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A B S T R A C T

Hepatocellular carcinoma (HCC), leading cancer worldwide, has a high degree of genetic heterogeneity; next-

generation sequencing (NGS) technology has contributed significantly to the discovery of driving genes as

well as high-frequency mutations in HCC. The detection of gene alterations may allow us to predict prognosis

and adverse drug reactions for individuals, paving the way for personalized medicine in HCC patients. In this

review, we summarized the common systemic therapy regimens for HCC and the predictive efficacy of

genetic biomarkers on the prognosis of patients under these treatments. Finally, we put forward a future per-

spective on the potential of NGS technology for the guidance of targeted therapy and immunotherapy in HCC.
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Hepatocellular carcinoma (HCC) accounts for 90% of primary liver

cancer and is mainly caused by hepatitis B or C virus. In recent years,

HCC caused by liver disease associated with alcohol and metabolic

syndrome has been on the rise [1,2]. Chronic inflammation, viral

infection, and liver regeneration can induce genetic and epigenetic

damage [3]. Through the accumulation of these genomic changes,

most HCC gradually develop from these precancerous stages. With

the rapid development of metagenomic sequencing technology, HCC

has been proved to have significant heterogeneity, and its high thera-

peutic resistance and poor prognosis pose a challenge to systemic

treatment [4].

Next-Generation Sequencing (NGS) can analyze the comprehen-

sive profile of cancer genome and transcriptome on a large scale,

allowing quick identification of potential driving gene events in can-

cer, especially potential molecular therapy targets [5]. In non−small

cell lung cancer (NSCLC), genetic biomarkers have been proved to

predict responses to targeted therapy, especially those targeting spe-

cific tyrosine kinase receptors and immune checkpoint inhibitors [6].

Gene detection also plays an essential role in guiding the proper

treatment of breast cancer, especially patient stratification [7,8]. Tar-

geted therapy, immune checkpoint suppression therapy, and combi-

nation therapy of HCC have shown superior efficacy in clinical trials.

Biomarkers including gene alterations and pathway activations are of

great significance for designing proper treatment regimens, and bio-

marker-driven therapies have shown gratifying benefits [9]. In the

future, gene detection may be included as a routine process in the

systemic treatment of HCC.

1. Progress of targeted therapy for HCC

Except for REACH-2 clinical trials, all effective drugs in phase III

clinical trials are multi-kinase inhibitors in HCC [10]. Many studies

have determined the scope of mutant genes and drug development

targets, and about 25% of the mutant genes are considered to have

potential drug properties. However, the mutant genes have targets

co-expressed by normal liver tissues and cancerous ones, resulting in

severe toxic and other side effects and compromised efficacy of tar-

geted drugs [4]. Therefore, it is necessary to understand the thera-

peutic mechanism of various targeted drugs and use gene detection

Abbreviations: HCC, Hepatocellular carcinoma; uHCC, unresectable Hepatocellular

carcinoma; CRLM, Colorectal liver metastases; HBV, Hepatitis B virus; NSCLC, Non-

small cell lung cancer; NGS, Next-generation sequencing; PCR, Polymerase chain reac-

tion; RT-PCR, Reverse transcription-polymerase chain reaction; mPCR, Multiplex Poly-

merase Chain Reaction; IHC, Immunohistochemistry; FISH, Fluorescence in situ

hybridization; WGS, Whole-genome sequencing; OS, Overall survival; mOS, Median

overall survival; ORR, Objective effective rate; PFS, Progression-free survival time; TTP,

Time to progress; DCR, Disease control rates; TCGA, The Cancer Genome Atlas; NCCN,

National Comprehensive Cancer Network; TKI, Tyrosine kinase inhibitor; RTK, Recep-

tor tyrosine protein kinase; EGFR, Epidermal growth factor receptor; VEGFR,

Vascular endothelial growth factor receptor; PDGFR, Platelet-derived growth factor

receptor; FGFR, Fibroblast growth factor receptor; ICI, Immune checkpoint inhibitors;

PD-1, Programmed death 1; PD-L1, Programmed death ligand 1; IFN, Interferon; PTK,

Protein tyrosine kinases; CCL5, Chemokine ligand 5; CTLA-4, Cytotoxic T-lymphocyte-

associated protein 4; IPM, Immune prognosis model; Treg, Regulatory T cells; TRM,

Resident memory T cells; HRR, Homologous recombination repair

* Correspondence author.

