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ABSTRACT 
Least significant bit (LSB) embedding is a simple steganographic technique used in the spatial domain that involves 
replacing the LSB of each pixel in the cover work with the information bits being hidden to achieve information 
secrecy. However, considering the current prevalence of information theft and sabotage, the stego image produced 
using LSB embedding cannot prevent malicious illegal acts. Therefore, this study proposes a blind data hiding 
technique that combines block-coded modulation (BCM) codes with LSB embedding. The proposed method not only 
provides error correction capabilities to prevent errors during the extraction process, but also has a superior 
embedding payload. The peak signal noise ratio (PSNR) exceeds 40 dB by using our proposed method. Regarding 
the simulation results, the proposed method provides a superior PSNR compared to LSB embedding and a higher 
embedding payload than that offered by other steganographic techniques with error correction capabilities. 

Keywords: Least significant bit embedding, data hiding, block-coded modulation codes, Reed-Muller codes. 
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1. Introduction 

Watermarking [1, 2, 3, 4, 5] and steganography [6, 
7, 8, 9] are the two main information hiding techni-
ques that are used to protect intellectual property 
by embedding copyright information into digital 
media such as images, music, and videos. To 
explain watermarking, consider invisible watermar-
king as an example; invisible watermarking is 
employed to embed visually imperceptible data or 
ciphers into cover work. Steganography involves 
embedding information (cipher) in cover work thr-
ough undetectable changes. A major characteristic 
of blind data hiding watermarking techniques is 
that the extraction processing can extract the hidd-
en information without cover work. The extraction 
process that does require cover work is called info-
rmed data hiding. To evaluate the efficiency of ste-
ganographic techniques, Chang [10] recommende-
d two criteria to evaluate steganographic techniqu-
es, namely, embedding efficiency and embedding 
payload. Embedding efficiency describes the visual 

quality of the stego image, and the embedding 
payload refers to the size of the embedded cipher. 
Generally, embedding efficiency uses a peak sign-
al noise ratio (PSNR) to evaluate the visual quality. 
When the PSNR value exceeds 30 dB, the human 
eye cannot detect visual differences between 
embedded and nonembedded images. Thus, the 
optimal information hiding technique should have 
both a high embedding payload and high embeddi-
ng efficiency. Considering the current prevalence 
of information theft and sabotage, producing stego 
images within acceptable bounds of the two criteria 
while effectively preventing malicious illegal acts 
has become a popular research objective.  

Chang [10] proposed a novel steganographic 
technique with error correction capability. The pro-
posed method used Hamming codes [7, 4] and 
LSB embedding to encode the hidden information 
into codewords and embed the codewords into 
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pixels of the cover work, respectively. The simulat-
ion results indicated that the proposed method 
provided superior PSNR compared to LSB embed-
ding. Briefly, the proposed method first divided 7 
secret bits into 3 bits and 4 bits, which were then 
used to locate the selected codeword in each row 
and column of the ·8 16  standard array. Next, 

each selected codeword was embedded into every 
7 pixels of the cover work using LSB embedding 
until all secret bits were embedded. The extraction 
process involves extracting the LSB of every 7 pix-
els of the stego image and locating the codeword 
in every row and column of the ·8 16  standard ar-

ray. Every 7 secret bits extracted can be identified 
by converting the row number and column number 
into 3 bits and 4 bits. The method proposed by 
Chang requires greater memory because the prop-
osed method employs a lookup table for embeddi-
ng and extracting secret bits. Moreover, the error 
correction capability of this method can correct 
only single-bit errors. Therefore, how to further im-
prove the error correction capability and embedd-
ing payload of the method proposed by Chang is a 
popular research topic.  
    
This study combines block coded modulation 
(BCM) codes with LSB embedding to improve both 
the error correction capability and embedding 
payload of Chang’s proposed method. To further 
improve the PSNR of the proposed method, this 
study employs modulus functions [11] to increase 
the differences between the cover work and stego 
image before embedding BCM codewords into the 
cover work. The simulation results show that the 
method proposed in this study possess superior 
error correction and LSB embedding capabilities 
than that of the method proposed by Chang when 
the stego image is corrupted by salt-and-pepper 
noise. Furthermore, our proposed method also off-
ers a higher embedding payload than that provided 
by Chang’s proposed method. 

2. Literature Review 

In this section, we first describe the encoding and 
decoding architecture of BCM codes and Reed-
Muller codes. Then, we explicate the embedding 
and extraction processes of the following three 
techniques: LSB embedding, Chang’s proposed 
method [10], and the modulus function. 

