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ABSTRACT 
The aim of this article attempts to propose an advanced design of driver assistance system which can provide the 
driver advisable information about the adjacent lanes and approaching lateral vehicles. The experimental vehicle 
has a camera mounted at the left side rear view mirror which captures the images of adjacent lane. The detection 
of lane lines is implemented with methods based on image processing techniques. The candidates for lateral 
vehicle are explored with lane-based transformation, and each one is verified with the characteristics of its length, 
width, time duration, and height. Finally, the distances of lateral vehicles are estimated with the well-trained 
recurrent functional neuro-fuzzy network. The system is tested with nine video sequences captured when the 
vehicle is driving on Taiwan’s highway, and the experimental results show it works well for different road conditions 
and for multiple vehicles. 
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1. Introduction 

Traffic problems are becoming more and more 
serious in most countries. To reduce traffic 
accidents and improve the vehicle ride comfort, 
many papers have been published in recent years 
[1][2].  
 
Side impact collision is one of the common types 
of car accident. This mostly happens when 
vehicles change their lanes, or merge into the 
highway. These accidents take place when the 
approaching vehicle drives into the blind spot of 
the rear view mirrors or the driver gets distracted. 
Lateral vehicle detection and distance 
measurement will help the driver to increase the 
driving safety. 
 
There have been many related studies in the 
research of front lane line detection [3-8]. Hough 
transform and improved algorithms are usually 
used to find the best fitting lines of land markers[6-
8]. In lane line detection of adjacent lane, Sobel 
masks are used to get the edge pixels, and 
compute the location of representative edge pixels 

 
 

of lane marking at each scan line [9]. Then, the 
least-square method [9] and the RANSAC method 
[10] are used to estimate the linear equation of the 
lane line from these edge pixels. Lateral vehicle 
detection is used for providing the vehicle 
information on the adjacent lane. Mei transforms 
the region of interest on the lane to a rectangular 
area with lane-based transformation [11]. Each 
detected object in this area is verified with its 
features, such as length, width, and height. Díaz et 
al. exploit the difference of optic-Þow pattern 
between the static object and overtaking vehicle to 
get the motion-saliency map and compute the 
vehicle’s position [12]. Lin et al. use the part-based 
features to evaluate the existence probability of 
vehicles [13]. For estimation of the vehicle 
distance, many researches convert the camera 
coordinate of acquired image to world coordinate 
[14-15]. Lai and Tsai use the shape information of 
rear wheel to estimate the distance. After Hough 
transformation, the shape of wheel is an ellipse, 
and the center of the ellipse is used to determine 
the relative position of the lateral vehicle [15]. 
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In this paper we set up a camera at the left side 
rear view mirror of the vehicle to monitor road 
conditions, and design a driver assistance system 
which is based on image processing techniques. 

2. Adjacent lane-line detection 
 
The lane-line detection is intended to extract the 
lane markers without previously knowing the 
internal or external parameters of the mounted 
camera. When the vehicle navigates in the middle 
of the lane, the lane boundary on the left side 
shown in the captured image will tilt to the left in 
vertical direction. Based on this feature, we define 
a 5x5 tilt mask illustrated in Figure 1(a), and apply 
it on the gray-level image to retrieve the edge 
pixels in the tilt direction. If the calculated value is 
greater than thp, the color of the edge pixel will be 
set to green (positive edge). While the value is 
less than thn, the color will be set to red (negative 
edge). The derived image is displayed in Figure 
1(b), and the thresholds for positive and negative 
edges are set to 10 and -10 in the following 
experiments. Moreover, if the distance between 
positive and negative edges, marked with green 
and red colors, is less than ten, the pixels 
between them will be colored black. Then, all 
pixels except black ones in this image are colored 
white to get the binary image, which is shown in 
Figure 1(c). A region near the host vehicle is pre-
specified. Within this region, a fan scanning 
detection method is applied to exclude noise 
data. This method scans the edge pixels from the 
bottom to top, and left to right. The first 
encountered pixel in each row is saved, but all the 
other pixels at the same row are deleted. The 
derived edge points are shown in Figure 1(d). 
 
The points in Figure 1(d) are scanned from bottom 
to top, and the continuous and adjacent edge 
points of same direction are grouped into line 
segments. This is done by checking the bottom-
right and limit-sized area of each encountered 
edge pixel. If there exists an endpoint of line 
segment created previously, the encountered pixel 
will accede to the found line segment. Otherwise, 
the encountered pixel will create a new line 
segment. The followings are the detail descriptions 
of the method. 
 
