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A B S T R A C T

Obesity is a risk factor for developing nonalcoholic fatty liver disease (NAFLD), and the associated molecular

mechanisms could be targeted with nutrient-based strategies. Therefore, it is necessary to review the current

mechanisms to propose further treatments. Obesity facilitates the onset of insulin resistance, lipidic abnor-

malities, hepatic fat accumulation, lipid peroxidation, mitochondrial dysfunction, excessive reactive oxygen

species (ROS) production, and inflammation, all related to further steatosis progression and fibrosis. Micro-

biota alterations can also influence liver disease by the translocation of pathogenic bacteria, energy extrac-

tion from short chain fatty acids (SCFAs), intestinal suppression of the expression of fasting-induced adipose

factor (FIAF), reduction of bile acids, and altered choline metabolism. There are also genetic polymorphisms

in metabolic proteins that predispose to a higher risk of liver diseases, such as those found in the patatin-like

phospholipase domain-containing 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), mem-

brane-bound O-acyltransferase domain-containing 7 (MBOAT7) or also known as lysophosphatidylinositol

acyltransferase 1 (LPIAT1), transmembrane channel-like 4 genes (TMC4), fat mass and obesity-associated pro-

tein (FTO), the b Klotho (KLB) and carboxylesterase (CES1). No clear dietary guidelines target all mechanisms

related to NAFLD development and progression. However, energy and carbohydrate intake restriction, regu-

lar physical exercise, supplementation of antioxidants, and restoration of gut microbiota seem to have bene-

ficial effects on the new proposed features of NAFLD.
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1. Introduction

Obesity is highly associated with the development of nonalcoholic

fatty liver disease (NAFLD) [1]. Globally, the prevalence of NAFLD is

about 24% [2] and about 10% in developing countries [3]. It was

recently estimated that the prevalence of NAFLD in Latin America

could be around 24% [4]. From an epidemiological viewpoint, this

high prevalence reflects the nutrition transition occurring in many

nations worldwide, including Latin America, where many young indi-

viduals are obese and at risk for NAFLD at the early stages [5]. Thus,

prevention strategies based on the genetic and environmental factors

prevailing in the community are warranted.

NAFLD includes liver abnormalities such as simple steatosis, non-

alcoholic steatohepatitis (NASH), cirrhosis, and hepatic carcinoma
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[6,7]. Between 10% and 29% of NASH cases may evolve into cirrhosis,

and 4%-27% may develop hepatocellular carcinoma. However, obesity

features could be influencing a nonreported higher prevalence. In the

present review, we intend to summarize the updated molecular

mechanisms of liver damage associated with obesity and review

which foods and bioactive compounds can influence these mecha-

nisms. This review could help to design nutrient-based strategies to

prevent and treat NAFLD.

2. Key obesity-associated fatty liver disease molecular

mechanisms

Genetic, metabolic, and lifestyle factors seem to be related to the

spectrum of obesity-related liver disease [1]. In the context of obesity,

excessive fat deposition seems to drive the progression of NAFLD fea-

tures [8,9]. Some mechanisms contributing to excessive adipose tis-

sue are insulin resistance, lipidic abnormalities, hepatic fat

accumulation, lipid peroxidation, mitochondrial dysfunction, exces-

sive production of reactive oxygen species (ROS), and inflammation

[10,11] (Fig. 1). The following sections will detail the molecular

mechanisms involved in these processes as understood to date.

2.1. Lipid accumulation

Obesity, defined as excess body fat, enables hepatic uptake of fatty

acids from adipose tissue and diet. In this sense, it has been recog-

nized that the chronic consumption of the westernized diet is hepa-

topathogenic not only because of its high energy content [5] but also

because of the high content of sugars (fructose), saturated fatty acids,

trans fatty acids, and cholesterol that induces liver fat accumulation

[12,13]. However, diet only contributes 15% of hepatic lipid

accumulation [14]. As illustrated in Fig. 1, (section A), about 60% of

lipid accumulation is related to excessive uptake of non-esterified

fatty acids (NEFAs) from adipose tissue lipolysis in insulin resistance

models [15]. In turn, NEFAS induces the TLR4/PI3K/AKT inflammatory

pathway contributing to more insulin resistance [16]. Insulin resis-

tance promotes de novo lipogenesis (DNL), contributing to another

26% of lipids [14]. Insulin resistance induces the overexpression of

the cellular differentiation 36 (CD36) scavenger receptor and the

translocation of the sterol regulatory element-binding protein 1

(SREBP1) transcription factor to the nucleus to activate hepatic DNL

[17].