E-mail address: zhengyongchang@pumch.cn (Y. Zheng).

https://doi.org/10.1016/j.aohep.2022.100677

1665-2681/© 2022 Published by Elsevier España, S.L.U. on behalf of Fundación Clínica Médica Sur, A.C. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Annals of Hepatology 27 (2022) 100677

Contents lists available at ScienceDirect

Annals of Hepatology

journa l homepage : www.e lsev ie r .es /anna lso fhepato logy

http://crossmark.crossref.org/dialog/?doi=10.1016/j.aohep.2022.100677&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:zhengyongchang@pumch.cn
https://doi.org/10.1016/j.aohep.2022.100677
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.aohep.2022.100677
http://www.ScienceDirect.com
http://www.elsevier.es/annalsofhepatology


to identify unique biomarkers that can be utilized as drug targets or

prognostic markers. These efforts may finally help clinicians select

proper drugs, minimalize drug resistance, and improve the prognosis

of patients.

1.1. Tyrosine kinase inhibitor (TKI)

Sorafenib is a multi-target TKI with anti-angiogenic and anti-pro-

liferative effects. Between 2007 and 2016, Sorafenib was the only sys-

temic drug licensed for the treatment of HCC [11]. This drug can

inhibit up to 40 kinds of kinases, including angiogenesis induced by

receptor tyrosine protein kinases (RTKs; including VEGFRs and

PDGFR b) and drivers of cell proliferation (such as RAF1, BRAF, and

KIT) [12].

Lenvatinib is an oral small molecule multi-receptor TKI targeting

the VEGF receptor, FGFR1-FGFR4 axis, RET, KIT, and PDGFR-a, etc. Its
efficacy has been tested in Phase II and Phase III clinical trials of

patients with advanced HCC [13,14]. Compared with Sorafenib, Len-

vatinib is comparable in overall survival rate (OS), but with a higher

objective effective rate (ORR), longer progression-free survival time

(PFS), and time to progress (TTP) [15].

Donafenib is a novel oral small molecule multi-kinase inhibitor

and derivative of Sorafenib deuterated. Recently, Qin et al. [16] con-

ducted a multicenter Phase II-III trial in systemic-treatment-naive

patients with unresectable liver cancer or liver metastasis cancer,

with a Child-Pugh score < 7. The results showed that the median

overall survival time (mOS) of Donafenib was significantly higher

than that of Sorafenib (12.1 vs. 10.3 months, P = 0.0245). The progres-

sion-free survival (PFS), objective response rate (ORR), and disease

control rates (DCR) were not significantly different. From the per-

spective of pharmacokinetic features, compared to Sorafenib, Donafe-

nib has a more stable antioxidant capacity, enhancing the anti-tumor

activity in vivo. In addition, Donafenib has a higher original drug

plasma concentration and lower metabolite concentration, which

means that Donafenib monotherapy may have a better curative effect

[17]. Donafenib is expected to be the first-line treatment of advanced

HCC in the future.

Regorafenib is a new multi-kinase inhibitor for advanced hepato-

cellular carcinoma resistant to Sorafenib. It has recently been

approved for the treatment of HCC patients previously treated with

Sorafenib, based on the significant improvement in the time to pro-

gression (TTP) and OS in 573 patients according to the Phase III trial

[18]. It suppresses tumor proliferation by inhibiting several critical

targets, including vascular endothelial growth factor receptor (VEGFR

1, 2, and 3), platelet-derived growth factor receptor beta (PDGFR-b),
Raf, Ret, and Kit kinases [19]. In addition, a recent study has shown

that Regorafenib provided clinical benefit to patients regardless of

the drug dose and disease progression status in prior Sorafenib treat-

ment [20].

At present, there are no targeted drugs to specifically block the

pathways and inhibit tumor growth in HCC due to the tumor hetero-

geneity and multi-target inhibitive nature of these drugs. There are

no standard guidelines for selecting the first-line drugs, and most

decisions are empirical. Therefore, it is crucial to detect the gene

alterations and guide the personalized administration of targeted

drugs.