Step 1: Calculate the distances 〉x and 〉y, as 
depicted in Figure 2, in coordinates between the 

current edge pixel and the previous edge pixel. If 0 雁 〉x < thx and 0 雁〉y < thy, the point accedes to 
the line segment of the previous edge pixel, where 
the thx and thy are predefined thresholds. 
Otherwise, step 2 is used. 
 
Step 2: Calculate the distances between the 
current edge pixel and end points of the created 

line segments. If 0 雁 〉y 雁 thy and 0 雁 〉x 雁 thx, 
the current point accedes to the nearest line 
segment. If not, this edge pixel is used to create a 
new line segment.   
 
Step 3: Based on the result of the two prior steps, 
the situation 〉x = 0 is not permitted to sequentially 
appear twice or more to avoid finding out a vertical 
line segment. 
 

Figure 1. (a) The tilt mask. (b) The image of green and 
red edges. (c) The image of black edges.  
(d) The image of the reduced edge pixels. 
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Figure 2. The distance between  

two neighboring edge pixels. 

 
Next, we sort the line segments by their lengths in 
descending order. The longest segment’s start 
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point (x1, y1) and end point (x2, y2) are taken to 
estimate a straight line with Eq. (1), where a, b, c 
are three factors in the straight line equation ax + 
by + c = 0. 
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Then, we combine other line segments with the 
longest measurement. From the second longest to 
the shortest segment, a validation will be proceed 
to determine whether to merge with the longest 
line segment. The steps for the merger are as 
follow: 
 
Step 1: The longest line segment will be retrieved 
first to get the coordinates of the start point and 
end point (the line segment A in Figure 3).  
 
Step 2: These two points are used to estimate a 
straight line (the dotted line). Its factor calculation 
formula is shown in Eq. (1).  
 
Step 3: Then the coordinates of the start point and 
end point are taken from the checked segment (the 
B line segment).  
 
Step 4: The distances, dis1 and dis2, from these 
two points to the estimated straight line in Step 2 
are calculated as follows:   
 

22 ba

cbyax
dis -

--?     (2) 

 

Step 5: If dis1<th1, dis2<th2, the two line segments 
will combine together to form a new segment.  
 
As the road is not straight, the two line segments 
may not be aligned in a straight line (the A, B line 
segment). Therefore, the thresholds th1 and th2 will 
be adjusted, both of which depend on the distance 
between the two line segments. That is, the further 
the distance, the greater the thresholds and it is 
defined as follows: 
 

2
4

),min(),max( -/? startstartendend ybyaybya
threshold   

 

(3) 

In Eq. (3), yastart and yaend are the y-coordinates of 
the start point and the end point of the longest line 
segment, respectively, whereas ybstart and ybend 
represent the checked line segment. After the 
combining process, the slope of the longest 
segment is calculated using Eq. (4), where (x1, y1) 
represents the start point and (x2, y2) represents the 
end point of the longest segment. 
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Finally, we use the start point, the end point, and 
the slope to draw the lane line.. 

 

 
 

 
 

Figure 3. Sketches of the line segment merger. 

 
3. Distance measurement of lateral vehicle 

 
The detection method for neighboring vehicle is 
based on the Mei’s method [11], but we add and 
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modify some steps to enhance the detection 
performance. In this method, the region of interest 
(ROI) on the lane is transformed into a rectangular 
area by lane-based transformation [16-17]. Each 
connected component in this area will be verified 
with its features, such as length, width, time 
duration, and height, to determine whether it is a 
vehicle. 

 
3.1 Vehicle detection 

 
For vehicle detection, the cumulative histogram of 
gradient magnitude in the road surface area is 
calculated, and the gradient magnitude at point (x, 
y) is defined by Eq. (5).  
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In digital image processing, these magnitudes can 
be calculated by 3x3 Sobel’s masks. We take 
magnitude i, where it has accumulated over 80% 
amount of total points, as the threshold in our 
experiment. If the gradient magnitude of the pixel 
is greater than threshold i, the color of the pixel will 
be set to white. Otherwise, the color will be black.  