In addition, fructose intake contributes to DNL in an insulin resis-

tance environment [18]. Once the liver uptakes fatty acids, these par-

ticles can be oxidized by b-oxidation in the mitochondria and

peroxisomes and by the endoplasmic reticulum via a-oxidation and

v-oxidation [19,20]. Impairments in fatty acid oxidation capacity

(FAO) also contribute to lipid accumulation. In NASH human samples,

the FAO capacity and b-oxidation are reduced by»40%-50% compared

with control samples, and hepatic mitochondrial ROS is increased [21].

Alterations in VLDL transport are another way to increase lipid

accumulation in the liver. Excessive energy intake and fructose

induce a higher hepatic triglyceride transport via VLDL secretion

[18]. Fructose also contributes to other alterations such as glucotoxic-

ity and lipotoxicity [22]. However, in severe steatosis, the export and

secretion of VLDL particles seem to be affected

2.2. The inflammasome

Lipidic precursors and other metabolites activate an inflammatory

process related to the progression of steatosis and fibrosis [23]. One

of the main inflammatory events is the release of danger-associated

Fig. 1. Molecular mechanisms associated to obesity-related fatty liver disease. Obesity induces different molecular mechanisms such (A) hepatic fat accumulation, (B) Inflamma-

tion, (C) Oxidative stress and mitochondrial dysfunction, (D) Dysbiosis and (E) Genetics.
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molecular patterns (DAMPs) from damaged hepatocytes [24]. Adeno-

sine triphosphate (ATP) is one of the most studied DAMPs released to

the extracellular space, achieving very high concentrations facilitat-

ing the activation of purinergic receptors P2X and P2Y. Specifically,

the inflammasome facilitates a type of cell death called pyroptosis

[25], Fig. 1 (section B). In the cytoplasm, the liver expresses different

types of inflammasomes that are released to the extracellular space

contributing to inflammation.

Inflammasomes are a multi-protein complex , including a sensory

molecule such as nucleotide-binding oligomerization domain (NOD)-

like receptors (NLRs), an adaptor protein ASC (apoptosis-associated

speck-like protein containing CARD), and an effector molecule pro-

caspase 1. DAMPs and pathogen-associated molecular patterns

(PAMPs) are recognized by the pattern recognition receptors (PRRs),

activating the NK-kB transcription factor that induces overexpression

of NLRP3 [26,27]. ROS binds to NLRP3, which recruits ASC, and in

turn, caspase 1 is activated. This process induces gasdermin D

(GSDMD) to form cell pores to facilitate the proteolytic cleavage and

release of proinflammatory cytokines, such as IL-1b, IL-18, IL-1alpha,

and transforming-growth factor (TGF)-b [24]. These cytokines facili-

tate lipid accumulation, activation of fibrogenesis in hepatic stellate

cells, and collagen production leading to tissue fibrosis and hepatic

insulin resistance [28].

2.3. Oxidative stress and mitochondrial dysfunction

In the early stages of NASH, the liver has a higher mitochondrial

fatty acid oxidation until it reaches its maximal limit for lipid accu-

mulation. Next, free fatty acids induce mitochondria dysfunction. As

a consequence, there is a decrease in mitochondrial respiration, and

an increase in reactive oxygen species (ROS) [29], Fig. 1, Section C.

Important structural and metabolic alterations in the mitochondria

membrane facilitate liver disease progression [30,31]. A recent study

in NAFLD-induced mice found important alterations in hepatic mito-

chondrial lipid profile where increases in lysophosphatidylcholines,

fatty acids, diglycerides, and triglycerides and increases in ROS were

experienced [32].

3. Dysbiosis and liver damage

Intestinal human microbiota confers multiple beneficial proper-

ties to the host [33,34]. However, whenever there is an increase in

the abundance of pathogenic species in contrast to beneficial species,

there is a high risk of developing chronic diseases, Fig. 1 (section D).

