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A B S T R A C T

Introduction and Objectives: Epigenetic changes represent a mechanism connecting external stresses with

long-term modifications of gene expression programs. In solid organ transplantation, ischemia-reperfusion

injury (IRI) appears to induce epigenomic changes in the graft, although the currently available data are

extremely limited. The present study aimed to characterize variations in DNA methylation and their effects

on the transcriptome in liver transplantation from brain-dead donors.

Patients and Methods: 12 liver grafts were evaluated through serial biopsies at different timings in the pro-

curement-transplantation process: T0 (warm procurement, in donor), T1 (bench surgery), and T2 (after

reperfusion, in recipient). DNA methylation (DNAm) and transcriptome profiles of biopsies were analyzed

using microarrays and RNAseq.

Results: Significant variations in DNAm were identified, particularly between T2 and T0. Functional enrich-

ment of the best 1000 ranked differentially methylated promoters demonstrated that 387 hypermethylated

and 613 hypomethylated promoters were involved in spliceosomal assembly and response to biotic stimuli,

and inflammatory immune responses, respectively. At the transcriptome level, T2 vs. T0 showed an upregula-

tion of 337 and downregulation of 61 genes, collectively involved in TNF-a, NFKB, and interleukin signaling.

Cell enrichment analysis individuates macrophages, monocytes, and neutrophils as the most significant tis-

sue-cell type in the response.

Conclusions: In the process of liver graft procurement-transplantation, IRI induces significant epigenetic

changes that primarily act on the signaling pathways of inflammatory responses dependent on TNF-a, NFKB,

and interleukins. Our DNAm datasets are the early IRI methylome literature and will serve as a launch point

for studying the impact of epigenetic modification in IRI.

© 2024 Fundación Clínica Médica Sur, A.C. Published by Elsevier España, S.L.U. This is an open access article

under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)
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1. Introduction

Solid organ transplantation (SOT) is the most effective therapy for

end-stage organ disease. Crucial advances in organ preservation,

immunosuppression therapies, anesthesiology management, and

surgical techniques have contributed to the success of its implemen-

tation [1,2]. Dynamic cumulative injury of the graft is primarily asso-

ciated with donor type, age, comorbidities, and maintenance, but

ischemia-reperfusion injury (IRI) could worsen its development. Sus-

tained injuries, surgical complications, recipient comorbidities, and
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false discovery rate; GO, gene ontology; IL, interleukin; IRI, ischemia-reperfusion

injury; KEGG, Kyoto encyclopedia of genes and genomes pathway database; LT, Liver
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host vs. graft immune response could collectively affect the SOT out-

come [1]. Around 10% of early organ failures are attributed to IRI dur-

ing liver transplantation (LT), leading to primary graft dysfunction

and a higher incidence of acute and chronic rejection [3].

IRI triggers metabolic alterations, including reduction of cellular

adenosine triphosphate levels, increase of intracellular/mitochondrial

calcium levels, endoplasmic reticulum stress, and changes in pH

homeostasis, etc. [4]. In addition, xenobiotics enter the liver after

reperfusion, which activates Kupffer cells (KC). KC secrete proinflam-

matory cytokines, tumor necrosis factor-a (TNF-a), and interleukin-

1b, triggering inflammatory cascades, cell apoptosis, and immune

response activation [5].

In the advent of the omics era, several researchers approached the

study of IRI using high-throughput technologies by transcriptomics

[6], proteomics [7], miRNomics [8], metabolomics [9], and recently

single-cell transcriptome analysis (scRNAseq) [10]. However, there

are no studies on epigenetic modifications at the whole-genome level

during IRI conditions in LT.

Epigenetic modifications have gained strong interest as a novel

biomarker in transplantation [2]. The three main epigenetic modifica-

tions, namely histone modification, DNA methylation, and nucleo-

some positioning, are reversible changes to the genome (no

alteration in the DNA sequence) [11].

To the best of our knowledge, this study is the first research on

DNA methylation profiles aimed to characterize the effect of IRI in

the epigenetic context during human liver transplantation. Gene

expression profiling by RNAseq in the same biopsies was also per-

formed and compared against the former in terms of functional

enrichment profiles to identify differentially regulated biological pro-

cesses / molecular pathways during IRI.

2. Methods

2.1. Patients’ enrollment and sample collection

Twelve whole liver allografts were procured from brain-

deceased donors and transplanted in adult patients with end-

stage liver disease from February 2022 - August 2022. Exclusion

criteria comprised donation after circulatory death, split liver

allografts; allografts managed with machine perfusion, LT for

hepatocellular carcinoma, ABO incompatibility, and re-transplan-

tation cases. Liver procurement was performed with a standard

technique after systemic heparinization, aortic cannulation, and

arterial cold flushing with Celsior preservation solution. Back-

table surgery was performed, keeping the graft in an ice bath at

4°C. LT was performed using a caval-sparing approach. Graft

reperfusion was antegrade and sequential, with a portal-first sys-

tem. Cold ischemia time (CIT) is the interval between cross-clamp

at procurement and graft placement into the recipient’s abdo-

men; warm ischemia time (WIT) is the interval between graft

placement into the recipient’s abdomen and graft reperfusion.