 
As indicated in Figure 4, a backward rectangle 
area from the same position at the rear of host 
vehicle is taken as the ROI. The length of the 
rectangle is 30 meters, and the width is equal to 
the width of the lane. Then, the ROI is transformed 
into a rectangular area with lane-based 
transformation, where the transformed area looks 
like a vertical view of original region. The concept 
of lane-based transformation is depicted in Figure 
4. The captured image in X-Y plane is converted 
into the image in the defined U-V plane, and the 
left and right margin lines of ROI are represented 
by equations: fl(t)=[flx(t), fly(t)]

T and fr(t)=[frx(t), 

fry(t)]
T, where tŒ [0,1]. Then, the upper and lower 

margin lines are represented by equations: 
fupper(t’)=(fr(1)-fl(1))t’+fl(1) and flower(t’)=(fr(0)-

fl(0))t’+fl(0), where t’Œ [0,1], t=v/V and t’=u/U. With 
Eq. (6), each pixel in U-V plane is mapped from 
pixel in X-Y plane. The binarization image is shown 
in Figure 5(a) and the transformed image of ROI is 
shown in Figure 5(b). 

)())()((),(

)())()((),(

V

v
f

U

u

V

v
f

V

v
fvuy

V

v
f

U

u

V

v
f

V

v
fvux

lylyry

lxlxrx

-©/?
-©/?

  (6) 

 

Figure 4. Lane-based transformation. 

 
Next, the 8-adjacent connectivity is used for image 
segmentation. In this step, connected components 
in the transformed image are retrieved, and 
labeled with different values. As demonstrated in 
Figure 5(b), a vehicle may be divided into multiple 
connected components after binarization, and be 
identified as multiple vehicles by the system. Thus, 
we re-combine these components, which may 
belong to the same vehicle, to form a bigger 
component with the following rule. For each 
component in U-V plane, we find its bounding box, 
shown in Figure 5(c). If the bounding boxes 
overlap, their included components will be 
combined as a new one.  
 

 
(a) 

 
 

(b)                             (c) 

 
Figure 5. (a) Binarization image. (b) Lane-based 

transformed image. (c) Bounding boxes. 
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3.2 Vehicle verification 
 
When the vehicle travels on the leftmost lane, the 
solid line painted on the ground may be misjudged as 
a car when it appears in the detection area. 
Therefore, we have added the length and the time 
duration inspections to the vehicle verification in 
addition to Mei's method of width and the height 
examination. These new inspections can be used to 
determine whether the vehicle is on the leftmost lane. 
 
In this step, the connected components are 
examined on its length, width, height, and duration. 
An unreasonable value of the feature means that 
the component should not be a candidate of 
vehicle and would be filtered out. In width 
examination, we use the width of transformed ROI 
as a base width, and multiply it with ratios to get 
the lower bound and upper bound of vehicle width. 
In the following experiment, the ratios are set to 
0.2 and 0.8. 
 
Then, when driving on the leftmost lane, the 
roadside railings and solid line painted on the road 
may get into the ROI and be detected as a 
candidate of vehicle incorrectly. Since the railings 
and solid line would be transformed as a 
connected component with a very long length, we 
can filter out these objects. 
 
Afterwards, the object, whose corresponding 
connected component passes the width and length 
inspections, will be inspected in the image of X-Y 
plane. Using the edge continuity of the object, its 
sum HL of height and length can be derived. 
Moreover, the length L of the object is obtained 
from the length of corresponding bounding box in 
U-V plane. Hence, the height H of the object is 
determined by subtracting L from HL. If the object 
has a feature of height, the found component in U-
V plane is not a shadow or other noise on lane. 
 
Finally, non-vehicle objects, such as shadows and 
pavement markings, will enter the ROI for a short 
period of time. On the other hand, a long solid line 
will be detected in the ROI within a continuous 
period of time when the vehicle is traveling in the 
leftmost lane. Objects of different type have 
different time durations in the ROI. For this reason, 
we define different driving states and driving lanes. 
All the driving lanes and states are tabulated in 
Table 1. If a new state is detected, the state of the 

vehicle alters to the new state after it has been 
detected over a period of time.  
 

With these methods mentioned above, the non-
vehicle objects can be easily filtered out. 
 

3.3 Distance measurement using RFNFN 

For distance measurement, we take field 
measurements to observe the relationship 
between the pixel distance in image and the real 
distance, which is non-linear curve. Therefore, we 
use the measurement data as a training data set 
for the recurrent functional neuro-fuzzy network 
(RFNFN)[18], where the structure of the RFNFN 
model is illustrated in Figure 6. By using the well 
trained RFNFN, we can calculate the real distance 
of the detected vehicle from the pixel distance in 
the image. 
 