For example, in obese patients with simple steatosis, there is a

greater abundance of pathogenic bacteria such as Lachnospiraceae,

Dorea, Robinsoniella, and Roseburia, which produce volatile organic

compounds related to liver damage [35]. Moreover, patients with

NASH present a reduction in beneficial bacteria, including Faecalibac-

terium bacteria, and an increment of pathogenic bacteria such as Par-

abacteroides, Allisonella, and Escherichia, which affect the integrity of

the intestinal barrier [36]. Escherichia coli is known to produce etha-

nol and disrupt the integrity of the intestinal barrier resulting in

upregulation of alcohol metabolism enzymes triggering liver inflam-

mation. Furthermore, patients with liver cirrhosis significantly

reduce the proportion of Bacteroidetes, while Proteobacteria and

Fusobacteria are abundant. In addition, the Streptococcaceae family

correlates with the severity of the disease. In addition, patients with

decompensated cirrhosis due to hepatitis B infection present a higher

reduction in Bifidobacteria and lactic acid-producing bacteria and a

higher increment of Enterococcus faecalis compared to asymptomatic

carriers and healthy controls [37].

Unhealthy food patterns rich in saturated fats, sugars, and lack of

fiber, fruits, and vegetables alter the microbiota profile, contributing

to the development of multiple diseases [38]. For instance, excessive

consumption of fructose available in breakfast cereals, sweet

beverages, and fast food is directly associated with dysbiosis by

compromising the integrity of the intestinal mucosa, allowing the

passage of toxins, proinflammatory cytokines, and pathogenic bacte-

ria into the circulation. Fructose affects bacteria diversity promoting

an increment in the Firmicutes/Bacteroidetes ratio [22]. Fructose-

derived metabolites such as glucose, glycerol, uric acid, SCFAs, gluta-

mic acid, glutamine, and alanine serve as lipogenic substrates; there-

fore, fructose stimulates DNL as previously discussed [22].

Furthermore, intestinal epithelium integrity loss allows lipopoly-

saccharides (LPS) and toxins to be translocated through the portal

vein. LPS and toxins are recognized by Toll-like receptors (TLR4-

TLR9), which regulate the innate immune response in liver cells

(Kupffer, stellar). LPS then activates the molecule signaling of MyD88

in B cells which in turn favors the translocation of NF-kB, activating
the expression of proinflammatory genes, leading to a higher secre-

tion of cytokines (TNFa, IL-1b), recruitment of neutrophils, chemo-

kines (IFN-b) by macrophages [39−41]. These aberrant results lead to

liver damage by promoting DNL, hepatic accumulation of triglycer-

ides, insulin resistance, apoptosis, and fibrogenesis. Furthermore, it

has been identified that liver-specific toll-like receptors (TLRs) can

recognize bacterial compounds such as TLR4, TLR5, and TLR9 [42,43].

Bacterial fermentation of dietary polysaccharides produces short

chain fatty acids (SCFAs) such as acetate, butyrate, and propionate.

These SCFAs contribute 70% of the intestinal bacterial energy. SCFAs

can bind to G protein-coupled receptors such as GPR43/GPR41 in the

colon and adipocytes. GPR41 activates peptide YY (PYY) and gluca-

gon-like peptide (GLP-I), reducing appetite. However, in response to

a signal of excess energy, there is an increase in lipogenic enzyme

activity, and a reduction of fatty acid oxidation, because insulin sensi-

tivity in adipose tissue is blocked, and it favors lipid accumulation in

the liver [44]. Specifically, acetate and propionate have been impli-

cated in hepatic lipogenesis (cholesterol and triacylglycerides) and

gluconeogenesis [45,46].

In contrast, butyrate might have protective properties against

NASH and cirrhosis progression by reducing the expression of fibro-

genic genes [47]. For instance, it recognized that butyrate is necessary

for activating the fasting-induced adipose factor (FIAF), an inhibitor of

lipoprotein lipase (LPL). When FIAF is suppressed, LPL is activated,

which leads to greater incorporation of fatty acids into the cell and

the accumulation of triglycerides in adipose tissue [48,49]. It also

facilitates the transcription of carbohydrate-responsive element-

binding protein (ChREBP) and SREBP1, facilitating triglyceride accu-

mulation in the liver [42]. This effect seems to be reduced with the

administration of butyrate [50].