2.1 BCM Codes  

BCM [12] is a coding scheme that combines both 
modulation and channel coding and is based on 
the Euclidean distance between symbols. For 
convenience, we describe how to construct a 4-
QAM BCM code based on a 4-QAM signal 
constellation with set partitioning. First, symbols 
within the signal constellations are recursively 
divided into numerous subsets, where the 
Euclidean distance between the neighboring 
symbols of each subset are gradually increased. 
A 4-QAM BCM code is composed of two 

component codes 1
C and

2
C , which are binary 

block codes with length N. The minimum 

Hamming distance is 
id , where ~ ~1 2i . The 

two component codes are used to construct a ·2 N  codeword array by inserting the codeword 

i
c  of the i

th
 component code 

i
C  into the i

th
 row 

of a ·2 N  codeword array. This is represented 
in the following mathematical expression: 

/
/

Œ Ã ÔÃ Ô ? Ä ÕÄ ÕŒÅ Ö Å Ö
A
A

1,0 1,1 1, 11 1

2,0 2,1 2, 12 2

N

N

c c cC

c c cC

c

c

Next, a 4-QAM BCM codeword with length N is 
created by modulating each column of the 
codeword array into a 4-QAM symbol. Figure 1 
shows a 4-QAM signal constellation, where the bit 
indicators are arranged by set partitioning and the 
ratio between the squared Euclidean distances of 
the two subsets is 1:2. A 4-QAM BCM codeword * +/? A0 1 1, , , NX X XX can be expressed using the 

following mathematical equation: 

r-Ã Ô? ~ ~ /Ä ÕÅ Ö
1, 2,2 4

1
, 0 1,

2

k k
jc c

k
X j e k N

where ? /1j . This mathematical expression 

shows that the 4-QAM BCM codeword X is 
composed of two binary component codewords Œ ?,  1,2

i i
C ic .

2.2 Reed-Muller codes 

This study employs Reed-Muller codes as the 
component codes for constructing a BCM code. 
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Let m and r be the two positive integers and 
~ ~0 r m . A rth-order binary Reed-Muller code 

with a code length of ? 2mN , which is a

/
?

Ç ×Ã Ô? ? ?È ÙÄ ÕÅ ÖÉ ÚÂ 0
2 , , 2

rm m r

i

m
N k d

i

linear block code, can be expressed as RM(r,m). 

Assuming ~ ~1 i m , let 
i

x  be a vector of length 

2m that exists in the binary Galois field with the 
following characteristics: 

m m
/ // /

? A A A A A'() '()
1 11 12 22 2

(0, ,0,1, ,1,0, ,0, ,1, ,1)
i ii i

ix

where (
/

A'()
12

0, ,0
i

) and (m
/

A
12

1, ,1
i

) are /12 i -tuples with all 

zeroes and all ones as the content, respectively 
[12]. For example, if m = 3, the three vectors 
existing in the binary Galois field of length 8 can be 
expressed as  

?
?
?

1

2

3

(0,1,0,1,0,1,0,1),  

(0,0,1,1,0,0,1,1),  

(0,0,0,0,1,1,1,1).

x

x

x

2.2.1 Encoding Reed-Muller codes 

For an rth-order binary Reed-Muller code with a 

code length of 2m , the generator matrix G of 
RM(r,m) can be expressed as follows:  

/

Ã ÔÄ ÕÄ ÕÄ ÕÄ ÕÄ ÕÄ Õ? Ä ÕÄ ÕÄ ÕÄ ÕÄ ÕÄ ÕÄ ÕÅ Ö

B

B

B
A

1

1 2

1

1 2

m

m m

r

1

x

x

G x x

x x

x x x

╋

where 1 is a vector of length 2m and the content is 
all ones. In other words, an rth-order binary Reed-
Muller codeword is obtained through a linear 
combination of the vectors 

{1, 1x ,...,
m

x , 1 2x x ,..., /1m m
x x ,..., A1 2 r

x x x }.

For example, m = 3 and r = 2, the generator matrix 
of RM (2,3) is a matrix sized · ? ·7 8k n , as 

shown below.  

