mechanisms: i) the reduced excretion of

acids (reduced tubular excretion of H+) and ii) increased tubular

excretion HCO�
3 with correspondingly increased resorption of Cl�

(negative BECl� ) [40,41].

c) Another cause of hyperchloremic MAc in patients with cirrhosis is

the diarrhoea (especially in those taking lactulose) accompanied

with loss of HCO�
3 and Cl� retention, particularly those with

hepatic encephalopathy [42]. In addition, these patients show

Fig. 2. Reasons for hyperventilation and respiratory alkalosis in hepatic disease.

Hyperventilation may occur due to hepatic hydrothorax, hepatic encephalopathy,

increased progesterone and estradiol levels as well as due to hepatopulmonary syn-

drome and portopulmonary hypertension.
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type I renal tubular acidosis (inability to acidify urine, pH>5.3) in a

systemic acidosis state [38,43]. This is likely due to reduced out-

flow which is accompanied by a reduced release of Na+ in the dis-

tal tubule and an inability to excrete H+ and Cl� ions in the

corresponding section of the renal tubule [9,44].

1.4. ABE and liver diseases

1.4.1. Liver cirrhosis

ABE disorders in patients with liver cirrhosis are not fully under-

stood. This is because these disorders involve more than one mecha-

nism that causes both primary and compensatory disorders of ABE.

The most common disorder of ABE in cirrhosis is hypocapnic RAlk.

However, other disorders develop due to liver dysfunction with

mechanisms mentioned above, such as MAc (from dilution and

hyperchloremia) and MAlk (from hypoalbuminemia and decreased

urea synthesis). The result of these disorders (opposites) of ABE (MAc

and MAlk) is that, they are balanced and that patients in stable clini-

cal condition with cirrhosis do not show a change in pH (20%) or

where change does occur it is classed as negligible and seldom evalu-

ated [10,45]. This is considered as there is no disruption of a simple

ABE disorder, although in this case there is a triple ABE presentation

(Fig. 3) [10].

As for hypocapnic RAlk, it is largely compensated by the inade-

quate excretion of HCO�
3 from the kidneys, despite their increased

reabsorption due to the coexisting hypovolemia (reduction of the

effective circulating blood volume). It is worth noting that hepatopul-

monary syndrome, which is characterized by the triad, liver disease -

dilation of the pulmonary vessels - reduction of blood oxygenation,

also contributes significantly to the disorders of ABE in patients with

liver cirrhosis [46]. These patients develop intrapulmonary anasto-

moses (shunts or fistulas) with the diversion of arterial blood to the

venous network (right to left) which eventually leads to pulmonary

hypertension with consequent changes in blood gases (O2, CO2) [47].

Depending on the clinical picture and which pathological condi-

tion prevails over the others, these patients may show: RAlk 44.83%,

MAlk 14.28%, MAc 6.12%, RAc 6.12%, MAc + MAlk 8.16%, and normal

pH 20.7% [45].

1.4.2. ICU patients with cirrhosis

As mentioned previously, in liver cirrhosis, MAlk (due to hypoal-

buminemia) coexists with MAc (due to dilution and hyperchloremia)

and mainly with RAlk (due to hypocapnia), as well as other ABE disor-

ders, which are/is compensated with the result that the pH remains

relatively unchanged [48]. However, in patients with liver cirrhosis

who are admitted to the ICU, the prominent disorder of ABE is lactic

acidity (>1.9-2.0mmol/L) [49,50]. This increase in lactic acid, on the

one hand, is due to increased production (>1500mmol/day) (tissue

hypotension-hypoxia, suppression of cellular metabolism due to sep-

sis, hypercatabolic syndrome) and on the other hand, reduced break-

down in the liver (liver function loss, sepsis) [50−52]. In these

patients total BE remains reduced with a predominance of MAc due

to an increase in lactic acid, an increase in UMA in contrast to stabi-

lized patients with liver cirrhosis (Fig. 4) [9,10]. These patients have

increased mortality due to complications in the function of other

organs (multiorgan failure). It should be noted that a small percent-

age of lactic acid is metabolized within the kidneys (5%) and there-

fore, in the occurrence of lactic acidosis, participates in the pathology

of renal dysfunction that coexists in these patients (hepato-renal syn-

drome) [53,54].

1.4.3. Acute hepatic impairment (acute chronic)

Acute liver failure can be caused by extensive burns, acute respira-

tory failure, and sepsis [55−57]. In these cases, there is an excessive

increase in lactic acid production mainly from the visceral areas (and

from the lungs in the absence of lung damage) in the context of acute

liver dysfunction [58−60].This condition is characterized by stress

hyperlactemia (mass glycolysis induced by catecholamines and other

cytokines that promote cellular glucose uptake without hypoxia)

[61,62]. In milder stages of acute liver damage (I, II) no substantial pH

disturbance is observed since the involved mechanisms (compensa-

tory and non-compensatory) are balanced, while in more severe

stages (III, IV) lactic acidosis predominates with coexisting RAlk [63].

2. Conclusion

Patients with liver cirrhosis have ABE disorders such as Respira-

tory Alkalosis (most common), Metabolic Alkalosis, Metabolic Acido-

sis, Respiratory Acidosis and mixed disorders (Metabolic Acidosis and

Respiratory Alkalosis). The classic reading models of these disorders

are not sufficient for clinical recognition. Physicochemical models are

often used to calculate the balance between acids and bases in the

body for a specific pathological condition. This is due to the patho-

physiological mechanisms of cirrhosis, and ABE being mutually

Fig. 3. Schematic representation of intertwining mechanisms for matching acid-base requirements with the final disposition in the blood pH display.

Fig. 4. ABE in patients with chronic liver disease. a) ABE affecting factors in stable cir-

rhosis; b) Metabolic acidosis affecting factors in critical cirrhosis; c) Neutralisation of

lactic acidosis by hypoalbuminemic alkalosis in acute liver failure. BE: Base excess;

UMA: Unmeasured anions
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reversible, resulting in a significant number of patients with no

observable change in arterial blood pH. In these cases, failure to

assess the underlying ABE disorders often results in the inadequate

and incorrect treatment of the patient's condition.
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