Dysbiosis also seems to interfere with bile acid homeostasis,

which helps emulsify dietary lipids [51]. Intestinal microbiota trans-

forms primary bile acids into secondary bile acids (deoxycholic acid

(DCA), ursodeoxycholic (UDCA), and lithocholic acid (LCA)) that have

antimicrobial and cytotoxicity properties. Bile acids activate the far-

nesoid X receptor (FXR) and G protein-coupled receptor (TGR5),

which regulate bile acid production. However, dysbiosis favors the

reduction of FXR and fails to inhibit NF-kB and prevent inflammation

[42]. As per alterations of the choline metabolism, it has been found

that intestinal microbiota converts dietary phosphatidylcholine into

choline. At the same time, the abundance of pathogens (Firmicutes

and Proteobacteria) favors the conversion to trimethylamine-N-oxide

(TMAO), which is a toxic product associated with reduced clearance

of VLDL from the liver, thus causing steatosis [52−54].

4. Genetic factors related to liver disease during obesity

Genetic variants in lipid metabolism genes are currently being

studied to decipher their role in the predisposition toward liver dis-

ease, Fig. 1, (section E). One of the most studied genes is patatin-like

phospholipase domain-containing protein 3 (PNPLA3),which encodes

a lipase involved in hepatocellular lipid remodeling and retinol
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metabolism at the cytoplasmic level in hepatic stellate cells. The

SREBP1 upregulates its expression under higher glucose conditions.

In the case of the PNPLA3 rs738409, C>G polymorphism, the 148M

variant in the form of GG genotype correlates with the highest pro-

tein expression, inhibition of lipases, and in turn, favoring larger

hepatic lipid droplets and fibrosis [55,56]. This 148M variant regu-

lates the hepatic triglyceride content, and this effect seems to be

induced by dietary intake. For instance, studies have shown that car-

riers of the risk G allele had a higher intake of omega-6/omega-3 ratio

which contributes to increased liver steatosis versus the CC geno-

types [57]. Similarly, consuming arachidonic acid from meat origins,

carbohydrates, and sugar is also related to steatosis and fibrosis. In

contrast, a higher intake of n-3 polyunsaturated fatty acids (PUFA),

isoflavones, methionine and choline, and eicosapentaenoic acid (EPA)

supplementation could reverse liver disease parameters [57−62]. In a

double-blind placebo control, trial participants were supplemented

with 460 mg/day of EPA and 380 mg/day of docosahexaenoic acid

(DHA) for 15-18 months. In this study, subjects who were PNPLA3

148M/M carriers were associated with lower DHA tissue enrichment

and hepatic fat levels. In contrast, EPA enrichment resulted in lower

fasting triglyceride levels among 148M/M carriers [63]. In addition, a

4-month caloric restriction without changes in physical activity was

performed and resulted in improvements in hepatic steatosis,

anthropometric traits, and VLDL levels among subjects with the

PNPLA3 and the transmembrane 6 superfamily 2 (TM6SF2) risk geno-

types [64]. In contrast, in another study, patients with PNPLA3 148M

risk variant had no changes in transient elastography with a con-

trolled attenuation parameter (CAP) or liver enzymes after receiving

1840 mg EPA and 1,520 mg DHA for four weeks [65].

Furthermore, patients with the risk allele of rs738409 PNPLA3 had

a low reduction in transaminase levels after supplementing with

silymarin + vitamin E for six months [66]. Furthermore, in a small

sample size clinical study, subjects were placed on a three-week

hypercaloric rich in simple carbohydrates that induced DNL and liver

fat accumulation. However, this effect was reversed after a six-month

weight-loss period. In this study, there was a lack of a positive corre-

lation between changes in DNL and triglycerides levels in PNPLA3-

148MM carriers with defective triglyceride hydrolysis [67]. In a more

recent study, the bodyweight loss resulted in liver stiffness changes

among PNPLA3 CG/GG and HSD17B13 AG/GG carriers [68].