Immunosuppression regimen was based on tacrolimus and ste-

roids. Tru-cut (16-gauge) biopsies of all liver allografts were seri-

ally collected at three-time points: during the warm phase of

organ procurement (T0), during back-table surgery (cold ische-

mia, T1) while the graft was maintained in ice at 4°C deprived of

blood; at transplant after graft reperfusion with recipient’s blood,

immediately before abdominal closure (T2). Liver samples were

collected in RNA later solution and stored at -20°C for omics anal-

ysis. At T1, an additional biopsy was taken, and formalin was

stored for histopathology examination (T1-F).

2.2. Recipient and donor demographics

The median recipient age at LT was 59 years (range 43-70), with a

male-to-female ratio of 7:5 (Table 1). The most frequent causes of

liver cirrhosis were alcohol abuse and viral hepatitis, with a median

MELD score of 14 [8-40]. Liver grafts were procured from donors

with a median age of 57 (32-71) and a male-to-female ratio of 5:7.

The median CIT and WIT were 437 min (range 277 − 660) and

33 min (range 25 − 43), respectively while the median LT operative

time was 370 [290-538]. Intraoperatively, a median of 2 [1-4] units of

packed blood cells were transfused. No cases of primary non-func-

tion, early (within 90 days after LT) vascular or biliary complications

were noted. Early allograft dysfunction, defined according to the

MEAF score, was 3.3 [0.9-5.3]. Three patients developed biopsy-

proven acute cellular rejection, successfully treated with steroid

boluses. At a median follow-up of 16 months (13-17), 11 patients

were alive with a preserved graft function. One patient developed

graft biliary failure due to late arterial thrombosis and was success-

fully re-transplanted. Additional donor demographics and the

description of the histological analysis of biopsies at T1 are reported

in the supplementary information (Supplementary material (SM),

Table S1).

2.3. Methylation and transcriptome datasets generation and

bioinformatics analysis

Thirty-six biopsies (12 at each time point) were subjected to DNA

methylation (DNAm) and RNAseq analysis. Detailed methodological

procedures from sample preparation to data analysis of the generated

datasets are described in SM (section Methods). Briefly, DNA methyl-

ation profiles were computed based on single CpG measurement val-

ues and methylation levels in predefined regions such as gene

promoters or CpG islands. All CpG positions were mapped against the

human hg38 reference genome. For gene expression profiles by RNA-

seq, high quality sequences were aligned to the human reference

genome hg38 and gene counts were extracted according to Gene

annotations [12]. Raw DNAm and raw transcriptome datasets has

been deposited into GEO and Sequence Read Archive accession num-

ber PRJNA1015016.

2.4. Functional enrichment of methylation/transcriptome data, cell

enrichment analysis, and validation of differential gene expression

by qPCR

Gene Ontology (GO), Reactome (REACT), and Kyoto Encyclopedia

of Genes and Genomes (KEGG) analysis were performed using the g:

Profiler platform to visualize functional profiles of key gene sets [13].

GO terms for Molecular Function (GO:MF), biological process (GO:

BP), and cellular component (GO:CC), as well as REACT and KEGG

terms with P < 0.05, using Fisher’s one-tailed test, were considered

Table 1

Demographic, times of cold and warm ischemia, and indications for transplantation

of each recipient patient

Patient ID Age Gender BMI CIT (min) WIT (min) Indication for LT

ID_2 51 F 19.4 420 25 F-HVB

ID_3 67 M 27.1 580 27 ALD, HCC

ID_4 63 M 27.1 380 30 ALD, HCC

ID_5 62 M 23.7 380 27 ALD, HCC

ID_6 43 F 31.3 660 40 FH

ID_7 64 F 27.5 520 30 CC, NASH

ID_8 61 F 30.0 277 43 PSC

ID_9 65 M 23.0 480 43 HCV

ID_10 70 M 26.0 320 34 ALD

ID_11 63 M 21.0 380 25 HCV

ID_12 57 M 26.0 465 40 ALD

ID_13 48 F 24.0 385 30 HBV-HDV

CIT, cold ischemia time; WIT, warm ischemia time, F-HVB, fulminant Hepatitis B

Virus-related; ALD, alcoholic liver disease; FH, fulminant hepatitis; CC, cryptogenic

cirrhosis; NASH, non-alcoholic steatohepatitis; PSC, primary sclerosing cholangitis;

HCC, Hepatocellular carcinoma.
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statistically significant and reported in the plots. Cell type (TC) spe-

cific enrichment was performed using WebCSEA, a one-click applica-

tion that provides a comprehensive exploration of TC-specificity of

genes among human major TC map [14]. See further information

about TC enrichment analysis in SM (section Methods). Gene expres-

sion validation of the most up-and down-regulated genes, as well as

for the most interesting candidates individuated in the study, were

validated by qPCR. Detailed information about candidates’ selection

and qPCR methodology for validation is described in SM (Supplemen-

tary Methods).

