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Abstract

Cloud computing is a boon for both business and private use, but data security concerns slow its adoption. Fully homomorphic encryption 

(FHE) offers the means by which the cloud computing can be performed on encrypted data, obviating the data security concerns. FHE is not 

without its cost, as FHE operations take orders of magnitude more processing time and memory than the same operations on unencrypted data. 

Cloud computing can be leveraged to reduce the time taken by bringing to bear parallel processing. This paper presents an implementation of a 

processing dispatcher which takes an iterative set of operations on FHE encrypted data and splits them between a number of processing engines. 

A private cloud was implemented to support the processing engines. The processing time was measured with 1, 2, 4, and 8 processing engines. The 

time taken to perform the calculations with the four levels of parallelization, as well as the amount of time used in data transfers are presented. In 

addition, the time the computation servers spent in each of addition, subtraction, multiplication, and division are laid out. An analysis of the time 

gained by parallel processing is presented. The experimental results shows that the proposed parallel processing of Gentry’s encryption improves 

the performance better than the computations on a single node. This research provides the following contributions. A private cloud was built to 

support parallel processing of homomorphic encryption in the cloud. A client-server model was created to evaluate cloud computing of the 

Gentry’s encryption algorithm. A distributed algorithm was developed to support parallel processing of the Gentry’s algorithm for evaluation on 

the cloud. An experiment was setup for the evaluation of the Gentry’s algorithm, and the results of the evaluation show that the distributed 

algorithm can be used to speed up the processing of the Gentry’s algorithm with cloud computing.
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1. Introduction

In conventional computing, data centers with computing re-

sources are usually established for data processing. Running a data 

center is costly in order to meet an organization’s maximum needs 

of data processing. In addition, the computing resources are often 

largely idle where the computing resources are underutilized.

Cloud computing provides advantages over the conventional 

computing with data centers. An organization can obtain the 

computing resources from cloud computing provided by a pro-

vider. Instead of purchasing the computing resources, organiza-

tions can purchase computing services from cloud computing 

providers where it is much cheaper then purchasing the comput-

ing resources. Cloud providers are responsible for eficiently 

providing the on-demand computing resources to the organiza-

tions as clients to the cloud providers. The organizations do not 

need to maintain the computing resources and the services are 

charged on the time use of computing resources.

Cloud computing is not without the issues. Organizations 

have concerns in moving their data to a cloud due to the data 

privacy. Possible threats to the data privacy could be from cloud 

providers’ employees, clients, and network hackers. To protect 

data in a public computing environment such as cloud, encryp-

tion seems to be an effective way of enforcing data security in 

a cloud. However, most of existing encryption schemes require 

data to be decrypted for computations where data becomes vul-

nerable during computation of decrypted data. If computations 

can be performed on encrypted data without decryption, then 

the security of data would not be a concern. Homomorphic en-

cryption makes it possible to process encrypted data without 

decryption whereby the encrypted results can only be decrypt-

ed by the client who requests the service.

Homomorphic encryption is an encryption scheme which al-

lows for computations on encrypted data and obtains an en-

crypted result which decrypted produces the same result of 

computations on the original data. In this paper, we will survey 

several eficient, partially homomorphic schemes, and a num-

ber of fully homomorphic, but less eficient schemes. The Gen-

try’s algorithm for fully encryption algorithm will be examined 
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The cloud computing has been widely used for parallel pro-

cessing of mass data (Kamara & Raykova, 2013; Amazon Web 

Services, 2015; Cloudera, 2015; Dean & Ghemawat, 2008). The 

algorithm used in this work’s evaluation is based on the imple-

mentation presented in a 2011 paper by Gentry and Halevi 

(Gentry & Halevi, 2011). The Gentry’s fully homomorphic al-

gorithm seems to be a perfect it for the cloud because the tasks 

of performing mathematical operations can be analyzed, split, 

and distributed to the nodes in the cloud.