1

2

2

Figure 1. The set-partitioned 4-QAM signal constellation. 
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Ã Ô Ã ÔÄ Õ Ä ÕÄ Õ Ä ÕÄ Õ Ä ÕÄ Õ Ä Õ? ?Ä Õ Ä ÕÄ Õ Ä ÕÄ Õ Ä ÕÄ Õ Ä ÕÄ Õ Ä ÕÄ Õ Å ÖÅ Ö

1

2

3

1 2

1 3

2 3

1 1,1,1,1,1,1,1,1

0,1,0,1,0,1,0,1

0,0,1,1,0,0,1,1

0,0,0,0,1,1,1,1

0,0,0,1,0,0,0,1

0,0,0,0,0,1,0,1

0,0,0,0,0,0,1,1

x

x

G x

x x

x x

x x

Assuming the input message is ? (1,0,1,0,0,0,0)u ,

the output codeword c is expressed as follows: 

* +

Ã ÔÄ ÕÄ ÕÄ ÕÄ Õ? ? Ä ÕÄ ÕÄ ÕÄ ÕÄ ÕÅ Ö
?

1,1,1,1,1,1,1,1

0,1,0,1,0,1,0,1

0,0,1,1,0,0,1,1

(1,0,1,0,0,0,0) 0,0,0,0,1,1,1,1

0,0,0,1,0,0,0,1

0,0,0,0,0,1,0,1

0,0,0,0,0,0,1,1

 0,0,1,1,0,0,1,1

c uG

2.2.2 Decoding Reed-Muller codes

The Reed decoding algorithm is a type of decoding 
algorithm for RM(r,m) [12]. Using RM(2,3) as an 
example, assuming the input message is ?

0 1 2 3 12 13 23
( , , , , , , )u u u u u u uu  and the received 

codeword is ?
1 2 3 4 5 6 7 8

( , , , , , , , )r r r r r r r rr , the decoded 

value '

12
u of input message bit 

12
u  is determined 

by the results of the two decision equations below. 

? - - -
? - - -

(1)

12 5 6 7 8

(2)

12 1 2 3 4

u r r r r

u r r r r

If both (1)

12
u and (2)

12
u  are 1, then the input message 

bit
12

u  is decoded as '

12
u =1. Conversely, if both 

(1)

12
u  and (2)

12
u  are zeroes, then the decoded input 

message bit '

12
u is zero. Calculation of the above 

equations is known as binary addition; that is, 
1+1=0, 1+0=1, 0+1=1, and 0+0=0. The 
corresponding positions in the received codeword 
of two decision equations are based on the non-

zero positions in the two vectors { 3
x , -

3
1 x }. The 

decision equations for decoding input messages 

13
u  and 

23
u  are determined by summing the non-

zero positions from {
2

x , -
2

1 x } and {
1

x , -
1

1 x } of 

the received codeword for decision equations, as 
shown below. 

? - - -
? - - -
? - - -
? - - -

(1)

13 3 4 7 8

(2)

13 1 2 5 6

(1)

23 2 4 6 8

(2)

23 1 3 5 7

u r r r r

u r r r r

u r r r r

u r r r r

The first stage correction involves adjusting the 
received codeword according to the decoded 

' ' '

12 13 23
( , , )u u u . After this adjustment, the received 

codeword of the first stage correction is defined as 

? / / /'

12 1 2 13 1 3 23 2 3
' ' 'u u ur r x x x x x x

.
The input m-

essage 
1 2 3

( , , )u u u is then decoded from the con-

tent of 'r , where the input message bit 
1

u may be 

decoded to determine the decoded value '

1
u using 

the results of the following four decision equations. 

? -
? -
? -
? -

(1) ' '

1 7 8

(2) ' '

1 5 6

(3) ' '

1 3 4

(4) ' '

1 1 2

u r r

u r r

u r r

u r r

If most of the results of these four decision 

equations are zeroes, the input message 1
u is

decoded as '

1
u = 0. Conversely, if most of the resul-

ts of these four decision equations is 1, then the 

input message 1
u  is decoded as '

1
u = 1. The four 

decision equations were decoded by summing the 
corresponding non-zero positions of the codewor-
ds received from the four vectors 

{ - - - -
2 3 2 3 2 3 2 3

,(1 ) , (1 ),(1 )(1 )x x x x x x x x }.

Therefore, the decision equations for decoding the 

input messages 2
u and

3
u are based respectively 

on the sum of the corresponding non-zero positio-
ns from the received codewords in 

{ - - - -
1 3 1 3 1 3 1 3

,(1 ) , (1 ),(1 )(1 )x x x x x x x x }

= (1,1,0,0,1,1,0,0) 
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and

{ - - - -
1 2 1 2 1 2 1 2

,(1 ) , (1 ),(1 )(1 )x x x x x x x x }.