2.5. Statistical analyses

Pairwise comparisons were performed between conditions (T1 vs.

T0, T2 vs. T1, and T2 vs. T0), obtaining the differential methylation

and gene expression profiles.

Site level-differential methylation was computed based on vari-

ous metrics. For each site: a) the difference in mean methylation lev-

els (mean. diff of b values) of the two groups being compared, b) the

quotient in mean methylation, and c) a statistical test (limma) assess-

ing whether the methylation values in the two groups originate from

distinct distributions. Region level-differential methylation was com-

puted based on the following quantities: the mean difference in

means across all sites in a region of the two groups being compared

(mean.mean.diff) and the mean of quotients in mean methylation as

well as a combined p-value calculated from all site p-values in the

region. Each site and region was assigned a rank based on the three

quantified respective criteria. A combined rank was computed as the

maximum (i.e., worst) rank among the three ranked criteria where

lower-numbered ranks for a site or region have higher confidence of

exhibiting differential methylation. Scatterplots of the site/promoter

region group mean and volcano plots of each pairwise comparison,

colored according to a given site’s adjusted p-value (<0.05) and com-

bined rank for each region, were obtained with RnBeads package ver-

sion 2.12.2 [15,16]. The top 1000 promoter regions with the best-

combined ranks were selected as differentially hyper/hypomethy-

lated for downstream analyses [17].

Differential gene expression analysis was performed using default

parameters of the DESeq2 (v.1.36) Bioconductor package [18]. To

detect outlier data after normalization, R packages were used. Prior

to differential gene expression analysis, we dropped all genes

with low normalized mean counts to improve testing power while

maintaining type I error rates. Estimated false discovery rate (FDR)

values for each gene were adjusted using the Benjamini-Hochberg

method. Protein-coding genes were considered significantly different

expressed at FDR-corrected q < 0.05 and log2FC of ≥ |1|.

2.6. Ethical statement

All biopsies were obtained as per protocol biopsies in the donor

(T0 and T1) and in the recipients (T2) as post-reperfusion biopsy

according to Center’s specific protocol. All research was conducted

following both the Declarations of Helsinki and Istanbul. Informed

consent was obtained by all patients before transplantation.

3. Results

3.1. Differential methylation and functional enrichment analysis in the

ischemic conditions

Differences in methylation profile at site level were observed

where 39 probes (17 hypermethylated / 22 hypomethylated) showed

significant differential methylation between warm ischemic condi-

tions and the baseline group (T2 vs. T0, Figs. 1A, 1B). In SM Table S2,

probe’s identifiers (IDs), methylation means between groups, FDR-

adjusted p-values, combined rank, and methylation target sites were

summarized.

Aside from CpG sites, methylation profile for all the probes cover-

ing different genomic regions (region level: promoters, CpG islands,

and tiling) was also analyzed. Based on the combined rank metrics,

the top 1000 promoters exhibiting differential methylation were

selected for over-representation analysis (ORA). Furthermore, these

regions were grouped based on the mean difference in means (mean.

mean.diff) across all sites in promoters either hypermethylated with

a putative impact at the transcriptional level, repressing gene expres-

sion, or hypomethylated, up-regulated at the expression level.

In T1 vs. T0 comparison, 781 were hypomethylated and 219 pro-

moters were hypermethylated from the 1000 top-ranked promoters

(Figs. 2 A-C). In the T2 vs. T1 comparison at the promoter level, 420

were hypomethylated, while 580 were hypermethylated (Figs. 2 D-

F). Lastly, there were 613 hypomethylated promoters and 387 hyper-

methylated when samples at T2 were compared with the T0 group

(Figs. 2 G-I).

First and foremost, the hypermethylated promoters were over-

represented across all comparisons in GO: BP terms clustering in

mRNA splicing and spliceosomal machinery assembled processes

(Fig. 2 C, F and I). Furthermore, particularly in T2 vs. T1 (Fig. 2F),

there were hypermethylated promoters enriched in both GO:BP and

Fig. 1. DNA methylation profiles at single CpG sites. A. Scatterplot of the mean beta values for the pairwise comparison T2 vs. T0 at single CpG sites. Red dots in scatterplots repre-

sent the most significantly differently methylated sites with FDR (pAdj. value <0.05) and the best-ranked sites. B. Top GO terms and pathways enriched using g: Profiler were

obtained for the genes targeted by the 39 probes showing differential methylation at the CpG site level. The set of genes for GO/Pathway enriched was represented by the number

at the right of each horizontal bar. The vertical dashed lines represent significant at p≤0.05.
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GO:CC terms involving genes with roles in blood coagulation, blood

microparticle composition, related to complement and coagulation

cascades, according to KEGG and REACT.