Existing cloud computing offerings are mostly proprietary or 

software that is not amenable to experimentation or instrumen-

tation. In this research, a private cloud based on OpenStack was 

created for experimental instrumentation and study (Hayward 

& Chiang, 2013a, 2013b). The cloud environment consists of 

two computation servers providing the virtualized infrastruc-

ture for execution. The primary cloud server is running on a 

Dell Inspiron N5510. The processor is an Intel Core i5-2410M 

CPU which provides 2 cores running at 2.30 GHz. The com-

puter has 6 GB of RAM. The secondary cloud server is a Leno-

vo T410. It has an Intel M560 CPU which provides 2 cores at 

2.67 GHz. The secondary server has 4 GB of RAM.

A client-server model shown in Figure 1 was built to support 

the parallel processing of the Gentry’s algorithm in the cloud.

The user inputs a set of data in the form of integers and a set 

of computations to perform on the data for the calculation. The 

input data from the user are forwarded to a computation dis-

patcher. The input integers are labeled and referenced as i0, i1, 

i2, ..., and iN. The computation string must be a list of calcula-

tions, and will be performed in the order speciied. Each calcu-

lation must further be in the form of an algebraic equation, with 

the input integers being combined with only the addition, sub-

traction, multiplication, and division operators. Parentheses are 

available for changing the order of operations. The results of any 

calculation can be assigned to any number of input, output, or 

temporary variables. The output variables are referenced as o0, 

o1, ..., and oN, and the temporary variables are referenced as t0, 

t1, ..., and tN. Only the output variables are returned to the user.

As the computation dispatcher takes the input data and com-

putations from the user, it converts the input data into a set of 

in detail for the performance issue (Naone, 2015). We then 

present a parallel processing method which can be applied to 

improve the performance of the Gentry’s fully homomorphic 

encryption algorithm by taking advantage of ample computing 

power of a cloud. Finally, the paper is summarized.

2. Homomorphic encryption schemes

Homomorphic encryption schemes allow computations on 

encrypted data and then decrypting the result produces the 

same result as performing the same computations on the unen-

crypted data.

Rivest, Shamir and Adelman (RSA) published the irst cryp-

tosystem which was based on the work from Difie and Hell-

man (Difie & Hellman, 1976; Rivest et al., 1978a). RSA is 

multiplicatively, but not additively homomorphic (Rivest et al., 

1978b). If the product of two encrypted data is computed, then 

the decrypted result of the product will be the product of the 

two original data. ElGamal encryption scheme is also based on 

the Difie and Hellman key exchange (Difie & Hellman, 1976; 

ElGamal, 1985). Like RSA, ElGamal is multiplicatively, but not 

additively homomorphic. 

Paillier encryption scheme allows for homomorphic addition 

of two encrypted data by computing their product and the de-

crypted result of the product will give the sum of their respec-

tive original data (Paillier, 1999). The Paillier encryption 

scheme is not fully homomorphic because it is not possible to 

compute the product of two ciphertexts.

Partially homomorphic encryption schemes including RSA, 

ElGamal, and Paillier allow only either addition or multiplication 

computation on the data, which are not practical for most of 

applications (Lauter et al., 2011). A fully homomorphic encryp-

tion scheme which supports arbitrary computations on data has 

far more practical use than partially homomorphic encryption.

3. Gentry scheme and cloud computing

In 2009, Gentry presented a fully homomorphic encryption 

scheme (Gentry, 2009). Gentry’s scheme starts with a somewhat 

homomorphic encryption using ideal lattices that can only per-

form a limited number of homomorphic operations on encrypted 

data. Gentry then modiies the scheme to a fully homomorphic 

encryption scheme by adding bootstrapping procedure to it (Gen-

try, 2009). Gentry’s scheme was shown to take seconds to perform 

addition, subtraction, and comparison operations on two 8-bit 

integers. The multiplication of two 8-bit integers took minutes 

and the division of two 8-bit integers took hours. The long com-

putational time makes the Gentry’s scheme impractical for many 

applications. Because fully homomorphic encryption is a young 

endeavor, there will almost certainly be improvements made to 

Gentry’s algorithm, reducing the time taken for instructions. For 

example, Fujitsu (Fujitsu, 2013) develops a homomorphic encryp-

tion scheme which performs data encryption at a batch level. 