The decoded ' ' '

1 2 3
( , , )u u u are then used in the seco-

nd stage correction. The received codeword of the 
second stage correction is defined as   

? / / /'' '

1 1 2 2 3 3
' ' 'u u ur r x x x ,

which is used to determine the decoded value of 

the input message bit 0
u . If the majority of the con-

tent value for ''r is 0, then the input message bit 
0

u

is decoded as '

0
u = 0. Conversely, 

0
u is decoded 

as '

0
u = 1 if the majority of the content value for ''r is

1. Finally, the input message decoded using the 
Reed decoding algorithm is  

?' ' ' ' ' ' ' '

0 1 2 3 12 13 23
( , , , , , , )u u u u u u uu .

2.3 Chang's proposed method [10]  

For a cover work sized ·M W , the method 
proposed by Chang employs the Hamming code 
[7,4] to hide information. The amount of data that 

can be hidden is ·È ÙÉ Ú(M ) 7W , where È ÙÉ Úy

denotes the smallest positive integer that is less 
than y. Chang’s proposed method hides 
information using the Hamming code [7,4], with a 
standard array of ·8 16 . Seven bits are read from 

the data to be hidden and then divided into 3 bits 
and 4 bits. The 3 bits are used to express which 
of the 8 coset leaders should be selected, and the 
4 bits denote which of the 16 codewords should 
be chosen. Chang’s proposed method adds the 
selected coset leader and codeword using the 
vector from additions as the information to embed 
into the cover work. The method to embed 
information involves obtaining 7 pixels from the 
cover work and then replacing the LSB content of 
the 7 pixels with the selected processed 
information in sequence.  
    
Data is extracted from the receiver by reading the 
LSB content of the 7 pixels in the sequence that 
data are embedded into the cover work. The 7 bits 
obtained using this method are multiplied by the 

parity check matrix H of the Hamming code [7,4] to 
obtain the 3 bits syndrome. The coset leader 
corresponding to the syndrome is added to the 
extracted 7 bits to obtain the codeword, and the 4 
bits corresponding to the codeword are revealed 
using the standard array, thereby retrieving the 
embedded 7 bits of hidden data. Because Chang’s 
proposed method requires the standard array to be 
built beforehand, extra memory is required in both 
the transmitter and the receiver to store the 128 
vectors required for embedding and decoding. If the 
code length N for the Hamming code is extended, 
the vectors requiring storage increase to the nth

power of 2, that is, 2n , which increases the overall 
costs. Thus, we propose a steganographic 
technique based on BCM architecture and select 
Reed-Muller codes as component codes. This is 
primarily because the Reed decoding algorithm can 
be decoded through easy calculations and does not 
require substantial memory to build the standard 
array, thereby effectively improving the high storage 
requirements of Chang’s proposed method.  

2.4 Modulus function

Thien and Lin [11] proposed a steganographic 
technique to improve the visual quality of the stego 
image using modulus functions. The expression of 
modulus function is defined as c = a mod b, where 
a is the dividend, b is the divisor, and c is the 
reminder. For example, 3 mod 2 equals 1, that is, 
the division of 3 by 2 leaves a remainder of 1. Let x
be a pixel used to hide data in the cover work, z be 

the hidden information, and y equal 
2

log z . First, 

the embedding process of modulus function is em-
ployed to compute the following equation: 

w=z- (x mod y). 

The result w is applied to determine the minimum 
variance e using the following equations: 

* +
Ê Ã Ô/ /È Ù Ç ×/ ~ ~Í Ä ÕÈ Ù È ÙÉ Ú È ÙÅ ÖÍÍ Ã Ô/Í È Ù? - / - ~ ~ /Ë Ä ÕÈ ÙÉ ÚÅ ÖÍÍ Ã Ô/Ç ×Í / ~ ~ /Ä ÕÈ ÙÍ È ÙÅ ÖÌ

1 1
, if 

2 2

1
, if 1

2

1
, if ( 1)

2

y y
w w

y
e w y y w

y
w y w y
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where È ÙÉ Ús  represents the smallest integer closest 

to s, and Ç ×È Ùv  represents the largest integer closest 

to v. Finally, the modified pixel 'x , which replaces 
x in the cover work, is obtained by calculating 

? -'x x e . The modulus function extraction proce-

ss involves computing ? '  mod z x y to extract the 

information hidden in the stego image. Although 
the modulus function offers superior visual quality, 
it has no error correction capabilities to prevent 
errors in the extraction process. Therefore, this 
study uses BCM codes to improve the error correc-
tion capabilities of the modulus function. 