When comparing T1 vs. T0, Fig. 2C GO, REACT, and KEGG enriched

terms show that the most significant hypomethylated promoters

were from gene clusters involved in biological oxidations, metabolic

process, cholesterol efflux, blood microparticles formation, comple-

ment and coagulation cascades, and homeostasis. Meanwhile, pro-

moters related to innate immune response and inflammatory

response were over-represented in T2 vs. T1 (Fig. 2E). Lastly, in the

T2 vs. T0 comparison, hypomethylated promoters were again associ-

ated with response to external and biotic stimuli, and innate immune

and inflammatory responses (Fig. 2H).

The list of the best 1000 ranked promoters with differentially

methylated sites for the compared conditions is shown in SD (Tables

S3, S4, and S5).

3.2. Transcriptome profile and enrichment analysis in the studied

ischemic conditions

Transcriptome profiles were compared among the different con-

ditions. In T1 vs. T0 comparison, only SERPINE1, CSRNP1, and IGFBP1

showed significant upregulation (Fig. 3A). Interestingly, serine prote-

ase inhibitor, which encoded by SERPINE1, is required for fibrinolysis

down-regulation and regulation of controlled degradation of blood

clots [19], while CSRNP1 encodes for a protein with transcriptional

activator activity [20]. Lastly, IGFBP1 is mainly expressed by the liver

and circulates in plasma, prolonging the half-life of IGFs [21].

In T2 vs. T1 comparison, 139 out of the 151 DEGs were up-regu-

lated during reperfusion with the recipient’s blood (Fig. 3B and Table

S6). Furthermore, based on ORA analyses the up-regulated genes

were strongly associated with transcription and signaling pathways

regulation, mainly through protein phosphorylation (Figs. 3 C-D).

Several genes clustered in GO: BP terms were also related to stress

response and activation of p38MAPK cascades. The enriched GO:CC

terms belong to nuclear categories (chromatin, transcription com-

plexes, etc.). KEGG and REACT databases, enriched terms associated

with innate and adaptative immune responses, involve TNF-a, NF-

KB, and several interleukins-mediated signaling pathways (IL-17, IL-

4, IL-13, etc.). Otherwise, 12 down-regulated genes showed no func-

tional enrichment. Nevertheless, top significant down-regulated

genes such as BLTP2, JRK, UNC119B, DENND11, and GCN1, are

involved in lipid transport, DNA-binding [22], cilium biogenesis/deg-

radation [23], cargo adapter, guanine-nucleotide exchange, and

response to amino acid starvation [24], respectively.

When comparing T2 vs. T0 condition, 398 DEGs were identified,

most of them significantly up-regulated (n = 337), and the rest were

down-regulated (n = 61) (Fig. 3E). A complete list of the DEGs, fold

changes, and p-adjust values are reported (SM - table S7). Based on

ORA analysis, GO:MF terms are related to negative regulation of the

cellular process, inflammatory response for GO:BF terms, and tran-

scription factors’ complexes (GO:CC). Immune response was the pre-

dominant enriched term from KEGG and REACT (Figs. 3 F-G).

Enrichment of down-regulated DEGs was not obtained in any GO

term by gProfiler. The trend for the 10 most significant up-and-

down-regulated genes is presented in SM (Figs. S1-S2).

3.3. Defining DEGs subsets associated with the ischemic conditions

Venn diagrams [25] were generated to investigate which DEGs

were shared or unique among the different conditions. Fig. 4 illus-

trates that SERPINE1 is the sole DEG common across all pairwise

dataset comparisons. Moreover, the diagrams identified 11 DEGs (10

up-regulated) particularly associated with the reperfusion with the

Fig. 2. DNA methylation profiles at the promoter region level. Scatterplot of the mean beta values at promoter region level for the 1000 best-ranked sites for the pairwise compari-

son A. T1 vs. T0, B. T2 vs. T1, and C. T2 vs. T0. Top GO terms and pathways enriched using g:Profiler for the genes showing hypomethylation (B, E, H) and hypermethylation (C, F, I)

at the promoter region level in the compared conditions. The set of genes for GO/Pathway enriched was represented by the number at the right of each horizontal bar. The vertical

dashed lines represent significant at p≤0.05.
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Fig. 3. Genome-wide transcriptome profile. Volcano plots for the pairwise comparisons: A. T1 vs. T0, B. T2 vs. T1, and E. T2 vs T0. Blue and red dots represent up-regulated and

down-regulated genes, respectively (according to the log2FC and FDR, see Methods). Top GO terms and pathways enriched by GO, KEGG, and Reactome were obtained for the genes

showing up-regulation on T2 vs. T1 (C and D) and T2 vs T0 (F and G). Functional enrichment was performed using g:Profiler. The set of genes for GO/Pathway enriched was repre-

sented by the number at the right of each horizontal bar. The vertical dashed lines represent significant at p≤0.05.

