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A B S T R A C T

Introduction and Objectives: Hepatocellular carcinoma (HCC), a malignancy with a very dismal prognosis, has

drawn a lot of attention, particularly in East Asia, where morbidity and mortality are higher. Although new

information about the role of fatty acids (FAs) in HCC is constantly being discovered, it is still vital to investi-

gate how FA metabolism affects the prognosis, immune microenvironment, and responsiveness of HCC to

immunotherapy as a whole.

Materials and Methods: To determine the significance of FA metabolism in HCC immunotherapy, we first eval-

uated HCC samples from the single-cell dataset GSE151530. The TCGA-LIHC cohort and GSE140901 were fur-

ther studied to identify the impact of FA metabolism on prognosis, immune microenvironment, drug

sensitivity, and immunotherapy response by developing a fatty acid prediction index (FPI). The heterogeneity

and similarity of the involvement of FA metabolism in pan-cancer is also investigated.

Results: Combining single-cell and bulk analyses, we confirmed that FA metabolism regulates tumor malig-

nancy, prognosis, immune microenvironment, drug sensitivity, and immunotherapy response in patients

with HCC. Moreover, it can have a considerable impact on the physiological activities of hepatocellular can-

cer. In addition, we demonstrate that FA metabolism has a comparable or same role in many malignancies.

Conclusions: Our investigation shows the crucial regulatory role of FA metabolism in HCC and suggests a

potential therapeutic method for HCC patients, which may improve their survival.

© 2023 Fundación Clínica Médica Sur, A.C. Published by Elsevier España, S.L.U. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

According to the World Health Organization [1], liver cancer is

one of the top three causes of cancer-related deaths in 46 countries

and one of the top five causes in 90 countries. It is projected that by

2040, the number of new liver cancer cases will increase by 55.0%

compared to 2020, with an estimated 1.4 million new diagnoses in

2040. It is also estimated that there will be 1.3 million deaths from

liver cancer in 2040, representing a 56.4% increase compared to

2020. Asia is the continent with the highest incidence of liver cancer,

accounting for 72.5% of the global incidence, while China is the coun-

try with the highest burden of liver cancer, accounting for 45.3% of

the global new liver cancer cases. In China, there were 410,038 new

liver cancer cases in 2020, with a crude incidence rate of 28.3/

100,000 and a population-standardized incidence rate of 18.2/

100,000. In China, there were 391,152 liver cancer-related deaths in

2020, with a crude case fatality rate of 27.0 per 100,000 and a global

population-standardized case fatality rate of 17.2 per 100,000. Chi-

nese liver cancer deaths account for approximately 47.1% of all liver

cancer deaths worldwide [2]. In China, liver cancer is the leading

cause of death for people under the age of 65 and the leading cause

of death due to malignant tumors. Males in China have a higher inci-

dence and mortality rate of liver cancer than females, and rural areas

have a higher incidence and mortality rate than urban areas [3,4]. In

China, the 5-year survival rate for liver cancer was 12.1% from 2012

to 2015 [5].

Due to the need for rapid proliferation and the relative lack of

external blood supply in liver cancer tissue, liver cancer cells are fre-

quently in a metabolic stress state characterized by relative hypoxia

and insufficient nutrient supply. To adapt to this living environment,

liver cancer cells will now undergo a series of metabolic reprogram-

ming processes. In addition to activating glycolysis, reprogramming

of lipid metabolism is an important mechanism by which liver cancer

cells respond to metabolic stress [6]. As a component of cell mem-

branes, a source of energy, and a signaling molecule, fat inevitably

plays a significant role in cancer [7−11]. Under normal physiological

conditions, the liver regulates fat homeostasis and the metabolism of
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lipoproteins. Damage to liver cells impairs this function, resulting in

alterations in lipid metabolism, which play a crucial role in the devel-

opment of liver cancer. Different from normal tissue cells, the reprog-

ramming of lipid metabolism in liver cancer cells is primarily

manifested in lipid metabolism processes such as FA synthesis (FAS)

and FA oxidation (FAO). Under stress, the survival and proliferation

of liver cancer cells are highly dependent on the regulation of FAS

and FAO [12,13].

Through the gene set associated with FA metabolism, the purpose

of this study is to investigate the association between the level of FA

metabolism and the clinical indicators and prognosis of HCC. In addi-

tion, the relationship between FA metabolism, liver cancer

immunotherapy, and the immune microenvironment was investi-

gated. By combining single-cell datasets with bulk datasets, we have

gained a deeper understanding of the impact of FA metabolism on

HCC.