In X-Y plane, the bottom of U-V plane is located at 
the line which extends from the rear line of the host 
vehicle. When target vehicle detected in U-V 
plane, we transform the bottom lines of the target 
and of the U-V plane reversely to get two lines in 
X-Y plane. Then, the pixel distance is the distance 
between these two lines. We start measuring the 
pixel distance of the target vehicle which is 2 
meters away from the rear of the host vehicle, and 
repeat this measurement every two meters 
backward until the target vehicle is 30 meters 
away. The measurement results of pixel distances 
(in pixel) and real distance (in meter) are tabulated 
in Table2. 
 

The training process continues for 500 iterations. 
Only 4 rules are generated in the RFNFN model after 
learning. The RMS error of the output data of RFNFN 
is 0.398905. The obtained fuzzy rules are as follows: 
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As plotted in Figure 7, the desired output and the FNFN 
output are almost fully equivalent. The estimated real 
distance is also tabulated in Table 2. From the results, 
the proposed RFNFN can be used as a feasible and 
effective system for distance detection. 
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Pixel distance 47.5078 66.3701 77.5241 83.8629

Desired output 2 4 6 8 

RFNFN output 1.7308 4.1476 5.9493 7.7064 

Pixel distance 88.8369 92.4391 96.8968 98.2700 

Desired output 10 12 14 16 

RFNFN output 9.7667 11.7602 14.9437 16.0833 

Pixel distance 100.1699 101.8725 104.6231 106.0000

Desired output 18 20 22 24 

RFNFN output 17.8303 19.5379 22.6015 24.255 

Pixel distance 107.3778 108.7566 110.1363  

Desired output 26 28 30  

RFNFN output 26.0061 27.8357 29.737 Z

 
Table 2. The training and output data of RFNFN. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 7. The prediction of the proposed RFNFN method. 
 
 
 
 

Driving lanes Driving states Criteria for state transition 

leftmost lane Secure Status 
The length of the detected object is greater than the threshold and 
this object has been detected over a period of time. 

middle lane Vehicle Detected The candidate of vehicle has been detected over a period of time.

middle lane Secure Status No candidate of vehicle is detected in the ROI 

 
Table 1.  Driving lanes, driving state, and criteria for state transition. 

 
 

 
 

Figure 6.  Structure of the RFNFN model. 
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4. Experimental results 
 
The practical programming interface is shown in 
Figure 8. The system tracks lateral vehicles and 
marks adjacent lane line at the same time. The 
green-line rectangle is the ROI for lateral vehicle 
detection. When the vehicle entered this region, 
the color of the line turns red. The blue line is the 
detected lane line, and the distances of the lateral 
vehicles located within the ROI are shown at the 
right side of the window. Moreover, the current 
driving lane and the driving state are shown at the 
lower right corner of the window.  
 

 
 

Figure 8. The practical programming interface. 

 
Figure 9 shows the detection results for different 
road conditions: (a) the neighboring lane with 
newly paved asphalt of different colors, (b) traffic 
cones laying on the neighboring lane, (c) vehicle 
driving into the tunnel, and (d) vehicle driving out of 
the tunnel. In these conditions, the results of lane 
line detection are favorable. 
 
To prove the validity of our method, we captured the 
images of detection result every ten frames, and 
investigate these images one by one. In this 
experiment, there are 9 video sequences used to 
capture the images when the vehicle is driving on 
Taiwan’s highways. Table 3 tabulates the accuracy 
rates of the proposed lane and vehicle detection 
methods. The accurate rate of vehicle detection is 
defined as the rate that the vehicle is located 
correctly when the system is in “Vehicle Detected” 
state. The results prove that the system is well 
performed. But, the vehicle detection rate of video 9 
is very low, the reason is that only a small portion of 
the lateral vehicle is located in the detection area and 
the elapsed time within this area is very short. 

  
 

(a)                                      (b) 
 

  
 

(c)                                   (d) 
 

Figure 9. The results of lane detection. 

 

# 

The total 
number of 
sampling 
frames 

Where the 
driving 
state is 
“vehicle 

detected” 

Accuracy 
rate of 
vehicle 

detection 

Accuracy 
rate of lane 
detection 

1 1025 286 87% 95% 
2 815 10 80% 99% 
3 699 212 84% 98% 
4 857 169 95% 98% 
5 905 189 84% 99% 
6 371 27 81% 98% 
7 828 149 88% 97% 
8 258 28 89% 97% 
9 584 94 62% 97% 

 
Table 3. Accuracy rates of the lane detection 

and vehicle detection. 

 
5. Conclusions 
 
In this paper, we propose a new driver assistance 
system based on image processing techniques. 
The system provides the abilities of lane detection, 
vehicle detection, and distance measurement for 
lateral vehicle. Experimental results show its 
robustness in the cases of complex environment 
conditions. 
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