Fig. 4. Venn diagrams depicting the overlap between DGEs in the different pairwise comparisons. T1 vs. T0 in orange, T2 vs T1 in green, and T2 vs T0 in purple. Functional enrich-

ment was performed for indicated subsets. The set of genes for GO/Pathway enriched was represented by the number at the right of each horizontal bar. The vertical dashed lines

represent significant at p≤0.05.
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recipient’s blood regarding the cold preservation state. This particular

set of genes should represent the response of hepatocytes to thermal

or hypoxia to normoxia changes. The ten up-regulated genes were

involved in oxygen/carbon dioxide transport, erythrocytes oxygen

exchange, heme, and ER stress signaling pathways. Among those

genes, HBA1, HBA2, and DDIT3 were enriched.

Moreover, the set of 139 DEGs (128 up-regulated and 11 down-

regulated) common among datasets T2 vs. T1 and T2 vs. T0 were

enriched. The most significant GO categories were response to stress,

activation of metabolic process, and clusters participating in the

inflammatory response (mediated by TNF-a, NFKB, and interleukins).

Lastly, 256 DEGs (206 up-regulated and 50 downregulated) were

unique to the T2 vs. T0 dataset. Ontological information was available

for up-regulated genes, over-representing in GO: BP terms such as

response to stimulus and circadian regulation of gene expression.

Moreover, enrichment of the same signaling pathways by the shared

set of 139 genes was obtained. The Venn’s diagram full DEGs list is

detailed in SM (tables S8-S9-S10).

To have a complete picture of the molecular pathways playing key

roles in IRI, we compared our data with the most recent information

available in the literature. Table 3 summarizes the three most signifi-

cant GO-enriched terms and the five most significant pathways (from

KEGG and REACT) for methylome and transcriptome profiles and the

information from the Huang Ju Zhu et al. study [26].

3.4. mRNA expression validation by qPCR of selected most up/down

regulated and hub candidates’ genes

To identify interesting genes as candidates for validation, we

cross-math the dataset about differentially methylated promoters

with the dataset of DEGs when T2 was compared with T0. To do this,

the 1000 best-ranked promoters showing differential methylation

were categorized as protein-coding or not. 175 down- and 71 up-

methylated promoters were classified as protein-coding genes, and

the rest were categorized as miRNAs, lnRNA, snoRNAs, etc (Table 2).

As expected, the functional enrichment of the 175 down-methylated

promoters was consistent with the enrichment for the total down-

methylated 1000 best-ranked promoters (Fig. 5 A). Then, we per-

formed the cross-match with the transcriptome dataset using Venn

diagrams (Fig. 5 B). Our data demonstrated that five down-methyl-

ated promoters were linked to their five respective transcripts, show-

ing expression up-regulation for the coding-protein gene. qPCR

results confirmed the changes observed by transcriptomics, validat-

ing the five common genes (TREM1, KDM6D, EPHA2, ANXA1, and

HCAR3). Moreover, the additional seven selected genes -SERPINE1,

ATF3, HSPA1B, ZC3H12A − and -ZNF740, PDXX, and DENN1 − the 4

and 3 most up and down-regulated, respectively, were also tested by

qPCR, also confirming the obtained transcriptome profile for them

(Fig. 5 C-F and SM Figs. S1 and S2). In addition, it was notable that

EPHA2 and ANXA1 (which were 5 and 15 folds increased during the

post-reperfusion condition, respectively) were individuated as puta-

tive hub genes (with direct interaction) in a protein-protein interac-

tion network biology analysis associated with the immune response

(SM − Table S12 and Fig. S3).

3.5. Cell enrichment analysis based on methylome and transcriptome at

post-reperfusion condition

Cell type enrichments were obtained by querying WebCSEA plat-

form for the information about up- and down-methylated promoters

associated to coding-protein genes (data for 169 and 65 genes of the

total 175 and 71 promoters, respectively, were available). Then, the

information on 314 up- and 40 down-regulated genes (of the total

338 and 61 DEGs) enables us to obtain cell type enrichments from

the transcriptome dataset. The result for the enrichment of both

omics datasets were consistent demonstrating that the tissue-cell-

type signature genes were indicating the presence of immune cells,

being the most significant: macrophages, monocytes, neutrophils,

sinusoidal endothelial and dendritic cells (Fig. 6 A-D and SM - Table

S11 and Fig. S4). The most significant liver-cell-type enriched signa-

ture genes are detailed in Table S11 − SM. Interestingly, both our can-

didates ANXA1 and EPHA2 were part of the enriched signatures of

the over-represented TC.

4. Discussion

DNA methylation is a common epigenetic mechanism cells use to

"switch off" genes. CpG islands (the sequences where methylation

occurs) are usually near upstream transcription start sites, with

increased methylation correlating with low to no transcription.

