
1665-6423/All Rights Reserved © 2015 Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico. This is an open
access item distributed under the Creative Commons CC License BY-NC-ND 4.0.

Journal of Applied Research and Technology 13 (2015) 245-252 www.jart.ccadet.unam.mx

Journal of Applied Research
and Technology

Available online at www.sciencedirect.com

*Correponding author.
E-mail address: rhhayward@att.net (R. Hayward).

Abstract

Cloud computing is a boon for both business and private use, but data security concerns slow its adoption. Fully homomorphic encryption

(FHE) offers the means by which the cloud computing can be performed on encrypted data, obviating the data security concerns. FHE is not

without its cost, as FHE operations take orders of magnitude more processing time and memory than the same operations on unencrypted data.

Cloud computing can be leveraged to reduce the time taken by bringing to bear parallel processing. This paper presents an implementation of a

processing dispatcher which takes an iterative set of operations on FHE encrypted data and splits them between a number of processing engines.

A private cloud was implemented to support the processing engines. The processing time was measured with 1, 2, 4, and 8 processing engines. The

time taken to perform the calculations with the four levels of parallelization, as well as the amount of time used in data transfers are presented. In

addition, the time the computation servers spent in each of addition, subtraction, multiplication, and division are laid out. An analysis of the time

gained by parallel processing is presented. The experimental results shows that the proposed parallel processing of Gentry’s encryption improves

the performance better than the computations on a single node. This research provides the following contributions. A private cloud was built to

support parallel processing of homomorphic encryption in the cloud. A client-server model was created to evaluate cloud computing of the

Gentry’s encryption algorithm. A distributed algorithm was developed to support parallel processing of the Gentry’s algorithm for evaluation on

the cloud. An experiment was setup for the evaluation of the Gentry’s algorithm, and the results of the evaluation show that the distributed

algorithm can be used to speed up the processing of the Gentry’s algorithm with cloud computing.

All Rights Reserved © 2015 Universidad Nacional Autónoma de México, Centro de Ciencias Aplicadas y Desarrollo Tecnológico. This is an open

access item distributed under the Creative Commons CC License BY-NC-ND 4.0.

Keywords: Cloud computing; Fully homomorphic encryption; Parallel processing

Original

Parallelizing fully homomorphic encryption for a cloud environment

Ryan Hayward a,*, Chia-Chu Chiangb

a Data Processing, Market Strategies International, Little Rock, Arkansas, USA

b Department of Computer Science, University of Arkansas at Little Rock, Little Rock, Arkansas, USA

Received 19 April 2014; accepted 18 August 2014

1. Introduction

In conventional computing, data centers with computing re-

sources are usually established for data processing. Running a data

center is costly in order to meet an organization’s maximum needs

of data processing. In addition, the computing resources are often

largely idle where the computing resources are underutilized.

Cloud computing provides advantages over the conventional

computing with data centers. An organization can obtain the

computing resources from cloud computing provided by a pro-

vider. Instead of purchasing the computing resources, organiza-

tions can purchase computing services from cloud computing

providers where it is much cheaper then purchasing the comput-

ing resources. Cloud providers are responsible for eficiently

providing the on-demand computing resources to the organiza-

tions as clients to the cloud providers. The organizations do not

need to maintain the computing resources and the services are

charged on the time use of computing resources.

Cloud computing is not without the issues. Organizations

have concerns in moving their data to a cloud due to the data

privacy. Possible threats to the data privacy could be from cloud

providers’ employees, clients, and network hackers. To protect

data in a public computing environment such as cloud, encryp-

tion seems to be an effective way of enforcing data security in

a cloud. However, most of existing encryption schemes require

data to be decrypted for computations where data becomes vul-

nerable during computation of decrypted data. If computations

can be performed on encrypted data without decryption, then

the security of data would not be a concern. Homomorphic en-

cryption makes it possible to process encrypted data without

decryption whereby the encrypted results can only be decrypt-

ed by the client who requests the service.