Compared to the Gentry’s algorithm, Fujitsu claims that their 

batch encryption method can perform encryption faster.

Client

Computation 

dispatcher

Computation 

server 1

Computation 
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Fig. 1. Client-server model.
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putation dispatcher. It then performs the requested calculations 

in order, placing the results in any of the input, output, or tem-

porary arrays. When the calculations are complete, it then re-

turns the output array. The calculations must be in the form of 

a comma delimited list. The irst item in the list must be the 

instruction, and every other element in the list denotes an ele-

ment of one of the input, output or temporary arrays. The sup-

ported instructions include add and multiply, which are binary 

operations assigning the irst data element to be the binary ad-

dition or multiplication of the second and third data elements. A 

binary half-adder is supported, with the irst and second data 

element being the sum and carry bit of the addition of the third 

and fourth data element. Similarly, a binary full-adder is also 

supported, with the same bit assignments as the half-adder, but 

with an additional carry-in bit added as well.

4. Algorithm

The details of the distributed algorithm for the execution of 

the Gentry’s encryption algorithm in parallel are described in 

this section. When the computation dispatcher receives a re-

quest from the user, it creates a data dependency graph, as de-

tailed in section 4.1. The computation dispatcher then inds a 

sub-circuit for execution as outlined in section 4.2 and dispatch-

ing that sub-circuit, waiting on an execution node to free if nec-

essary. When any computation server completes, the 

computation dispatcher updates the local data store, as well as 

removing the completed instructions from the data dependency 

graph, updating the references to the completed instructions to 

point to the root node. When the root node has no children, then 

the computation is complete and the dispatcher returns to the 

user the requested data.

4.1. Creating data dependency graph

The algorithm in Figure 3 describes how to create the data 

dependency graph from the input circuit E, begin by letting P 

and C be arrays that will have an empty array for each element 

e  E. These two arrays will indicate the parent and child point-

ers in the graph. Further, let D be an associative array that will 

contain the owner of data. D will begin as empty, which will be 

treated as 0, which will denote the root node. Once initializa-

tion is done, the main loop iterates through the elements of E as 

e and index, where index is offset 1, not 0. Take the inputs of e 

and look up from D, which owns the input elements. Let this 

node be d. Denote d as a parent of the current node, and the 

current node as a child of d. For each output, denote owner as 

the node which holds the output. Every dependent of owner will 

be marked as a parent of index, and index will be marked as a 

child of each dependent. Each output of the current operation 

will be updated to be owned by the current operations in D.

4.2. Finding sub-circuit

To ind a sub-circuit for execution, the computation dispatch-

er inds any child of the root node (i.e. any member of C[0]) 

encrypted bits for use by the computation server. It also con-

verts the input computation into a list of bit-wise calculations to 

perform on the input data. This list is then parsed into a di-

rected graph, such that each node in the graph represents a cal-

culation, and the edge represents the child that depends on the 

output of the parent. If a node has no such requirement, then it 

has an edge to the root node. For example, if a computation was 

given as Table 1, then Figure 2 shows the graph that would be 

computed. The dispatcher inds a chain of nodes starting from 

the root node, stopping when there is a requirement from a dif-

ferent chain. It then transmits the un-branched chain to the irst 

computation server. The dispatcher marks that chain as sent, 

and then repeats until there are no more chains to dispatch. 

When the dispatcher receives a response, it removes the calcu-

lated node from the graph and updates all edges which point to 

the removed node to instead point to the node’s parent. It then 

repeats the process of inding chains over again. If there are no 

more nodes in the graph, then the dispatcher converts the en-

crypted bits back into their respective output integers, and re-

turns the array of those integers.

The computation server receives a public key, an ordered ar-

ray of encrypted bits, and a circuit to evaluate on from the com-

Table 1

Example instruction input.