This study reveals that even relatively short periods of stress can

alter the DNA methylation patterns, which subsequently was

reflected in the transcriptome. The DNA methylation data at the pro-

moter level during cold ischemia indicates shifts in biological and

metabolic processes, activating genes involved in coagulation, clot

formation, and energy production. Interestingly, we detected SER-

PINE1(PAI-1) expression upregulation, the main inhibitor of tissue-

type plasminogen activator (tPA) and urokinase (uPA), reducing and

preventing fibrinolysis [19,27]. SERPINE1 modulation in IRI, as we

observed, has been described earlier in the literature [28−30]. LT pro-

cedures involve vascular manipulation in a complex scenario where

coagulopathy may occur due to several factors (temperature changes,

hemodilution, calcium and acid-base imbalance, etc.). This is particu-

larly evident during the anhepatic phase (the time from the physical

removal of the liver from the recipient to recirculation of the graft),

where fibrin formation can initiate from the absence of coagulation

factor synthesis and clearance of activated fibrinolytic factors.

Increased levels of tPA correlate with an increase in PAI-1 has been

noted; however, sometimes, the levels of PAI-1 are insufficient to

avoid progression in pathological fibrinolysis [31,32].

In contrast, the DNAmethylation signature obtained during reper-

fusion, and after cold ischemia demonstrated shifts from hypomethy-

lation to hypermethylation at the promoter level. Interestingly, gene

clusters related to coagulation cascades, blood microparticles forma-

tion, and platelet degranulation have been deactivated. This finding

might help understand over-coagulation processes seen in many LT

cases, which are responsible for non-technical factors related to

early arterial thrombosis or changes in the intrahepatic vascular

pattern observed when early CT scans are performed for other clinical

reasons.

In addition, gene sets associated with the immune response were

hypomethylated, indicating a presumed activation at the transcrip-

tome level. Up-regulated genes enrichment when comparing T2 vs.

T1 showed a strong stress response (80 genes) in combination with

the activation of inflammatory pathways (51 genes, -TNF-a NFKB,

and Interleukins-mediated signaling pathways among them). Fur-

thermore, Venn diagrams illustrate 11 unique DEGs related to gas

exchange and ER stress (including hemoglobin subunits HB1A and

HB2A), which are also present in reported LT omics literature [26,33].

From this finding, we hypothesize the presence of RNA transcripts

from erythrocytes and other blood cells during reperfusion since

Table 2

Biotype categorization of the best 1000 ranked promoter when comparing T2 vs T0.

Condition T2 vs. T0 Methylated promoters (n = 1000)

Down methylated

(n = 613)

Up-methylated (n = 387)

Protein coding-genes 175 71

miRNA, lncRNA,

miscRNA, snoRNA,

pseudogenes, others

438 316

Ensembl biotype annotations were used for the classification of the differential

methylated gene promoters in coding or non-coding genes at T2 vs. T0.
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Table 3

Comparison of enriched functions in the methylome, transcriptome, and proteome during the ischemic conditions in liver transplantation

GO category Rank Methylome dataset Transcriptome dataset Proteome dataset

Our dataset Our dataset Huang, Ju, Zhu et al. dataset Huang, Ju, Zhu et al. dataset

G0:MF 1 snRNA binding protein binding - Glucosaminoglycan binding

2 U4 snRNA binding cis-regulatory region sequence-spe-

cific DNA binding

- Serine-type endopeptidase activity

3 - RNA polymerase II cis-regulatory

region sequence-specific DNA

binding

- Serine-ty peptidase activity

GO:BP 1 response to external biotic stimulus response to organic substance response to lipopolysaccharide Protein activation cascade

2 response to biotic stimulus negative regulation of cellular

process

response to molecule of bacterial

origin

Defense response to bacterium

3 response to other organism positive regulation of biological

process

negative regulation of

phosphorylation

Humoral immune response

GO:CC 1 specific granule lumen chromatin - Blood microparticle

2 secretory granule lumen transcription factor AP-1 complex - Extracellular space

3 cytoplasmic vesicle lumen cytoplasm - Extracellular region

KEGG 1 - TNF signaling pathway IL-17 signaling pathway Complement and coagulation

cascades

2 - C-type lectin receptor signaling

pathway

TNF signaling pathway Retinol metabolism

3 - IL-17 signaling pathway Cytokine-cytokine receptor

interaction

Chemical carcinogenesis

4 - Cytokine-cytokine receptor

interaction

Transcriptional misregulation in

cancer

Protein digestion and absorption

5 - NF-kappa B signaling pathway Malaria Drug metabolism −cytochrome P450

REACT 1 Antimicrobial peptides Interleukin-4 and Interleukin-13

signaling

- -

2 Neutrophil degranulation Interleukin-10 signaling - -

3 Innate Immune System Signaling by Interleukins - -

4 - Cytokine Signaling in Immune

system

- -

5 - NGF-stimulated transcription - -

Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Reactome (REACT) functional enrichement analysis were performed using the g: Profiler platform. Molec-

ular Function (GO:MF), biological process (GO:BP), and cellular component (GO:CC), as well as KEGG and REACT terms with P < 0.05. The first three and five best significant ranked

enriched categories/pathways are detailed in the table for GO, REACT and KEGG respectively.