Homomorphic encryption is an encryption scheme which al-

lows for computations on encrypted data and obtains an en-

crypted result which decrypted produces the same result of

computations on the original data. In this paper, we will survey

several eficient, partially homomorphic schemes, and a num-

ber of fully homomorphic, but less eficient schemes. The Gen-

try’s algorithm for fully encryption algorithm will be examined

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jart.2015.06.004&domain=pdf

246 R. Hayward, C.-C. Chiang / Journal of Applied Research and Technology 13 (2015) 245-252

The cloud computing has been widely used for parallel pro-

cessing of mass data (Kamara & Raykova, 2013; Amazon Web

Services, 2015; Cloudera, 2015; Dean & Ghemawat, 2008). The

algorithm used in this work’s evaluation is based on the imple-

mentation presented in a 2011 paper by Gentry and Halevi

(Gentry & Halevi, 2011). The Gentry’s fully homomorphic al-

gorithm seems to be a perfect it for the cloud because the tasks

of performing mathematical operations can be analyzed, split,

and distributed to the nodes in the cloud.

Existing cloud computing offerings are mostly proprietary or

software that is not amenable to experimentation or instrumen-

tation. In this research, a private cloud based on OpenStack was

created for experimental instrumentation and study (Hayward

& Chiang, 2013a, 2013b). The cloud environment consists of

two computation servers providing the virtualized infrastruc-

ture for execution. The primary cloud server is running on a

Dell Inspiron N5510. The processor is an Intel Core i5-2410M

CPU which provides 2 cores running at 2.30 GHz. The com-

puter has 6 GB of RAM. The secondary cloud server is a Leno-

vo T410. It has an Intel M560 CPU which provides 2 cores at

2.67 GHz. The secondary server has 4 GB of RAM.

A client-server model shown in Figure 1 was built to support

the parallel processing of the Gentry’s algorithm in the cloud.

The user inputs a set of data in the form of integers and a set

of computations to perform on the data for the calculation. The

input data from the user are forwarded to a computation dis-

patcher. The input integers are labeled and referenced as i0, i1,

i2, ..., and iN. The computation string must be a list of calcula-

tions, and will be performed in the order speciied. Each calcu-

lation must further be in the form of an algebraic equation, with

the input integers being combined with only the addition, sub-

traction, multiplication, and division operators. Parentheses are

available for changing the order of operations. The results of any

calculation can be assigned to any number of input, output, or

temporary variables. The output variables are referenced as o0,

o1, ..., and oN, and the temporary variables are referenced as t0,

t1, ..., and tN. Only the output variables are returned to the user.

As the computation dispatcher takes the input data and com-

putations from the user, it converts the input data into a set of

in detail for the performance issue (Naone, 2015). We then

present a parallel processing method which can be applied to

improve the performance of the Gentry’s fully homomorphic

encryption algorithm by taking advantage of ample computing

power of a cloud. Finally, the paper is summarized.

2. Homomorphic encryption schemes

Homomorphic encryption schemes allow computations on

encrypted data and then decrypting the result produces the

same result as performing the same computations on the unen-

crypted data.

Rivest, Shamir and Adelman (RSA) published the irst cryp-

tosystem which was based on the work from Difie and Hell-

man (Difie & Hellman, 1976; Rivest et al., 1978a). RSA is

multiplicatively, but not additively homomorphic (Rivest et al.,

1978b). If the product of two encrypted data is computed, then

the decrypted result of the product will be the product of the

two original data. ElGamal encryption scheme is also based on

the Difie and Hellman key exchange (Difie & Hellman, 1976;

ElGamal, 1985). Like RSA, ElGamal is multiplicatively, but not

additively homomorphic.

Paillier encryption scheme allows for homomorphic addition

of two encrypted data by computing their product and the de-

crypted result of the product will give the sum of their respec-

tive original data (Paillier, 1999). The Paillier encryption

scheme is not fully homomorphic because it is not possible to

compute the product of two ciphertexts.

Partially homomorphic encryption schemes including RSA,

ElGamal, and Paillier allow only either addition or multiplication

computation on the data, which are not practical for most of

applications (Lauter et al., 2011). A fully homomorphic encryp-

tion scheme which supports arbitrary computations on data has

far more practical use than partially homomorphic encryption.

3. Gentry scheme and cloud computing

In 2009, Gentry presented a fully homomorphic encryption

scheme (Gentry, 2009). Gentry’s scheme starts with a somewhat

homomorphic encryption using ideal lattices that can only per-

form a limited number of homomorphic operations on encrypted

data. Gentry then modiies the scheme to a fully homomorphic

encryption scheme by adding bootstrapping procedure to it (Gen-

try, 2009). Gentry’s scheme was shown to take seconds to perform

addition, subtraction, and comparison operations on two 8-bit

integers. The multiplication of two 8-bit integers took minutes

and the division of two 8-bit integers took hours. The long com-

putational time makes the Gentry’s scheme impractical for many

applications. Because fully homomorphic encryption is a young

endeavor, there will almost certainly be improvements made to

Gentry’s algorithm, reducing the time taken for instructions. For

example, Fujitsu (Fujitsu, 2013) develops a homomorphic encryp-

tion scheme which performs data encryption at a batch level.