2. Material and Methods

2.1. Data set acquisition

The single-cell data set GSE151530 was downloaded from the

GEO database, which contained a total of 46 samples of HCC and

intrahepatic cholangiocarcinoma, and 16 biopsy samples before and

Fig. 1. Single-Cell Analysis. (A) Annotation of cells. (B) FA metabolism levels in samples before and after treatment. (C) Malignancy levels of different FA metabolism groups. (D) FA

metabolism levels of different cells before and after treatment. (E) Differential genes between cells of different FA metabolism.(FA: fatty acids).
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after treatment were collected from seven patients. The expression

matrix, corresponding clinical information, and mutation data of HCC

samples were extracted from the TCGA database, and the LIRI-JP

cohort containing the transcriptomic data of 231 HCC patients was

extracted from the ICGC database. GEO database GSE140901 contains

24 HCC samples treated with PD-1/PD-L1 immunotherapy.

2.2. Curation and analysis of single-cell dataset

After integrating the expression matrix data in GSE151530, filter and

standardize, then annotate and visualize the dimensionally reduced

cluster using SingleR [14] and Celltype [15]. Utilize AUCell [16]to com-

pute and display the FA metabolism score for each group based on the

gene set. ClusterProfiler [17] was utilized to conduct a GSEA analysis of

differential genes between various FA metabolism groups. SCEVAN [18]

can distinguish between non-malignant and malignant cells of the

tumor microenvironment and characterize the clonal structure of these

malignant cells. CellChat [19]was utilized to evaluate changes in inter-

cellular communication strength and quantity.

2.3. Collection of gene sets and calculation of FPI

The gene set associated with FA metabolism was retrieved from

the msigdb database (https://www.gsea-msigdb.org/gsea/msigdb/).

The gene set associated with immunotherapy-related pathways was

obtained from Zu’s article [20], while the gene set related to cell

death was obtained from published articles and the msigdb database.

Using GSVA [21] to evaluate the enrichment score of positive

regulation or negative regulation of FA metabolism in the FA-related

metabolic gene set, the difference between the positive regulation

score and the negative regulation score is the FPI, which is used to

evaluate the difference in FA metabolism intensity between samples.

2.4. Immune microenvironment and immunotherapy analysis

We use GSVA to calculate ImmuneScore, StromalScore, ESTIMA-

TEScore, and TumorPurity, the PCA method to calculate the quantita-

tive calculation of DNA-methylated lymphocytes (MeTIL) [22],

ssGSEA is used to assess the infiltration of immune cells in the

immune microenvironment of each sample, and a heat map is used

to display the results. After purifying the expression profiles with

ISOpureR [23], pRRophetic [24] was used to predict the drug sensitiv-

ity of cancer samples based on the cell line expression profiles of

CCLE (https://sites.broadinstitute.org/ccle) and the drug sensitivity

data obtained from PRISM and CTRP.

2.5. Machine learning builds the best prognostic model

By combining RSF, Enet, StepCox, CoxBoost, plsRcox, superpc,

GBM, survivalsvm, Ridge, and Lasso, ten algorithms with variable

screening and prognostic model construction, we use TCGA-LIHC as

the training set, ICGC-LIRI And GSE14520 is the validation set, use

one algorithm for variable selection under the cross-validation

framework and use another algorithm to build the prognosis model,

and calculate the consistency index (C-index) of the used model com-

bination on the external data set, and finally visualize the evaluation

Fig. 2. Cell communication analysis. (A) Overall signaling patterns under different FA metabolism levels. (B) Changes of signaling molecules at different levels of FA metabolism.

Changes in the strength (C) and number (D) of cellular communication at different levels of FA metabolism.
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results of the model through the heat map, and calculate the correla-

tion between the prediction model and the FPI in each data set.

2.6. Pancancer analysis

Immune infiltration: Using Mcp Counter, Quantiseq, xCell, EPIC,

and Cibersort, we compute the immune cell infiltration information

of each tumor and visualize the relationship with FPI using a heat

map. We calculated the relationship between FPI and DFI, DSS, OS,

and PFI in pan-cancer using KM analysis, and the impact of FPI on OS

in pan-cancer was determined using the univariate COX model. Func-

tional enrichment: The samples were grouped according to the level

of FPI, and then we performed differential expression analysis among

the groups, and further used the results for GSEA enrichment analy-

sis, which can infer the different roles of FPI in different tumors.