Fig. 5. Validation of interesting targets from methylome and transcriptome datasets. A. Functional enrichment of the 175 differential methylated promoters in T2 vs. T0. The set of

genes for GO/Pathway enriched was represented by the number at the right of each horizontal bar. The vertical dashed lines represent significant at p≤0.05. B. Venn diagrams

depicting the overlap between differential methylated promoters and differential expressed genes, coding for proteins (T2 vs. T0). C. Differential methylation by microarrays vs.

mRNA differential expression by RNAseq and qPCR for the 5 common genes. D and E. mRNA relative expression by qPCR for the 5 common and the 7 additional selected genes at

T0, T1 and T2. Data are shown as mean § SD. Group comparison by one-way ANOVA *p < 0.05, ** p < 0.01, *** p < 0.001.
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adult hepatocytes did not express hemoglobin subunits coding

genes [34].

Recently studies using scRNAseq have been published; Wang L. et

al. confirmed that most NK and T cell clusters were active in the TNF-

a and NFKB signaling and other pathways related to inflammation

and cell activation in the reperfusion stage. Moreover, B and plasma

cell clusters were enriched in signaling pathways related to lympho-

cyte activation and adaptive immune systems [10,35]. In line with

those studies, our cell-type-specific enrichment analysis individuate

monocytes, macrophages, neutrophiles and LSECs as the active cells

in the observed immune response. Further studies at single-cell level

in human LT is imperative to understand how different cells trigger

the immune and inflammatory response during IRI. It is also note-

worthy that our methylome and transcriptome datasets, comparing

the reperfusion condition with the baseline, reveal a configuration of

hypermethylated promoters implicated in splicing events, probably

to reestablish the hepatocyte’s metabolic functions during normo-

thermia. Moreover, it is evident a wider inflammatory and immune

response from the methylome, where enriched hypomethylated pro-

moter clusters categorized in terms related with response to biotic

stimulus, to other organisms, neutrophil degranulation and antimi-

crobial peptides, and so on [36]. At the transcriptome level, the

enriched GO terms and functional pathways were the same as those

comparing T2 vs. T1 but with a strong extension. We confirmed

expression level changes of the most up/down-regulated genes dur-

ing reperfusion and also explore at mRNA level the changes of

ANXA1 and EPHA2 two putative clue hub genes in the network biol-

ogy of the inflammatory response. It is well known that EPHRIN

receptors heterocomplex mediates bi-directional signaling in which

numerous signaling pathways known to play a role in immune cell

function can be activated through both ephrin “reverse” and ephrin

“forward” signaling [37]. With regards to ANXA1 is released by dead

neutrophils, limiting additional neutrophil migration by interacting

with formyl peptide receptor 2 (FPR2) and prompting neutrophil

apoptosis [38].

Our study has some limitations. Firstly, the analysis was per-

formed in a small number of biopsies; a higher number of specimens

may increase the robustness of the findings, mainly at the methylome

level. Secondly, histology was performed only after cold ischemia, at

the end of the engraftment but not at the end of the reperfusion

phase; however, the injury by ischemia-reperfusion working under

the same LT surgery protocol and performed by the same surgery

team was evaluated by Suzuki and Ishak scores in the previously

reported IRI proteomics analysis [39].

5. Conclusions

In conclusion, despite these limitations, our study highlights the

relevance of methylation in the IRI during LT, even seeming comple-

mentary to transcriptomics analysis and providing a complete picture

of the ongoing biomolecular processes. Moreover, the DNA methyla-

tion datasets generated in our study are the early literature of IRI and

will be essential for other researchers’ future integration of omics

information. Further methylome studies in the LT outcome are

expected soon to understand better how IRI or the donor-recipient

environment affects the modulation of whole gene expression com-

paring early and late post-transplant periods. It remains to be seen if

the putative epigenetic changes in the hepatocytes have a long-term

effect on the phenotype of the transplanted organ. Cumulative injury

dealt with by epigenetic modifications might have a lasting impact

on the overall LT outcome.

Conflicts of interest

None.

Fig. 6. Cell-type specific enrichment analysis (CSEA). T2 vs. T0 CSEA based on hypomethylated and hypermethylated promoters from coding-protein genes A. and B. respectively. T2

vs. T0 CSEA based on up- and down- differentially expressed genes C. and D. respectively. In each category of general cell types, dots represent all tissue-cell types annotated in this

general cell type and descend by the order of most significant tissue-cell type in this general cell type. Y-axis is the −log10 (combined p-value) from the CSEA result. The dashed red

line indicates the significant threshold (p = 3.69 £ 10^-5) corrected with 1355 tissue-cell types. The solid grey line indicates the nominal significance (p = 1 £ 10^-3).

P.J. Giraudi, A.A. Lara~no, S.D. Monego et al. Annals of Hepatology 29 (2024) 101506

8



Funding

This work was supported by QuB − Quantum Behavior in Biologi-

cal Function funded by MUR (CUP J95F21002820001) and PJG was

sponsored by a fellowship from Area Science Park under the same

MUR-funded project. AAL was supported through a Ph.D. fellowship

grant funded by the Department of Science and Technology - Philip-

pine Council for Health Research and Development (DOST-PCHRD).