Number Instruction

1 a = b * c
2 c = d * e
3 d = b * e
4 f = a + b
5 b = c + c
6 d = a * b
7 e = a + b

R

23

5

6

1

4

7

Fig. 2. Example data dependency graph.
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4.3. Blind addition and multiplication

When addition or multiplication computation performed on 

the encrypted data, the maximum output size of the computa-

tion needs be determined. To determine the output size required 

for an addition of n bit-arrays <a1, a2, …, and an>, having bit-

sizes <s1, s2, …, and sn>, the computation server would need to 

ind the smallest power of two greater than the sum of the max-

imum size of each ai. To put it another way, the server would 

need to compute

To determine the output size required for a multiplication of 

n bit-arrays <a1, a2, …, and an>, having bit-sizes <s1, s2, …, and 

sn>, the computation server would need to ind the smallest 

power of 2 greater than the product of the maximum size of 

each ai. To put it another way, the server would need to compute

which is a child only of the root node, and is not currently pend-

ing execution. Let this  q be c, and let the set E contain only that 

one element. The computation dispatcher marks this node as 

pending execution. It then takes all of the children of c and adds 

them to an ordered array of nodes, candidates, to evaluate for 

execution.

The computation dispatcher then removes the top of the can-

didates array as c. If all of c’s parents are in E, and c is not al-

ready pending execution, then mark c as pending execution, add 

it to E, and add all of its children to candidates. The dispatcher 

repeats this process of candidate evaluation until there are no 

more nodes in candidates []. Figure 4 presents this process.

Fig. 3. Creating data dependency graph.

Fig. 4. Finding sub-circuit.
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The data and keys were transferred to the compute nodes 

with each sub-circuit. This was done to model a real-world sce-

nario where the keys for a given computation would be dynam-

ic, and would need to be retrieved before each execution.

The keys were generated via the keyGen method provided by 

the Gentry-Halevi code with n = 25. Table 2 shows the com-

puted parameters, including s, the number of  vectors, S, the 

size of the bit vectors, p, the bits of precision, and logR, the big 

set size ration. The public key generated was 2.5 MB, and the 

private key was 2.6 MB. They were saved for later use in the 

evaluation.

5.2. Tests performed

The sum of the integers was taken by splitting the 20 integers 

into 10 pairs and inding the sum of each pair. The resulting 

10 integers were then split into 5 pairs, and summed, and so on. 

This pairing for addition was chosen to maximize the parallel 

processing of the computation. See Figure 5 for a visual repre-

sentation of the process.

5. Evaluation of the algorithm

Three computations are performed on the cloud system for 

testing. All three computations are using the same set of data 

which contain 20 random 8-bit integers. The irst experiment is 

to compute the sum of these 20 integers. The second is to com-

pute the vector product of the integers. The third one is to com-

pute the variance of the integers. 

In each evaluation, the time taken to compute the depen-

dency graph and each sub-circuit was recorded by the computa-

tion dispatcher. The time to execute each sub-circuit was 

recorded by the individual computation servers and returned to 

the dispatcher for accumulation. The dispatcher also recorded 

the overall time to complete the computation. While the algo-

rithm is capable of evaluating more ine-grained operations, 

integer addition and multiplication were chosen as primitives to 

simplify the evaluation. 

5.1. Setup

To generate the 20 8-bit integers, the random integer generator 

from random.org was used (RANDOM.ORG, 2015). The number 

of integers generated was 20, and the range used was 0 to 255. 

The integers generated were 16; 195; 35; 129; 103; 198; 212; 105; 

252; 58; 51; 184; 219; 39; 244; 179; 154; 129; 217; 171. The three 

evaluation circuits were hand generated, with the sum circuit used 

independently as well as being used as part of the variance circuit.

For the trials with 1, 2, and 4 nodes operations occurred only 

on the primary computer. When processing with 8 nodes, the 

additional 4 nodes were provided by a secondary computer. The 

network connection between them was a wireless network.

Table 2

Key generation parameters.