1.2. Non-tyrosine kinase inhibitors

ARQ197 (Tivantinib) is a small oral molecule MET inhibitor, inhib-

iting the growth and inducing apoptosis of tumor cells [21]. A study

in HCC cell lines confirmed the sensitivity of Tivantinib to HCC and

showed anti-tumor activity in various mouse xenograft tumor mod-

els [21]. Twelve tumor biopsies treated with Tivantinib also showed

that MET expression decreased following treatment, and expression

of genes related to the downstream pathway was related to

Tivantinib [22]. Furthermore, preclinical studies showed that the

combination of Tivantinib and Sorafenib had a synergistic effect,

enhancing the inhibitory effect of Tivantinib [23]. Whether MET

inhibitors can be a potential treatment for some patients with

advanced HCC and whether they can solve the drug resistance prob-

lem of Sorafenib still need follow-up mechanism research to decide

[23]. In addition, Tivantinib is thought to have a mechanism indepen-

dent from inhibiting MET, which may imitate cytotoxic agents and

attack a wide range of targets [11]. At present, new selective oral

compounds, such as Tepotinib [24] and Capmatinib [25], have been

developed in HCC. Currently, the focus is on reducing their toxicity

and determining the effectiveness of MET-positive patients in Phase

II clinical trials[26]. The mechanism of Tivantinib, Tepotinib and other

MET inhibitors against MET-positive HCC may be highly complex,

and more evidence from follow-up studies is needed.

Refametinib is an effective, non-ATP competitive and highly selec-

tive inhibitor of MEK1 and MEK2. Its anti-tumor activity as a mono-

therapy or in combination with Sorafenib has been confirmed in both

in vitro and in vivo preclinical studies [27]. Refametinib monotherapy

was well tolerated and showed therapeutic advantages for patients

with advanced solid tumors, including HCC, according to a phase I

research (NCT00785226). The efficacy of Refametinib and Sorafenib

in combination in preclinical HCC models relies on one or two under-

lying mechanisms. The first is to block the MAP signaling pathway

(RAF combined with Sorafenib and MEK combined with Refameti-

nib); the second is to inhibit the parallel signaling pathways (MAPK

combined with Refametinib and VEGF receptor-mediated signaling

pathway combined with Sorafenib). The inhibition of these pathways

shows enhanced anti-tumor activity in HCC [28]. Under a low con-

centration of Sorafenib, the phosphorylation level of MEK and ERK in

HCC cells increased due to abnormal activation of RAF signal, so the

dual inhibition of Sorafenib combined with Refametinib may be an

effective way to treat HCC. Moreover, MEK inhibitors have increased

inhibitory activity on cancer cells containing RAS mutations. There-

fore, compared to wild-type RAS, HCC patients with RAS mutation

have a superior clinical response to Refametinib combined with Sora-

fenib [29], indicating that detection of RAS genotype may help drug

selection.

The amplification of FGF19 occurs in 5-10% of HCC, which has

been proved to be a carcinogenic driver of Sorafenib resistance in

some studies and a potential prognostic marker of FGFR kinase inhib-

itors [30]. Clinical trials of specific FGFR4 kinase inhibitors are under-

way, including BLU554 (NCT02508467) [31], H3B-6527

(NCT02834780) [32] and FGF401 (NCT02325739). These drugs are

currently under evaluation using biomarker-based methods, mainly

based on immunohistochemistry of FGF19 and FGFR4, and b-klotho,

a transmembrane protein that enhances FGF19-FGFR4 interaction

and signal transmission. Moreover, BLU-554 has made the fastest

progress in clinical research. Preliminary data show that the effective

rate of FGFR4 high expression group (FGF19 expression ≥1% in IHC)

is 16%, while the effective rate of FGFR4 negative group is 0% [31].

Regardless of the amplification status of FGF19 negative group, there

will be some toxic reactions, which are generally mild, including diar-

rhea, nausea, vomiting and elevated AST and/or ALT levels (transami-

nase tends to rise to grade 3-4) [31].

2. Advances in immunotherapy of liver cancer

A great challenge facing the development of immune checkpoint

inhibitors (ICI) is identifying the biomarkers predicting response. So

far, the treatment of HCC with Nivolumab and Pembrolizumab has

not shown the correlation between PD-L1 expression or the etiology

of cirrhosis and clinical benefits [33]. The FDA has approved Pembro-

lizumab to treat advanced cancer with high microsatellite instability

or mismatch and subsequent lack of DNA repairment. However, the
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low incidence of these defects in HCC makes the indication of Pem-

brolizumab usage unclear[34].

According to the immunohistochemical analysis of immunoregu-

latory molecules, the immune microenvironment of HCC was divided

into three different subtypes: high, medium, and low immunity.