Author contributions

PJG, DL, GG, CT, and FB designed the study; PJG planned all the

logistics; UB and RP enrolled the patients, performed the LT, and col-

lected samples and clinical variables. DB performed the histological

analysis. PJG and AAL performed DNA and RNA extraction. SDM and

DL performed nucleic acids quantification, sample preparation for

DNA methylation and RNAseq analysis, generated the raw data, and

bioinformatics analysis for diffmeth and DGEs. PJG and AAL per-

formed downstream analysis on DGEs, probes mapping in methyla-

tion, and functional and cell enrichment analysis. PJG and AAL

prepared the first draft of the MS. All authors discussed the results

and contributed to the final manuscript.

Supplementary materials

Supplementary material associated with this article can be found

in the online version at doi:10.1016/j.aohep.2024.101506.

References

[1] Peters FS, Manintveld OC, Betjes MGH, Baan CC, Boer K. Clinical potential of
DNA methylation in organ transplantation. J Heart Lung Transplant Off Publ
Int Soc Heart Transplant 2016;35(7):843–50. https://doi.org/10.1016/j.hea-
lun.2016.02.007.

[2] Vasco M, Benincasa G, Fiorito C, Faenza M, De Rosa P. Clinical epigenetics and
acute/chronic rejection in solid organ transplantation: An update. Transplant Rev
2021;35(2):100609. https://doi.org/10.1016/j.trre.2021.100609.

[3] Fellstr€om B, Ak€uyrek LM, Backman U, Larsson E, Melin J, Zezina L. Postischemic
reperfusion injury and allograft arteriosclerosis. Transplant Proc 1998;30
(8):4278–80. https://doi.org/10.1016/S0041-1345(98)01412-2.

[4] Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Ischemia/Reperfusion. Compr Physiol
2016;7(1):113–70. https://doi.org/10.1002/cphy.c160006.

[5] Kaltenmeier C, Wang R, Popp B, Geller D, Tohme S, Yazdani HO. Role of Immuno-
Inflammatory Signals in Liver Ischemia-Reperfusion Injury. Cells 2022;11
(14):2222. https://doi.org/10.3390/cells11142222.

[6] Li JSY, Raghubar AM, Matigian NA, Ng MSY, Rogers NM, Mallett AJ. The Utility
of Spatial Transcriptomics for Solid Organ Transplantation. Transplantation
2023;107(7):1463–71. https://doi.org/10.1097/TP.0000000000004466.

[7] L�opez-L�opez V, P�erez-S�anz F, de Torre-Minguela C, Marco-Abenza J, Robles-Cam-
pos R. Proteomics in Liver Transplantation: A Systematic Review. Front Immunol
2021;12:2023. Accessed July 27. https://doi.org/10.3389/fimmu.2021.672829.

[8] Ghafouri-Fard S, Shoorei H, Taheri M. Non-coding RNAs participate in the ische-
mia-reperfusion injury. Biomed Pharmacother 2020;129:110419. https://doi.org/
10.1016/j.biopha.2020.110419.

[9] Faitot F, Besch C, Battini S, Ruhland E, Onea M. Impact of real-time metabolomics
in liver transplantation: Graft evaluation and donor-recipient matching. J Hepatol
2018;68(4):699–706. https://doi.org/10.1016/j.jhep.2017.11.022.

[10] Wang L, Li J, He S, Liu Y, Chen H. Resolving the graft ischemia-reperfusion injury
during liver transplantation at the single cell resolution. Cell Death Dis 2021;12
(6):589. https://doi.org/10.1038/s41419-021-03878-3.

[11] Feinberg AP. The Key Role of Epigenetics in Human Disease Prevention and Miti-
gation. N Engl J Med 2018;378(14):1323–34. https://doi.org/10.1056/NEJM-
ra1402513.

[12] Liao Y, Smyth GK, Shi W. The R package Rsubread is easier, faster, cheaper and
better for alignment and quantification of RNA sequencing reads. Nucleic Acids
Res 2019;47(8):e47. https://doi.org/10.1093/nar/gkz114.

[13] Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. g:Profiler: a
web server for functional enrichment analysis and conversions of gene lists (2019
update). Nucleic Acids Res 2019;47(W1):W191–8. https://doi.org/10.1093/nar/
gkz369.

[14] Dai Y, Hu R, Liu A, Cho K, Manuel AM. WebCSEA: web-based cell-type-specific
enrichment analysis of genes. Nucleic Acids Res 2022;50(W1):W782–90. https://
doi.org/10.1093/nar/gkac392.

[15] M€uller F, Scherer M, Assenov Y, Lutsik P, Walter J, Lenguaer T. RnBeads 2.0: com-
prehensive analysis of DNA methylation data. Genome Biol 2019;20(1):55.
https://doi.org/10.1186/s13059-019-1664-9.

[16] Makambi K. Weighted inverse chi-square method for correlated significance
tests. J Appl Stat 2003;30(2):225–34. https://doi.org/10.1080/0266476
022000023767.
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