2.7. Statistical analysis

All bioinformatics analyzes were performed using R software

(v4.1.3). Correlations were analyzed using Fisher’s exact test (for cat-

egorical data) and Pearson’s correlation coefficient (for continuous

variables). Statistical significance was defined when the P value was

less than 0.05 (P < 0.05).

2.8. Ethical statements

Since the data involved in this article are all from public databases,

there are no potential ethical issues with this article.

3. Results

3.1. Single-cell analysis

In the single-cell data set GSE151530, we identified nine different

cell types based on the expression of different surface markers in differ-

ent clusters, namely T cell, B cell, monocyte, macrophage, NK cell, hepa-

tocyte, endothelial cell, epithelial cell, and tissue stem cell (Fig. 1A). The

lower level of FA metabolism in the treated HCC sample (HCC_Treat)

(Fig. 1B) suggests that the treatment process of HCC is also a process of

escaping from the disorder of FA metabolism. The FA metabolism levels

of B cell, endothelial cell, monocyte, and tissue stem cell FA metabolism

levels decreased significantly after treatment, while hepatocyte and

Fig. 3. Relationship between FPI and clinical data of HCC patients (A). Prognostic analysis of patients with different FPI levels (B). Correlation analysis between FPI and various cell

death modes (C). Correlation analysis between FPI and potential pathways of immunotherapy (D).
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epithelial cell FA metabolism levels increased significantly after treat-

ment (Fig. 1 D). Regardless of whether received treatment, HCC samples

with a low FAmetabolism had a higher level of malignancy and a higher

probability of gene copy number variation (Fig. 1C). By analyzing the dif-

ference between cells with different levels of FA metabolism (Fig. 1E)

and performing GSEA functional enrichment analysis, we discovered

that T cells were not enriched into meaningful pathways, endothelial

cells and tissue stem cells could only enrich individual pathways, and

FA metabolism has a greater effect on the life activities of epithelial cell,

B cell, and hepatocyte cells (Supplementary Figure 1). We also discov-

ered that differences in FAmetabolism influence intercellular communi-

cation between different cells, affecting not only the level of intercellular

signaling factors but also the intensity and quantity of intercellular com-

munication (Fig. 2A-D).

3.2. Association analysis of FPI and clinicopathological data of TCGA-

LIHC cohort

The samples in the TCGA-LIHC cohort with an FPI greater than 0

were classified as belonging to the high FA metabolism group, while the

remaining samples were classified as belonging to the low FA metabo-

lism group. Through additional analysis of the clinicopathological data,

we determined that patients in the group with a high FA metabolism

had a greater prevalence of cancer. The low proportion of pathological

stages (AJCC-stage and T stage), the age of diagnosis is also significantly

older than the low FA metabolism group (Fig. 3A), KM survival analysis

also confirmed that patients with high FA metabolism level have a bet-

ter prognosis (Fig. 3B), and the KM survival analysis for each subgroup

also supports this trend, especially in younger than 60 years old or

higher AJCC stage, or higher T stage, or Asian patients andmale patients

(Supplementary Figure 2). Concurrently, we also analyzed the relation-

ship between FPI and 13 cell death methods and the immunotherapy-

related pathways. We discovered that although FPI is weakly associated

with the majority of cell death mechanisms, it has a significant negative

correlation with nearly all immunotherapy-regulated pathways.

3.3. Effects of FPI on the immune microenvironment

Through the analysis of the tumor immune microenvironment,

we also found that although FPI is weakly correlated with some

Fig. 4. Correlation heat map between FPI and immune microenvironment in HCC patients. FPI, fatty acid prediction index; MeTIL, DNA-methylated lymphocytes; ICI, immune

checkpoint inhibitors; TIME, tumor immunologic microenvironment.
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Fig. 5. Correlation analysis between FPI and drug sensitivity in HCC patients (A, B: CTRP database; C, D: PRISM database). Sensitivity analysis of sorafenib in HCC patients under dif-

ferent FPI groups (E: CTRP database; F: PRISM database).(FPI: fatty acid prediction index).

J. Wang and X. Jin Annals of Hepatology 28 (2023) 101148

6



common tumor scoring systems, samples with low FA metabolism

levels have higher expression on some common immune check-

points, such as CD274, PDCD1, CTLA4, TNFRSF4, etc., echoing the pre-

vious conclusion that low FA metabolism level is associated with

increased malignancy and a poor prognosis. The level of FA metabo-

lism was negatively correlated with T cell focal helper, T cells CD4

memory activated, and Eosinophils, but clearly positively correlated

with T cell gamma delta, Plasma cells, T cells CD4 memory resting,

NK cells resting, Monocytes, Mast cells resting, and Endothelial cells

(Fig. 4).