3 The proposed method  

This study proposes a steganographic technique 
that offers both error correction capabilities and 
superior visual quality. The proposed method, 
which can be used in blind data hiding watermar-
king systems, integrates BCM codes to improve 
the error correction capabilities of LSB embedding. 
This study also employs a modulus function to 
improve the PSNR of the proposed method 
because using more LSBs to embed hidden 
information reduces the PSNR. Because every bit 
of a binary sequence converted by a pixel can be 
considered a subset of the signal constellation, this 
study employs various order Reed-Muller codes as 
the component codes of BCM codes to protect the 
LSB of each pixel when errors occur during the 
extraction process. Because the impact on visual 
quality is lower when information in hidden the 
first LSB compared to the other LSB, the block 
codes used to hide information in the first LSB 
must have equal or superior error correction 
capabilities to maintain both a high error 
correction capability and embedding payload. 
Therefore, the block code encoding length of the 
first LSB must be less than that of the second 
LSB. For example, if the block code chosen for 
the first LSB is a RM(2,4) with a code length of 16 
and the ability to correct 1-bit errors, then the 
block code chosen for the second LSB must use 
a block code longer than 16 bits and correct 1 or 
more bits, such as RM(2,5) with a code length of 
32 and the ability to correct 3-bit errors. The data 
encoding and extraction processes of the method 
proposed in this study are explained below.  

In this study, a grayscale image sized at ·M W was 
used as the cover work, and Reed-Muller codes 
were used as the component codes of BCM codes. 

3.1 Data embedding procedures 

Assume n is the number of LSBs used for hiding 
information. Let the block code used for hiding 

information in the ith LSB be ( , )
i i

RM r m , where

( , )
i i

RM r m  is a 

/
?

Ç ×Ã Ô? ? ?È ÙÄ ÕÅ ÖÉ ÚÂ ' 0
2 ,  ,  2

'

ii i i
rm m ri

i i ii

m
n k d

i

linear block code and ? A1,2, , .i n  The linear block 

code selected as the component code must satisfy 

the conditions of - @1j jn n  and - ‡1j jd d ,

? A1,2, ,6j . First, a grayscale image sized at 

·M W was adopted as the cover work, and the 
block divisions required for hiding information in 

the ith LSB were calculated. That is, the ·M W

pixels ~ ~ ·,1
f

p f M W of the grayscale image 

were divided into 
·È ÙÈ ÙÉ Ú2 im

M W
 blocks ( )

'
,i

i
b ~1 'i

·È Ù~ È ÙÉ Ú2 im

M W
and ? A1,2, ,i n , where each block 

contains 2 im  pixels. The proposed method is used 
to determine the size of the information hidden as 

S and sized at 
?

·È Ù ·È ÙÉ ÚÂ
1

M
( )

2 i

n

im
i

W
k bits, where n is 

the number of LSBs used to hide the information. 

Then, the 
i

k bits obtained from the data being 

hidden and marked as * +? A,1 ,2 ,, , ,
ii i i i ku u uu are 

converted into Reed-Muller codewords 
i

c after the 

Reed-Muller encoding process is performed. 

Specifically, the codeword 
i

c is generated from 

?
i i i

c u G , where 
i

G is the generator matrix for 

( , )
i i

RM r m . To perform embedding, each pixel 

value
f

p is first converted into an 8-bit binary 

sequence * +? 1 2 3 4 5 6 7 8, , , , , , ,f l l l l l l l ll  representing the 

grayscale pixel value, where the grayscale pixel 

value
f

p  ranges between 0 and 255. Next, the 
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proposed method sequentially embeds the content 

of codeword 
i

c  with the length of 2 im  into the ith

LSB of the divided blocks. This method can be 

expressed as the ith LSB ( Œ( ) ( )i

i i

v i

s vl b )=
( )

,
i

i

v

i sc .
( )i

i

v

sl is

the binary sequence converted from the 
i

s th pixel 

in block 
i

v ,
( )

vi

ib  is the 
i

v th block divided during the 

ith LSB embedding, and 
( )