The lysophospholipid acyltransferase 7 (MBOAT7) is an enzyme

that regulates phospholipid acyl-chain remodeling. The T-risk allele

from MBOAT7 rs641738 reduces its protein expression, and as a con-

sequence, there is a change in plasmatic phosphatidylinositol [69]. It

is also associated with hepatic triglyceride accumulation and disease

severity, including steatosis, inflammation, and fibrosis [70]. How-

ever, other studies have not found evidence of the association

between rs641738 and NAFLD, NASH, fibrosis, or liver disease sever-

ity [71,72].

The Fat mass and Obesity-associated protein (FTO) is a demethy-

lase enzyme [73]. It can down-regulate N6-methyladenosine, which

is involved with increased triglyceride deposition [74]. One recent

study found that FTO protein levels and gene expression were higher

in samples from NAFLD and NASH patients during high-fat diet con-

ditions. Due to this metabolic state, FTO seems to promote triglycer-

ide accumulation and steatosis in the liver. This effect is possible

because FTO blocks the PPARa transcription factor that would favor

FAO [75]. Furthermore, FTO also regulates adipokines such as IL-6. A

recent study has shown that FTO knockout mice fed with a high-fat

diet increase the expression of IL-6 [76]. Different genetic variations

(rs1421085 C-allele, rs8050136 A-allele, rs3751812 T-allele, and

rs9939609 T-allele) in the FTO gene have been studied for their possi-

ble contribution role to the risk of NAFLD [77].

The homeostasis of biliary acid is important for the regulation of

liver inflammation. One key gene polymorphism is rs17618244 G>A

from the b-Klotho (KLB). KLB is a coreceptor of fibroblast growth

factor receptor-4 (FGFR4) which interacts with FGF19 and induces

the downregulation of cholesterol 7-alpha-hydroxylase (CYP7A1)

and inhibits biliary acid synthesis. The rs17618244 minor A allele

increases the risk of ballooning and lobular inflammation in children

with NAFLD [78]. Another recent study found that the rs17618244 A

allele was associated with hepatic fibrosis, lobular inflammation, and

cirrhosis in patients with NAFLD. Moreover, its gene expression was

higher in hepatic stellate cells, favoring the activity of profibrogenic

and proliferative genes [79].

The enzyme carboxylesterase (CES1) detoxifies xenobiotics and

activates ester and amide prodrugs. It also regulates the efflux of free

cholesterol from macrophages to cholesterol acceptors and releases

free cholesterol from lipoproteins in the liver for bile acid synthesis

or direct secretion into the bile [80,81]. The genetic variation

rc.428G>A (p.Gly143Glu) positively correlates with increased lipid

storage and plasma concentration [82]. In addition, the deletion copy

number variation (CNV) of CES1 on the 16q12.2 locus, in which car-

riers of < 2 CNV presented an increased risk of NAFLD [83].

5. Nutrient-based prevention and treatment strategies

5.1. Dietary interventions

The treatment of liver disease currently focuses on reducing

hepatic lipid uptake while promoting weight loss. However, there are

no precise medications or dietary guidelines to achieve this outcome.

However, energy restriction is, until now, the most used strategy. For

example, in a randomized control trial that examined the effect of a

hypocaloric low carbohydrate diet (LCD) or a high carbohydrate diet

(HCD), reductions in intrahepatic triglycerides were similar between

groups [84]. Furthermore, in a randomized control trial, overweight

and obese patients with type 2 diabetes followed a Paleolithic diet ad

libitum combined with exercise for 12 weeks. At the end of the study,

participants decreased fat liver content and improved peripheral and

adipose tissue insulin sensitivity, but not hepatic insulin sensitivity

[85]. In contrast, lifestyle changes consisting of balanced dietary

modification and regular physical exercise reduced weight, hepatic

lipid content, liver enzymes, and inflammatory markers [86,87].

As reported, DNL is key for liver disease progression; in this sense,

a promising dietary strategy consisting of 4 g/day of EPA+DHA sup-

plementation for 15-18 months was tested in a randomized control

trial. The study found that participants who received ⩾2% of DHA

improved hepatic insulin sensitivity, reduced fasting and postpran-

dial plasma triglyceride levels, and decreased fasting hepatic DNL

[88]. In another similar study, 4 g/day of EPA+DHA supplement for 8

weeks reduced fasting plasma triglycerides, intrahepatic triglycer-

ides, fasting and postprandial hepatic DNL, and increased fatty acid

oxidation in healthy participants [89].