Cases with tumors of high immunity subtype that are usually rich

with progenitor/proliferative gene expression patterns may be ideal

candidates for ICI treatment, as this type usually shows a high degree

of immune infiltration and PD-1 expression in the tumor microenvi-

ronment[35]. Various biomarkers have predictive value for immuno-

therapy combined with targeted therapy in HCC, but so far, there has

been no specific biomarker to predict prognosis in these treatments

[36].

2.1. PD- 1/PD- L1 inhibitor

PD-1 is a receptor expressed by T cells and mainly provides nega-

tive regulatory signals during the effective period of T cell response.

In tumor pathogenesis, PD-1 on T cells can combine with PD-L1 and

PD-L2 ligands in the tumor microenvironment, contributing to the

immunosuppressive microenvironment. Monoclonal antibodies

against PD1 (Nivolumab and Pembrolizumab) or PD-L1 (Atezolizu-

mab, Avelumab and Durvalumab) have been approved for the treat-

ment of various malignant tumors[11].

Xu et al. conducted a phase II study on the efficacy and safety of

Camrelizumab (anti-PD-1 monoclonal antibody) combined with Apa-

tinib (VEGFR-2 tyrosine kinase inhibitor) in the treatment of

advanced HCC. Their research shows that this combination has good

efficacy and manageable safety in patients with advanced HCC. This

conclusion may provide a new option for patients with advanced

HCC in the future[37]. Finn et al. reported the results of Lenvatinib

combined with Pembrolizumab in unresectable HCC (uHCC) in a

phase I b study. The results showed that Lenvatinib combined with

Pembrolizumab had good anti-tumor efficacy against uHCC, and

manageable toxic and side effects[38]. These researches further

proved the benefits of combining tumor immune microenvironment

manipulation with targeted therapy.

TCGA researchers observed that 22% of HCC had lymphocyte infil-

tration, consistent with the previous study of HCC immune category.

About 27% of patients had high infiltration of immune cells, high PD-

1/PD-L1 expression, and active IFN-g signal. The immune rejection

phenotype appeared in 25% of HCC patients, with CTNNB1 mutation,

low immune infiltration (based on immune specific gene markers)

and overexpression of PTK2, a carcinogenic pathway related to poor

infiltration of T cells into malignant tissues[39]. These findings are in

line with melanoma studies, demonstrating that activation of the

Wnt/-catenin (CTNNB1) pathway is linked to T cell rejection and

immunotherapy resistance[40]. De Galarreta et al. proved that b-cat-

enin-activated tumors were resistant to PD-1 treatment in mice mod-

els, and the expression of chemokine ligand 5 (CCL5) resumed

immune surveillance[41].

To sum up, the activation mutation of b-catenin may be a negative

predictor of ICI treatment for HCC patients. However, it is worth not-

ing that the response to Nivolumab of HCC patients seems irrelevant

to PD-L1 expression. New biomarkers are needed to anticipate the

reaction degree of HCC patients to anti-PD-1 therapy[11].

2.2. CTLA-4 monoclonal antibody

CTLA-4 is expressed by regulatory T cells on a constant basis, but it

is also up-regulated in activated cytotoxic T cells. CTLA-4 is a domi-

nant negative signal molecule, monoclonal antibodies against CTLA-4

such as Ipilimumab and Tremelimumab block the negative feedback

reaction and lead to deep and lasting reactions in cancer patients.

The combination of Ipilimumab and Nivolumab (“O+Y”) has been

approved for second-line treatment. The adverse drug reactions of

Ipilimumab are known at present, the combination of the two drugs

has successfully reduced the side effects. Moreover, the combina-

tion’s OS and ORR are superior to monotherapy of both in melanoma

patients, and median PFS is superior to Ipilimumab[42,43].

Recently, Robin et al. evaluated the safety and efficacy of different

doses of Duvariuzumab + Tremelimumab (“D+T”) (T300+D: Tremeli-

mumab 300 mg + Durvalumab 1,500 mg; T75+D: Tremelimumab

75 mg + Durvalumab 1,500 mg), T monotherapy and D monotherapy

in the first- and second-line treatment of patients with advanced

uHCC. The results showed that T300+D presented an encouraging

benefit-risk profile compared to both monotherapies and T75+D, and

both mOS (18.7 months) and ORR (24%) of the T300+D further sup-

port its application in advanced uHCC. Furthermore, its toxicity is

favorable compared with other CTLA-4/PD-1(L1) combination thera-

pies and is consistent with the toxicity of monotherapy. A compara-

tive study between the D+T and Sorafenib regimen is now underway,

and it is likely to become a novel therapeutic regimen for liver cancer

in the future[44].