,
i

i

v

i sc  is the 
i

s th element 

from the codeword that is hidden in the 
i

v th block 

in the ith LSB, where ~ ~1 2 im

i
s  and 

·È Ù~ ~ È ÙÉ Ú1
2 i

i m

M W
v . Each modified pixel '

t
p  of the 

1
v th block after the n-bit LSB embedding is used 

as the input value of the modulus function, where 

? A 11,2, 2mt  and n is the number of LSBs used for 

hiding information. We first employed modulus 
operation to calculate the following equation: 

? /' (  mod 2 ),  i

t t t
w p p

where 
t

p  is the original tth pixel of the 
1

v th block 

in the cover work and ? A 11,2, ,2mt . Then, the 

resulting value 
t

w  was used to determine the 

minimum variance 
t

e  through the following 

equations: 

* +
Ê Ã ÔÈ Ù Ç ×/ // ~ ~Í Ä ÕÈ Ù È ÙÄ ÕÉ Ú È ÙÍ Å ÖÍ Ã ÔÈ Ù/Í? - / - ~ ~ /Ä ÕË È ÙÄ ÕÉ ÚÅ ÖÍÍ Ã ÔÇ ×/Í / ~ ~ /Ä ÕÈ ÙÄ ÕÍ È ÙÅ ÖÌ

2 1 2 1
, if 

2 2

2 1
2 , if 2 1 ,

2

2 1
2 , if (2 1)

2

i i

t t

i
i i

t t t

i
i i

t t

w w

e w w

w w

(1) 

where È ÙÉ Ús  represents the smallest integer closest 

to s, Ç ×È Ùv  represents the largest integer closest to

v, i = 1,2,..., n, and ? A 11,2, ,2mt . After calculating 

the modulus function, the resulting pixel *

t
p is

obtained using the following decision equations. 

Ê - ~ - ~ÍÍ? - / - @ËÍ - - - >ÍÌ

* *

* * *

* *

( ),  if 0 255

( 2 ),  if 255

( 2 ),  if 0

t t t t

i

t t t t t

i

t t t t

p e p e

p p e p e

p e p e

,

(2) 

where ? A 11,2, ,2mt . The embedding process is 

explained below. 

Procedure: Data embedding 

Input: Hidden data S, n LSBs embedded into a 

pixel, and a grayscale image ·M W in size, where 
the grayscale image is used as the cover work. 

( , )
i i

RM r m  is used as the block codes for hiding 

information in the ith LSB, where - @1j jn n  and 

- ‡1j jd d , ? A1,2, ,6j and i=1,2,...,n.

Output: A stego image I' ·M W  in size.

Step 1:  Define the sequence of the ·M W pixels  
in the grayscale image I, where ~ ~ ·,1

f
p f M W , and divide the blocks 

according to the following procedure: 
                Blocks required to hide information in the 

ith LSB: Divide the ·M W pixels~ ~ ·,1
f

p f M W  in the grayscale image 

into
·È ÙÈ ÙÉ Ú2 im

M W
 blocks 

( ),
i

i

vb ~ ~1
i

v

·È ÙÈ ÙÉ Ú2 im

M W
, where each block contains 2 im

pixels. 

Step 2: Read the next 
iv

k data bits from the    

payload S and mark as 

* +? A1,1 1,2 1,, , ,
i vi

v k
u u us .

Step 3: Generate the codeword 
iv

c from

?
i iv v i

c s G ,

where 
i

G  is the generator matrices of ( , )
i i

RM r m .
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Step 4:  Replace the ith LSBs content of the binary 

sequence that corresponds with the 2 im pixels in 

block
( )

i

i

vb  with content 
( )

,
i

i

v

i sc from the codeword 
iv

c .

This can also be expressed as the ith LSB (

Œ( ) ( )i

i i

v i

s vl b )

=
( )

,
i

i

v

i s
c , where ~ ~1 2 im

i
s  and ~1

i
v

·È Ù~ È ÙÉ Ú2 im

M W
.

Step 5:  Compute the resulting value 
t

w  according 

to ? /' (  mod 2 )i

t t t
w p p , where 

t
p  is the original 

tth pixel of the 
1

v th block in the cover work and 

? A 11,2, 2mt . Use the resulting value 
t

w  to 

determine the minimum variance 
t

e  according to 

(1). Finally, the resulting pixel *

t
p ? A 11,2, 2mt  can 

be obtained using (2).   