3.4. Drug sensitivity and immunotherapy responsiveness

After drug sensitivity prediction on the purified expression

matrix, we determined that the drugs with significant differences in

sensitivity between the two groups at different levels of FA metabo-

lism were betulinic acid, SR1001, BMS-195,614, GDC-0879, procarba-

zine, BMS-536,924, GANT-61 (CTRP database) (Fig. 5A, B), whereas

data from PRISM indicated that the drugs with higher sensitivity dif-

ferences were SKI-II, 4‑hydroxy-phenazone, fleroxacin, FR-139,317

(Fig. 5C, D). We also investigated the relationship between FA metab-

olism and sorafenib sensitivity and found that the group of individu-

als with a high FA metabolizer rate had a higher sensitivity in both

databases (Fig. 5E, F). To further investigate the association between

FPI and immunotherapy responsiveness, we analyzed GSE140901

and discovered that the high FA metabolism group had a better

clinical benefit response and best response. Similarly, the PFS time

and OS time of the low FA metabolism group were significantly

shorter than those of the high FA metabolism group (Fig. 6).

3.5. Functional enrichment and correlation of machine learning-based

predictive models with FPI

Utilizing functional enrichment analysis, we were able to identify

potential physiological processes involved in FA metabolism. In the

high FA metabolism group, it primarily involves steroid metabolic

process, fat acid metabolic process, and response to xenobiotic stimu-

lation (Fig. 7A, D), whereas in the low FA metabolism group, it pri-

marily involves embryonic organ development, pattern specification,

embryonic organ metamorphosis, etc. (Fig. 7B, E). Metabolism of Lip-

ids, Phase I Functionalization of Compounds, Metapathway Biotrans-

formation Phase I and II, Retinol Metabolism, Biological Oxidations,

etc. were the majority of the pathways enriched by different genes

between the two groups, as determined by GSEA (Fig. 7C). By com-

bining ten machine learning algorithms pairwise, we discovered that

StepCox [forward]+SuperPC has a higher C-index (Fig. 8A) and can

accurately predict the prognosis of patients in the TCGA-LIHC cohort,

ICGC-LIRI cohort, and GSE14520 (Fig. 8B-D). The correlation analysis

demonstrates that in the aforementioned three cohorts, FPI has a

high correlation with the prediction model, which may indicate that

FPI is an excellent predictor of the prognosis of patients with HCC.

Fig. 6. Association of FPI with immunotherapy responsiveness and prognosis (A). ROC curves were used to examine the predictive power of FPI for PR (B). Composition of best

response (C) and clinical benefit response (D) of different FPI groups. SD, stable disease; PD, progressive disease; PR, partial response.
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3.6. Pan-cancer analysis

To further investigate the mechanism of FA metabolism in tumors,

a pan-cancer analysis was conducted. First, we conducted pan-cancer

immune infiltration studies and discovered that FPI and T cells CD4

memory activated, Macrophages M0, Macrophages M1, Monocytes,

Mast cells resting, T cells follicular helper have a relatively consistent

correlation in the majority of tumors, while the correlation with T

cells regulatory (Tregs) showed heterogeneity among different can-

cers (Fig. 9A). FPI demonstrates substantial heterogeneity for survival

analysis, and its analysis of cancer patient prognosis is constrained by

the different types of cancer and cannot be applied to survival analy-

sis for all cancers (Fig. 9B, C). Functional enrichment analysis revealed

that Xenobiotic metabolism, G2M checkpoint, Epithelial-mesenchy-

mal transition, E2F targets, Adipogenesis are involved in FA metabo-

lism in pan-cancer, indicating the similarity of FA metabolism in the

regulation of cancer life activities.

4. Discussion

FAs consist primarily of phospholipids, sphingolipids, triglycer-

ides, and other lipid components. Multiple metabolic pathways can

combine them into more complex lipids or convert them into phos-

phoglycerides [25]. Consequently, FAs can participate in the regula-

tion of important physiological processes of cells via complex

metabolic pathways. For instance, it can synthesize biofilm and regu-

late its fluidity, act as a second messenger to transmit biological infor-

mation and serve as a carrier to store energy [26], which can not only

meet the physiological needs of normal cells but also play a signifi-

cant role in the rapid proliferation of cancer [27,28]. Despite the fact

that HCC is characterized by high malignancy, high mortality, and

poor prognosis, and that FA metabolism has been shown to play a sig-

nificant role in the occurrence and development of HCC [29], previous

studies have primarily focused on a single regulatory factor [30−32],

and its correlation with immunotherapy, the immune microenviron-

ment, and drug sensitivity requires additional investigation.