Long et al. established an immune prognosis model (IPM) by using

differentially expressed immune-related genes in TP53 mutant liver

cancer samples. Studies have shown that the high expression of

TREM1 and EXO1 is related to the high expression of CTLA-4, PD-1

and TIM-3, and may be related to the better outcome after using

immunosuppressants[45]. Some miRNA and lncRNA may participate

in the “cancer immune cycle” regulated by CTLA-4 and PD-L1/PD-1,

which may become the subject of liver cancer research in the future

[46]. As the clinical trials and studies on CTLA-4 inhibitors have not

yet reached a clear conclusion, further efforts should be made to

determine biomarkers to guide the selection of HCC patients suitable

for CTLA-4 inhibitors.

3. Gene detection and precision medicine

Precision medicine consists of two aspects: precise diagnosis and

precise treatment. Gene detection is regarded as the core of precision

medicine. From diagnosis to treatment of malignant tumors, the etiol-

ogy is first dissected from the histological, cellular, and molecular level,

and then personalized measures are taken. Gene detection is widely

used in breast cancer, colorectal cancer, leukemia, lymphoma, head

and neck tumor, ovarian cancer, lung cancer, liver cancer, and so on.

For example, 50% of non-small cell lung cancers have driving gene

mutations, indicating that even the same type of lung cancer poten-

tially has different treatment methods. Researchers are looking for

drugs targeting the corresponding driving genes to treat different

types of lung cancer. In May 2003, FDA approved the first-on-the-

world targeted drug Gefitinib to treat patients with advanced non-

small-cell lung cancer (NSCLC) after chemotherapy failed.

The molecular-genetics difference of individuals is the decisive

factor for the variance of response to drugs. When Gefitinib and Erlo-

tinib were first put on the market, the effect was not significant[47].

After it was found that they had a significant effect on patients with

EGFR mutation, the two drugs became the first-line drugs for some

lung cancer subtypes. DNA sequencing (including first- and second-

generation sequencing), polymerase chain reaction (PCR), and other

technologies are now used to detect gene alterations in NSCLC. Fur-

ther development of gene detection technologies has dramatically

improved the sequencing depth and throughput.

In liver disease, gene mutation may lead to related genetic diseases,

such as hereditary hemochromatosis, Gilbert syndrome, a-1 antitryp-

sin deficiency, Wilson’s disease, etc. Harding et al. [48] aimed to deter-

mine whether the application of NGS in modern clinical practice

provides predictive and/or prognostic information for HCC patients

receiving systematic treatment. Tumor/normal DNA from HCC patients

(N = 127) was compared and analyzed using NGS analysis based on

hybridization capture. The WNT/b-catenin pathway (45%) and TP53

(33%) were associated with highly malignant and more aggressive
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molecular alterations subsets. Oncogenic changes in the PI3K-MTOR

pathway in Sorafenib-treated patients were associated with lower dis-

ease control rates (DCR), shorter median progression-free survival

(PFS), and shorter median overall survival (OS). Experiments on the

regulation of proliferation and apoptosis of liver cancer cells by miR-

19a targeting the homologous deletion phosphatase-tensin (PTEN) on

chromosome 10 showed that the increased expression of miR-19a was

related to the pathology and prognosis of liver cancer. Overexpression

of miR-19a significantly inhibited PTEN. After overexpression of PTEN

plasmid and miR-19a mimic were co-transfected into hepatocellular

carcinoma cells, the effects of promoting cell proliferation and inhibit-

ing apoptosis were reversed [49]. In the future, targeted inhibitory

drugs designed for miR-19a can block its role in promoting tumor pro-

liferation and inhibiting tumor suppressor genes.

At present, gene detection includes DNA and RNA detection. DNA

detection can find the genes with point mutation to determine

whether target sites, such as KRAS mutates, are used as sites for drug

development. RNA detection can observe the expression of DNA by

transcription to predict the situation after blocking the target.