Step 6:  Replace the tth pixel 
t

p  of the 
1

v th block 

with the resulting pixel *

t
p , where ? A 11,2, ,2mt  and 

·È Ù~ ~ È ÙÉ Ú1
11

2m

M W
v .

Step 7:  Repeat Steps 2 to 6 until all payload S is 
embedded. 

3.2 Data extraction procedures 

Assuming the receiver is aware that the stego 
image is a grayscale image and the parameters of 

the Reed-Muller codes are 
i

r  and 
i

m , when the 

receiver receives the stego image, all the stego 

image pixels use modulo 2 i  operation. 
Additionally, the stego image after modulus 

operation is divided into 
·È ÙÈ ÙÉ Ú2 im

M W
blocks for 

extracting information from the ith LSB. 
Specifically, each block used to extract information 

from the ith LSB contains 2 im  pixels 

'

'

( )

,
,t

v

t received
p ? A t' 1,2, ,2 im , and 

·È Ù~ ~ È ÙÉ Ú'1
2 imt

M W
v .

Pixels from each block containing ith LSB hidden 
information are converted into a binary sequence 

* +?' ' ' ' ' ' ' ' '

'

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 4 5 6 7 8
, , , , , , ,t t t t t t t t t

v v v v v v v v v

t
l l l l l l l ll , where 

? At' 1,2, ,2 im  and 
·È Ù~ ~ È ÙÉ Ú'1

2 imt

M W
v . The ith LSB f-

rom the 2 im pixels in the 
i

v th steganographic 

blocks is extracted, where
·È Ù~ ~ È ÙÉ Ú1

2 i
i m

M W
v . The 

extra-cted LSBs are combined into the binary 
sequences and expressed as 

* +? A( ) ( ) ( ) ( )

1 2 2
th LSB( ), th LSB( ), , th LSB( )i i i i

mi

v v v v

i i i id l l l .

Finally, the binary sequences ( )iv

i
d from each block 

are decoded with a 
i

r th order Reed decoding 

algorithm until all the payload S is extracted. The 
data extraction process can be consolidated into 
the following procedures: 

Procedure: Data extraction  

Input: A stego image I' ·M W in size with n LSBs 
embedded in each pixel, where the codewords are 

generated by ( , )
i i

RM r m  and i = 1,2,..., n.

Output: Original payload S

Step 1: First, all ·M N pixels

'

, ,f receivedp ~ ~ ·1 ,f M W

in the stego image I' employ modulo 2n  operation. 

After modulus operation, divide the ·M W pixels

~ ~ ·*

, ,  1 ,f receivedp f M W  into the 
·È ÙÈ ÙÉ Ú2 im

M W

information hiding blocks of the ith LSB, where 

each of the ith LSB blocks contain 2 im pixels

? A'

'

( )

,
,  t' 1,2, ,2t i

v m

t received
p

and

·È Ù~ ~ È ÙÉ Ú'1
2 imt

M W
v .
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Step 2: Read each pixel in the subsequent ith LSB 
information hiding blocks and convert them into the 
binary sequences 

* +?' ' ' ' ' ' ' ' '

'

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2 3 4 5 6 7 8
, , , , , , ,t t t t t t t t t

v v v v v v v v v

t
l l l l l l l ll ,

where ? At' 1,2, ,2 im  and
·È Ù~ ~ È ÙÉ Ú'1

2 imt

M W
v

.

Step 3: Extract the ith LSB from 2 im  binary seque-

nces
'

'

( )
,t

v

t
l

? At' 1,2, ,2 im  and
·È Ù~ ~ È ÙÉ Ú'1

2 imt

M W
v .

Assemble the extracted LSBs into binary sequenc-
es expressed as 

* +? A( ) ( ) ( )

1 2
th LSB( ), , th LSB( )i i i

mi

v v v

i i id l l .

Step 4: Decode the extracted codewords ( )iv

i
d  into  

i
s , using the 

i
r th order Reed decoding  algorithm. 

Step 5: Repeat Steps 2 to 4 until all payload S is 
extracted. 