Parameter Value Description

72 Security parameter
μ 140.034 Hardness parameter
s 15 Sparse sub-set size
S 512 Big set size
p 4 Number of bits of precision
t 384 Bit size of coeficients for 
n 25 Lattice dimension
R 22 Ratio of elements in the big set

8

15

26

7 6 5 4 3 2 1

36

10

11 7 3

Fig. 5. Sum procedure.
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The time taken to compute the vector product of the integers 

is presented in Table 3. The speedup from 1 to 2 compute nodes 

when computing the vector product of the 20 integers was 1.757. 

The speedup from 1 to 4 compute nodes was 1.9373, and the 

increase from 2 to 4 compute nodes did not include an increase 

in processor availability. In spite of the lack of additional pro-

cessors, there was still a 1.1026 speedup between the 2 and 4 

compute server trials. When increasing from 1 to 8 compute 

nodes, there was a 2.8187 speedup.

The time spent inding the vector product sub-circuits is pre-

sented in Table 6. The time spent inding sub-circuits was less 

in the 2, 4, and 8 node trials than the 1 node trial, with the 2 and 

8 node trials being less than the 1 and 4 node trials. The differ-

ence in time remains negligible. As with the inding of the vari-

ance and sum sub-circuits, the least number of calls to the ind 

sub-circuits method was in the 8 node trial.

The time spent evaluating the vector product circuits is pre-

sented in Table 7. There was a jump from the 1 and 2 node level 

to the 4 and 8 node level and the least number of circuits evalu-

ated was in the 8 node coniguration. 

The time taken to compute the numerator of the variance of 

the integers is presented in Table 3. The speedup from 1 to 2 

compute nodes when computing the variance of the 20 integers 

was 1.5609. The speedup from 1 to 4 compute nodes was 

1.7103, but the increase from 2 to 4 compute nodes did not also 

include an increase in processor availability. In spite of the lack 

of additional processors, there was still a 1.0957 speedup be-

tween the 2 and 4 compute server trials. When increasing from 

1 to 8 compute nodes, there was a 2.3722 speedup.

The overall time spent inding the variance sub-circuits is 

presented in Table 8. There was once again an increase from the 

time to ind sub-circuits with 1 and 2 nodes to 4 and 8 notes, 

though the difference in time is negligible. As with the inding 

of the sum sub-circuits, the least number of calls to the ind 

sub-circuits method was in the 8 node trial.

The time spent by the computation servers evaluating the 

variance circuit is presented in Table 9. There was a jump 

from the 1 and 2 node level to the 4 and 8 node level. The least 

number of sub-circuits evaluated was in the 8 node conigura-

tion.

5.4. Discussion

The sum trial showed good speedups while all computation 

servers were on the same computer as the dispatcher, but 

dropped off when computation servers were on a separate com-

puter. This drop off is most likely due to network transfer time 

coupled with the small amount of time taken to perform the 

sum operations.

The algorithm showed a good speedup in the more complex 

and time consuming vector product and variance circuits, with 

a speedup of 2.3722 and 2.8187 when distributed over 8 nodes 

and two computers.

Despite the lackluster performance of the sum trial, the 

speedup of the vector product and variance circuits suggests 

that the algorithm is useful for decreasing the time to evaluate 

homomorphic circuits.

The vector product was found by irst taking the pair-wise 

product of the integers, producing 10 integers. These integers 

were then summed.

The numerator of the variance of the integers was taken as 

the square of the sum of the integers plus the sum of the squares 

of the integers. The circuit generated to compute the sum of the 

integers was taken as the base circuit. The sum was squared 

into a new output, and each integer was then squared, giving a 

total of 21 integers. These integers were then summed.

5.3. Tests results

The time to perform the three evaluations on 1, 2, 4, and 8 

compute nodes is shown together in Table 3. The computations 

gain the performance as we increase the nodes in the system. 

Most computations are not completely parallelizable and re-

quire some amount of communication between machines. Net-

work communication time can remove the benefits of the 

parallel algorithm on a cloud system when the computation is 

short. In the sum problem, the communications overhead seems 

monopolize the processing time. The algorithm doesn’t take 

into account the network speed, nor does it make predictions 

about operation speed. Also, the algorithm does not prefer to 

dispatch long or slow operations before quick ones, instead dis-

patching them in the order they are discovered.