Compared to the Gentry’s algorithm, Fujitsu claims that their

batch encryption method can perform encryption faster.

Client

Computation

dispatcher

Computation

server 1

Computation

server 2

Fig. 1. Client-server model.

 R. Hayward, C.-C. Chiang / Journal of Applied Research and Technology 13 (2015) 245-252 247

putation dispatcher. It then performs the requested calculations

in order, placing the results in any of the input, output, or tem-

porary arrays. When the calculations are complete, it then re-

turns the output array. The calculations must be in the form of

a comma delimited list. The irst item in the list must be the

instruction, and every other element in the list denotes an ele-

ment of one of the input, output or temporary arrays. The sup-

ported instructions include add and multiply, which are binary

operations assigning the irst data element to be the binary ad-

dition or multiplication of the second and third data elements. A

binary half-adder is supported, with the irst and second data

element being the sum and carry bit of the addition of the third

and fourth data element. Similarly, a binary full-adder is also

supported, with the same bit assignments as the half-adder, but

with an additional carry-in bit added as well.

4. Algorithm

The details of the distributed algorithm for the execution of

the Gentry’s encryption algorithm in parallel are described in

this section. When the computation dispatcher receives a re-

quest from the user, it creates a data dependency graph, as de-

tailed in section 4.1. The computation dispatcher then inds a

sub-circuit for execution as outlined in section 4.2 and dispatch-

ing that sub-circuit, waiting on an execution node to free if nec-

essary. When any computation server completes, the

computation dispatcher updates the local data store, as well as

removing the completed instructions from the data dependency

graph, updating the references to the completed instructions to

point to the root node. When the root node has no children, then

the computation is complete and the dispatcher returns to the

user the requested data.

4.1. Creating data dependency graph

The algorithm in Figure 3 describes how to create the data

dependency graph from the input circuit E, begin by letting P

and C be arrays that will have an empty array for each element

e E. These two arrays will indicate the parent and child point-

ers in the graph. Further, let D be an associative array that will

contain the owner of data. D will begin as empty, which will be

treated as 0, which will denote the root node. Once initializa-

tion is done, the main loop iterates through the elements of E as

e and index, where index is offset 1, not 0. Take the inputs of e

and look up from D, which owns the input elements. Let this

node be d. Denote d as a parent of the current node, and the

current node as a child of d. For each output, denote owner as

the node which holds the output. Every dependent of owner will

be marked as a parent of index, and index will be marked as a

child of each dependent. Each output of the current operation

will be updated to be owned by the current operations in D.

4.2. Finding sub-circuit

To ind a sub-circuit for execution, the computation dispatch-

er inds any child of the root node (i.e. any member of C[0])

encrypted bits for use by the computation server. It also con-

verts the input computation into a list of bit-wise calculations to

perform on the input data. This list is then parsed into a di-

rected graph, such that each node in the graph represents a cal-

culation, and the edge represents the child that depends on the

output of the parent. If a node has no such requirement, then it

has an edge to the root node. For example, if a computation was

given as Table 1, then Figure 2 shows the graph that would be

computed. The dispatcher inds a chain of nodes starting from

the root node, stopping when there is a requirement from a dif-

ferent chain. It then transmits the un-branched chain to the irst

computation server. The dispatcher marks that chain as sent,

and then repeats until there are no more chains to dispatch.

When the dispatcher receives a response, it removes the calcu-

lated node from the graph and updates all edges which point to

the removed node to instead point to the node’s parent. It then

repeats the process of inding chains over again. If there are no

more nodes in the graph, then the dispatcher converts the en-

crypted bits back into their respective output integers, and re-

turns the array of those integers.

The computation server receives a public key, an ordered ar-

ray of encrypted bits, and a circuit to evaluate on from the com-

Table 1

Example instruction input.

Number Instruction

1 a = b * c
2 c = d * e
3 d = b * e
4 f = a + b
5 b = c + c
6 d = a * b
7 e = a + b

R

23

5

6

1

4

7

Fig. 2. Example data dependency graph.