4. Experimental results 

In this study, we conducted simulations using 8 
grayscale images with ·256 256 pixels, as shown 

in Fig. 2. We assessed the degree of visual 
differences between the cover work and the stego 
image with the embedded information using the 
PSNRs. PSNR is defined as  

Ã ÔÄ ÕÅ Ö
2

10

255
PSNR=10log  ,

MSE

where 
/ /

? ?
Ç ×? /É Ú· ÂÂ 21 1

'

, ,

0 0

1
MSE

M W

i j i j

i j

I I
M W

, I is the origi-

nal grayscale image, and 'I is the stego image.
Generally, when the PSNR exceeds 30 dB,  

visually distinguishing the differences between the 
stego image and the cover work is extremely 

difficult. To compare the payload size that can be 
embedded using various information hiding 
techniques, we assessed various embedding 
payloads P (calculated using the unit of bits-per-
pixel, bpp), which can be defined as 

? · ,
S

P
M W

where S  refers to the size of the payload S.  The 

larger the P value, the more data can be hidden in 
the stego image. Generally, PSNR declines with 
increases in the embedding payload.  

Achieving a high embedding payload without being 
visually distinguishable by the human eye and 
simultaneously preventing errors is currently a 
popular topic of steganography research. The exp-
erimental results indicate that the method propose-
d in this study hides and protects data in the first a- 
nd second LSB of each pixel in the cover work. To 
further analyze the error correction capabilities of 
LSB embedding, the method proposed by Chang, 
and the method proposed in this paper, we 
compared situations where stego images are disr- 
upted by salt-and-pepper noise [13]. The value of 
each noisy pixel in the salt-and-pepper noise 
ranged between 0 and 255 and the image size was 

·256 256 . The position where the stego image 

was disrupted by noise was randomly distributed. 
We used the error correction rate, which is 
expressed below, to evaluate the error correction 
capabilities of each technique. 

? .c

e

b
C

b

In this equation, 
c

b is the number of correct bits 

and e
b is the number of error bits after data 

extraction.  

Figure 3 shows the block codes employed for the 
first LSB and second LSB embedding using 
RM(2,4) and RM(3,5). The error correction capa-
bility of both RM(2,4) and RM(3,5) can correct 
single-bit errors. For embedding data in the first 
LSB, the ·256 256 original image was divided into 

4,096 blocks with lengths of 8. For embedding data 
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in the second LSB, the ·256 256 image was 

divided into 2,048 blocks with lengths of 16. In Fig. 
1, the payload size of each stego image is 98,304 

bit and ? ? ?· ·
98,304

1.5
256 256

S
P

M W
. The method 

proposed in this study guarantees PSNR values 
above 40 dB. Figure 4 shows the baboon image 
converted into a stego image using LSB 
embedding, Chang’s proposed method, and the 
method proposed in this study. The experimental 
parameters are identical to those employed in Fig. 
3; that is, the block codes employed for the first 
LSB and second LSB embedding are RM(2,4) and 
RM(3,5), respectively. The steganographic data 
extraction was disrupted by the same salt-and-
pepper noise.  
     
Assuming that half the ·256 256 pixels in the 

stego image are disrupted by salt-and-pepper 
noise, as shown in Fig. 4(a), regardless of 

whether the PSNR of Chang’s proposed method 
is superior to that of the method proposed in this 
study and of 2-bits LSB embedding, the 
embedding payload of the method proposed in 
this study is higher than that of Chang’s proposed 
method. In Fig. 4(b), the error correction rate of 
the method proposed in this study is superior to 
that of the two other techniques. Table 1 shows a 
comparison of the PSNR, embedding payload, 
and error correction rates of the three 
steganographic techniques applied to 8 images. 
However, no error correction rate is displayed for 
LSB embedding in Table 1 because 

LSB embedding does not possess error 
correction capabilities. The results in Table 1 
show that the method proposed in this study 
provides a PSNR and embedding payload nearly 
equivalent to that of 2-bits LSB embedding while 
offering almost dou-ble the error correction rates 
provided by the other two techniques.

Figure 2. Eight grayscale images ·256 256 pixels in size.
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Figure 3. The visual quality and embedding payload of the stego images created 
 using the method proposed in this study. 

Figure 4. Comparison of the robustness of the three steganographic techniques under salt-and-pepper noise 
disruption: (a) undisrupted; and (b) after salt-and-pepper noise disruption.
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5. Conclusion 

This study proposed a blind data hiding method 
with error correction capabilities and high 
embedding payloads by combining LSB embedd-
ing and BCM to produce stego images. Compared 
with Chang’s proposed method, although the 
PSNR of the method proposed in this study is less 
than optimal, this method does not require 
substantial memory to construct standard arrays 
for extracting data. Additionally, our proposed 
method offers significantly superior embedding 
payloads and error correction capabilities. 
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