The time taken to compute the sum of the integers is pre-

sented in Table 3. The speedup of the sum algorithm when in-

creasing from 1 computation node to 2 computation nodes was 

1.3806. The speedup when increasing from 1 node to 4 nodes 

was similar at 1.4044. This lack of speedup can be attributed to 

the hardware used in the evaluation, as it provides two processor 

cores. Each core is hyper-threaded, so that each one appears to 

be two processors to the underlying operating system, but the 

operations performed meant that only one process can operate 

at a time. The speedup from 2 to 4 nodes was 1.0172, despite the 

lack of additional processor resources. The time to execution 

increased from 4 to 8 nodes, which is most likely due to the time 

taken to transfer data from the dispatcher to the remote compu-

tation servers. The speedup from 1 to 8 nodes was 1.0881.

Table 4 shows for each trial the time the dispatcher spent 

inding sub-circuits, and the number of times the method was 

called to ind sub-circuits. Although there were fewer calls to 

the ind sub-circuits method in the 4 and 8 node trials, the ind-

ing of sub-circuits took longer, though not by a signiicant factor. 

A probable explanation for the increase in time is that the dis-

patcher was running on the same hardware as the computation 

servers, even though they were on different virtual computers. 

This explanation is supported by the lack of increase from 4 to 

8 nodes, as the additional 4 compute nodes were on separate 

hardware. There were 2 fewer calls to the ind sub-circuit meth-

od in the 8 node trial, which is common with the variance trials.

The time spent evaluating sub-circuits is presented in Ta-

ble 5. Similar to the time to ind sub-circuits, there was an in-

crease from 2 to 4 nodes, but a decrease from 4 to 8 nodes. The 

jump in level is once again most likely due to the limit in pro-

cessor availability across threads, leading to execution waiting 

for processor resources.
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The time to compute sub-circuits was on the order of 

0.0003 s in the sum trials, 0.0004 s in the vector product trials, 

and 0.0018 s in the variance trials. This time is very low when 

compared with the time spent performing the actual computa-

tions. 

6. Conclusions

The computing power and resources of cloud computing are 

more provided than a single machine where the computations 

on data are performed by clusters of machines. Cloud comput-

ing has been widely used to process massive data. However, for 

cloud computing, organizations have a concern of data privacy 

for their data. In this paper, we described the problem of data 

privacy in cloud computing. Fully homomorphic encryption is 

a solution to resolve the data privacy in the cloud where the 

encrypted data are processed and the encrypted results are re-

turned. However, fully homomorphic encryption runs slow and 

the faster fully homomorphic encryption schemes are needed.

Gentry’s encryption scheme is fully homomorphic with slow 

performance. Several methods have been proposed to speed up 

the performance of fully homomorphic encryption schemes. 

Parallel processing is one effective way of doing this 

(Vukmirovi  et al., 2012; Ortega-Cisneros et al., 2014). Our 

parallel processing for Gentry’s encryption was presented in 

this paper and tested in a private cloud computing environment. 

The experimental results show that the proposed parallel pro-

cessing of Gentry’s encryption improves the performance better 

than the computations on a single node.
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Nodes vs. time in microseconds.

Node size Processing time (μs)

Sum Vector product Variance

1 34.90 952.17 2496.62
2 25.28 541.92 1599.50
4 24.85 491.50 1459.75
8 32.08 337.80 1052.45

Table 4

Finding sum sub-circuits time and count.

Number of nodes Time inding sub-circuits (s) Count of inding sub-circuits

1 0.0003137588 33
2 0.0003530978 33
4 0.0005590916 33
8 0.0004246236 31

Table 5

Evaluating sum sub-circuits time and count.

Number of nodes Time evaluating sub-circuits 

(s)

Count of evaluating 

sub-circuits

1 33.89 16
2 37.00 16
4 50.20 16
8 49.24 15
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