5.2. Antioxidants and vitamins

Different natural products have been used to exert antioxidant

properties. In the case of liver disease, clinical studies with D-pinitol

from carob pods helped to reduce fat liver accumulation and

improved transaminases and triglycerides while reducing oxidative

stress and inducing fatty oxidation [90]. In an experimental model,

the administration of a white tea extract, an antioxidant compound,

reversed steatosis by efficiently regulating the expression of lipid

metabolism, oxidative stress, and inflammatory genes [91]. In

another experimental model, C57BL/6 mice were fed with fructose to

induce NAFLD and then were given vitamin E (70 mg/kg) for 2 weeks.

As a result, vitamin E ameliorated glucose intolerance, liver steatosis,

and lipid accumulation. These beneficial results were related to the

upregulation of nuclear factor erythroid-2-related factor 2 (Nrf2), and

CES1 downregulated lipogenic genes [92]. Vitamin E supplementa-

tion (400 mg twice a day) in patients with NASH helped decrease
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liver aminotransferases, IL-6, therefore showing an anti-inflamma-

tory benefit [93]. Furthermore, the administration of a combined

nutraceutical containing Vitamin D3, Vitamin E, Olive dry extract

(Olea Europaea), Cinnamon dry extract (Cinnamomum cassia Presi

cortex), and Fish oil 56% DHA/EPA was able to decrease lipid accumu-

lation in the liver, mainly by increasing the expression of fatty acid

oxidation enzymes, reducing lipoperoxidation products such as

malondialdehyde (MDA)- and 4-hydroxy-2-nonenal, restoring com-

plex I and by increasing the production of uncoupling protein 2

(UCP-2) [94]. The supplementation of plant extracts, L-Methionine,

and L-Glutathione alone or in conjunction with a hypocaloric Medi-

terranean diet for six months helps to reduce weight, lipid profile,

hepatic fat accumulation, and liver stiffness [95].

5.3. Probiotics and prebiotics

Restoration of gut microbiota is a promising strategy to treat and

prevent many chronic diseases. As explained earlier, fructose induces

microbiota dysbiosis associated with liver disease progression. How-

ever, this can be reversed when administered probiotics. For exam-

ple, investigators studied the effect of the administration of

Lactobacillus paracasei in C57BL/6 mice with NASH fed with 10% fruc-

tose and found remarkable results in reduced hepatic fat deposition

serum ALT level, lower expression of proinflammatory genes [96].

Gut microbiota also can be manipulated with prebiotics and symbiot-

ics. In line with this, supplementing with a symbiotic capsule with

200 million colony-forming units of 7 different bacteria strains,

125 mg fructo-oligosaccharide, magnesium stearate, and hydroxy-

propylmethylcellulose, there was a reduction in hepatic steatosis and

fibrosis measured by transient elastography [97]. Probiotics also

seem to improve liver histology and inflammatory markers in

patients with NAFLD [98]. Ongoing randomized controlled trials aim

to reduce fat liver content, inflammation, and fibrosis which are wor-

thy of follow-up [99,100].

In summary, the growing evidence of nutrient-based strategies

points out that they provide beneficial effects to counteract the

nocive cycle of DNL, inflammation, and fibrosis in the context of obe-

sity/NAFLD/NASH. Further studies are warranted to combine these

strategies with a genome-based nutrition approach to optimize the

effect of these interventions based on the genetic composition of the

population [101].

6. Conclusion

In the context of excess adipose tissue, as in obesity, metabolic

syndrome, and T2DM, the activation of different molecular mecha-

nisms such as insulin resistance, metabolic alteration, lipidic accumu-

lation, oxidative stress, and inflammation increase the risk of

developing liver disease. Additionally, altered dietary behaviors and

unhealthy lifestyles favor dysbiosis that enhances unfavorable

NAFLD-related mechanisms. Therefore, dietetic research that consid-

ers nutrient-based strategies to prevent and treat NAFLD is neces-

sary.
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