We began by examining the relationship between FA metabolism

and immunotherapy. By analyzing single-cell data sets comprising

immunotherapy-treated samples, we discovered that HCC samples

after treatment have lower FA levels, which may indicate that the

HCC’s FA metabolism is returning to normal as treatment progresses.

In normal HCC, however, a decrease in FA metabolism frequently indi-

cates an increase in malignancy. Changes in FA metabolism will not

only affect the level of intercellular communication in tumor tissue but

will also play a different role in regulating the physiological activities

of different cell types, reflecting the heterogeneity of the tissue.

Patients in the high-FA metabolism group had a higher proportion

of low-grade AJCC stage and T stage than those in the low-FA metab-

olism group, as determined by a comprehensive analysis of the

TCGA-LIHC cohort. At the same time, the patients in the group with a

high FA metabolism had a later age at first diagnosis and a better

prognosis across the board. Although the level of FA metabolism is

not strongly associated with the current common tumor scoring sys-

tem, it is significantly inversely associated with the expression level

of immune checkpoints and the possible immunotherapy-related

pathways. Moreover, for immune cells infiltrated by the immune

microenvironment, FA metabolism is associated with T cell follicular

helper, T cell CD4 memory activated, Eosinophels, T cell gamma delta,

Plasma cells, T cells CD4 memory resting, NK cells resting, Monocytes,

Mast cells resting, Endothelial cells, with the majority of these

Fig. 7. The main enriched pathways in the high FA metabolism group (A, D), and the main enriched pathways in the low FA metabolism group (B, E). The main differential pathways

involved in different FA metabolism groups (C).
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correlations being positive. As a widely used immunotherapy drug,

sorafenib has a greater sensitivity in the high FA metabolism group,

according to an analysis of drug sensitivity. To validate our conclu-

sion, we also compiled and analyzed a GSE cohort with samples

treated with PD-1/PD-L1. The results confirmed that patients with a

high level of FA metabolism had a longer survival time and a better

immunotherapy response, as well as a significantly higher proportion

of PR than those with a low level of FA metabolism.

Combining common machine learning algorithms yielded 101

predictive models, from which we selected the model with the high-

est C-index and examined its correlation with FA metabolism. The

results revealed a high correlation between the TCGA-LIHC cohort,

the ICGC-LIRI cohort, and the GSE14520 cohort, confirming the afore-

mentioned findings. The role of FA metabolism in pan-cancer was

also investigated. Although tumor types varied, the correlation

between T cells CD4 memory activated, Macrophages M0, Macro-

phages M1, Monocytes, Mast cells resting, T cells follicular helper and

FA metabolism was significantly similar among different tumors.

Although FA metabolism cannot be used as a universal prognostic

indicator for all cancers, it has a consistent impact on the prognosis

of some cancers. In different cancers, the regulation of FA metabolism

on Xenobiotic metabolism, G2M checkpoint, Epithelial-mesenchymal

transition, E2F targets, Adipogenesis reflects the similarities among

different cancers.

Our research is somewhat innovative. We designed a FPI to study

FA metabolism as a whole, and combined single-cell data with bulk

analysis to evaluate the correlation between FA metabolism and

clinicopathological data, immunotherapy, and drug sensitivity. On

the other hand, there are some restrictions. For instance, our analysis

is based on public data, and additional patient data must be gathered

by multiple centers for the results to be more convincing. Second,

additional experiments are required to confirm the association

between FA metabolism and immune infiltration and immunother-

apy responsiveness. Lastly, in vivo and in vitro experiments are

required to further elucidate this mechanism’s specific workings.

5. Conclusions

By combining the analysis of single-cell and bulk-seq data, we

developed a FA metabolism prediction index that can accurately pre-

dict the prognosis of HCC patients and is closely related to its patho-

logical stage. The relationship between this index and the immune

microenvironment, drug sensitivity, and immunotherapy responsive-

ness in HCC patients was also investigated. Our research provides

new theoretical evidence for a deeper understanding of the metabolic

disorder in HCC, which will help HCC patients in achieving better

clinical outcomes. Obviously, the study requires additional laboratory

evidence to be more convincing.
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els in TCGA-LIHC (B), ICGC-LIRI (C) and GSE14520 (D). (E) Correlation analysis of FPI with the optimal diagnostic model in the three datasets.(FPI: fatty acid prediction index).
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