Despite the progress in treatment, colorectal liver metastases

(CRLM) have always been a complex problem in surgery/oncology

field. Postoperative survival remains highly varied due to the lack of

reliable prognostic biomarkers and evidence from clinical trials. At

present, the expression of KRAS, BRAF, TP53, PIK3CA, APC and Ki-67

and the existence of microsatellite instability seem to have decisive

impact on the prognosis and treatment response of CRLM patients. At

the same time, there is a correlation between tumor pathological

results and the genomic alterations found in gene detection. If specific

biomarkers are found in treatment, the prediction of prognosis and

the selection of targeted drugs will be significantly increased [50].

Lim et al. [51] identified unique immune subsets in HBV-related

HCC. Next-generation sequencing (NGS) and in vitro T cells were

used to further investigate phenotypes and functional proliferation

assays. Regulatory T cells (Treg) and CD8+ resident memory T cells

(TRM) were enriched in HBV-associated HCCs. In contrast, TIM-

3+CD8+ T cells and CD244+ natural killer cells were enriched in non-

virus-associated HCCs. Compared with non-virus-associated HCC,

Tregs and TRM in HBV-associated HCC expressed more PD-1, and

functionally had stronger inhibitory and depletion effects. Such

results showed that NGS could help us find the characteristics of

HBV-related HCC microenvironment, which in this case, was a more

immunosuppressive and exhausted microenvironment than the non-

virus-related HCC.

The treatment based on gene detection provides management of

patients at the molecular level. There are still some patients without

mature genomic biomarkers; however, with growing knowledge of

multi-omic landscapes of cancers and increasing evidence from clini-

cal trials, the future of precision medicine is promising.

4. Future perspective

So far, the etiology of HCC has been well understood, but the

knowledge about molecular mechanisms is still negligible. The devel-

opment of NGS has completely changed the method of gene variation

detection in liver cancers. The detection covers point mutation, inser-

tion/deletion, copy number variation, and gene fusion/rearrange-

ment, enabling the estimation of individual response to targeted/

immunotherapy. In addition, genotypes of chemotherapy-associated

polymorphic loci were also examined to predict the efficacy and side

effects of chemotherapy [1,52].

4.1. Application of NGS technology in gene mutations of hepatoma

Cell origins, molecular categorization, and carcinogenesis, as well

as tumor heterogeneity, metastasis, and treatment resistance, are all

subjects of current research [53]. In fact, the rapid progress and

effectiveness of next-generation sequencing technology (NGS) in

identifying cancer-driving genomic alterations (GAs) [54].

Basic, translational and clinical studies aim to complete an

inventory of cancer drivers and mutations. In this direction, rapidly

growing NGS studies from various institutions seek to identify and

assess the effectiveness of genetic and genomic changes, assess their

clinical utility as biomarkers, and develop new drugs that target

specific drug mutations [55].RAS gene is a proto-oncogene of intra-

cellular signal transduction proteins [56], an important oncogene in

the EGFR signal pathway and can be used as a molecular switch to

participate in signal transduction such as cell growth and prolifera-

tion and differentiation. The mutation of KRAS gene will lead to the

continuous activation of downstream pathways due to its inability

to dephosphorylate, leading to the occurrence and progression of

tumors and thus compromising the efficacy of anti-EGFR drugs. Sim-

ilarly, BRAF V600 mutations are also likely to curb the response to

anti-EGFR therapy. A study found that KRAS gene mutation was sig-

nificantly higher in HCC patients with extrahepatic metastasis than

in HCC patients without extrahepatic metastasis[57]. The National

Comprehensive Cancer Network (NCCN) identifies KRAS gene status

as a predictor of EGFR-targeted monoclonal antibodies’ efficacy[58].

BRAF gene testing is also recommended for KRAS wild-type patients

[59].

Few studies on PLC WES have been published, with only four

reporting on more than 100 patients[60,61]. However, studies have

shown that specific mutated genes (CTNNB1, TP53 and AXINI) are

associated with environmental risk factors such as alcohol and viral

hepatitis. If large-scale clinical trials confirm these findings, a screen-

ing program that includes genetic testing and CT could be used for

the early detection of HCC[4].

4.2. Research and application of NGS technology in signal transduction

pathways of liver cancer

NGS can dissect essential pathways such as homologous recombi-

nation repair (HRR), P13K/mTOR signaling pathway, Wnt-b-catenin

pathway. The genes involved in HRR pathway include BRCA1/2,

PALB2, ATM, ATR, CHEK1/2, BARD1, BRIP1, MRE11A, RAD51 gene

family, and FANC gene family. P13K/mTOR signaling pathway-related

genes include PIK3CA, PTEN, STKI1, TSCI, TSC2, mTOR, etc. In HCC,

PIK3CA mutation frequency is 4%, and PTEN deletion mutation fre-

quency is about 7%. The frequency of PIK3CA gene variation in biliary

tumors is 4%»5%. Clinical studies suggest that PI3K, Akt and mTOR

inhibitors can be used as potential therapeutic targets in tumor

patients with PIK3CA mutations (NCT00962611, NCT02449538, etc.)

[57]. Kan et al. [62] sequenced the genomes of 88 HCC patients,

highlighted the critical differences between HCC and other solid

tumors. Changes in EGFR, PI3K and MAPK pathways are also common

in other cancer types, while Wnt/b-catenin and JAK/STAT are the two

main oncogenic pathways of HCC. This finding may explain why

drugs against targets like EGFR do not function well in HCC.

Hauke[63] found that changes in Ras-Raf pathway and SMAD fam-

ily had the highest prognostic significance for the outcome after

resection of colorectal cancer liver metastasis (CRLM), and potential

prognostic biomarkers were identified by NGS analysis of cancer-

related genes. According to Chun et al. [64,65], mutations in BRAF,

KRAS, TP53, PIK3CA and SMAD family members were found to be sig-

nificant predictors of overall survival after liver surgery for CRLM,

deleterious changes in SMAD family members, including copy num-

ber variations and mutations are most correlated with the prognosis

of CRLM[64]. Loss of SMAD signaling is associated with poor progno-

sis after primary colorectal cancer and CRLM resection. Although

there are no targeted therapy options, SMAD analysis appears to be a

potent prognostic factor for cancer.
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4.3. Defects of NGS technology

NGS-based personalized medicine could help the management of

HCC in the way mentioned above or in another. When there are no

evidenced prognostic markers detected in a liver cancer patient, if

the markers of other malignancies such as lung cancer, breast cancer

and colon cancer are highly expressed, corresponding targeted drugs

are also recommended.

The NGS technology does offer many advantages over prior

methods such as fluorescence in situ hybridization (FISH), reverse

transcription-polymerase chain reaction (RT-PCR), and immuno-

histochemistry (IHC). However, it has its obstacles and dilemmas.

Firstly, NGS requires a certain number of materials to complete,

which may not be possible with only a small number of samples

[66]. Next, NGS may lead to a higher false-positive rate while

improving the depth and breadth of sequencing. It takes profes-

sional equipment and personnel to sift through and validate the

results[67]. In addition, various detection methods based on NGS

such as WGS, RNAseq, Hybridization Capture Sequencing, mPCR

could be utilized according to the situation to alleviate the cost

and inconvenience of NGS.

Despite these challenges and the fact that several companies are

currently trying to develop “third-generation” long-read sequencing

platforms, NGS has a vast advantage in clinical applications. NGS may

become more convenient and accurate with continuous break-

throughs in biotechnology, providing a solid basis for selecting tar-

geted and immunotherapy and achieving more personalized

treatment in the context of liver cancers.

Intratumoral heterogeneity of HCC is the main obstacle against

proposing standard treatment strategies for HCC. Therefore, the

future of HCC treatment will be personalized management. It is cru-

cial to identify the driving alterations in the genome, pathways, and

tumor microenvironments of each HCC patient. NGS is an ideal tool

assisting this personalized decision-making.

5. Conclusion

The drugs used to treat liver cancer currently include the above-

mentioned tyrosine kinase inhibitors, non-tyrosine kinase inhibi-

tors, immune checkpoint inhibitors, etc. Due to the characteristics

of hepatocellular carcinoma tumor microenvironment, there is no

effective single-target inhibitor at present, and the combination of

targeted and immune drugs is the mainstream. NGS has played an

essential role in multiple tumor types by identifying driving path-

ways prominent in recurrent somatic mutations, copy number

changes, tumorigenesis, and metastasis. NGS can improve the reli-

ability of clinical diagnosis and provide a basis for a personalized

selection of systemic treatment regimens, facilitating optimized

decision-making for patients. However, further preclinical studies

and clinical trials are still needed to explore the therapeutic effects

of these targeted pathways. Given the complicated malignant sub-

types and great intra- and inter-tumor heterogeneity of hepatocel-

lular carcinoma, repeatable and reliable results are hard to get.

Therefore, it is essential to conduct more global multicenter WGS

studies with larger sample sizes better to understand the NGS thera-

peutic and prognostic potential.
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