248 R. Hayward, C.-C. Chiang / Journal of Applied Research and Technology 13 (2015) 245-252

4.3. Blind addition and multiplication

When addition or multiplication computation performed on

the encrypted data, the maximum output size of the computa-

tion needs be determined. To determine the output size required

for an addition of n bit-arrays <a1, a2, …, and an>, having bit-

sizes <s1, s2, …, and sn>, the computation server would need to

ind the smallest power of two greater than the sum of the max-

imum size of each ai. To put it another way, the server would

need to compute

To determine the output size required for a multiplication of

n bit-arrays <a1, a2, …, and an>, having bit-sizes <s1, s2, …, and

sn>, the computation server would need to ind the smallest

power of 2 greater than the product of the maximum size of

each ai. To put it another way, the server would need to compute

which is a child only of the root node, and is not currently pend-

ing execution. Let this q be c, and let the set E contain only that

one element. The computation dispatcher marks this node as

pending execution. It then takes all of the children of c and adds

them to an ordered array of nodes, candidates, to evaluate for

execution.

The computation dispatcher then removes the top of the can-

didates array as c. If all of c’s parents are in E, and c is not al-

ready pending execution, then mark c as pending execution, add

it to E, and add all of its children to candidates. The dispatcher

repeats this process of candidate evaluation until there are no

more nodes in candidates []. Figure 4 presents this process.

Fig. 3. Creating data dependency graph.

Fig. 4. Finding sub-circuit.

 R. Hayward, C.-C. Chiang / Journal of Applied Research and Technology 13 (2015) 245-252 249

The data and keys were transferred to the compute nodes

with each sub-circuit. This was done to model a real-world sce-

nario where the keys for a given computation would be dynam-

ic, and would need to be retrieved before each execution.

The keys were generated via the keyGen method provided by

the Gentry-Halevi code with n = 25. Table 2 shows the com-

puted parameters, including s, the number of vectors, S, the

size of the bit vectors, p, the bits of precision, and logR, the big

set size ration. The public key generated was 2.5 MB, and the

private key was 2.6 MB. They were saved for later use in the

evaluation.

5.2. Tests performed

The sum of the integers was taken by splitting the 20 integers

into 10 pairs and inding the sum of each pair. The resulting

10 integers were then split into 5 pairs, and summed, and so on.

This pairing for addition was chosen to maximize the parallel

processing of the computation. See Figure 5 for a visual repre-

sentation of the process.

5. Evaluation of the algorithm

Three computations are performed on the cloud system for

testing. All three computations are using the same set of data

which contain 20 random 8-bit integers. The irst experiment is

to compute the sum of these 20 integers. The second is to com-

pute the vector product of the integers. The third one is to com-

pute the variance of the integers.

In each evaluation, the time taken to compute the depen-

dency graph and each sub-circuit was recorded by the computa-

tion dispatcher. The time to execute each sub-circuit was

recorded by the individual computation servers and returned to

the dispatcher for accumulation. The dispatcher also recorded

the overall time to complete the computation. While the algo-

rithm is capable of evaluating more ine-grained operations,

integer addition and multiplication were chosen as primitives to

simplify the evaluation.

5.1. Setup

To generate the 20 8-bit integers, the random integer generator

from random.org was used (RANDOM.ORG, 2015). The number

of integers generated was 20, and the range used was 0 to 255.

The integers generated were 16; 195; 35; 129; 103; 198; 212; 105;

252; 58; 51; 184; 219; 39; 244; 179; 154; 129; 217; 171. The three

evaluation circuits were hand generated, with the sum circuit used

independently as well as being used as part of the variance circuit.

For the trials with 1, 2, and 4 nodes operations occurred only

on the primary computer. When processing with 8 nodes, the

additional 4 nodes were provided by a secondary computer. The

network connection between them was a wireless network.

Table 2

Key generation parameters.

Parameter Value Description

72 Security parameter
μ 140.034 Hardness parameter
s 15 Sparse sub-set size
S 512 Big set size
p 4 Number of bits of precision
t 384 Bit size of coeficients for
n 25 Lattice dimension
R 22 Ratio of elements in the big set

8

15

26

7 6 5 4 3 2 1

36

10

11 7 3

Fig. 5. Sum procedure.

250 R. Hayward, C.-C. Chiang / Journal of Applied Research and Technology 13 (2015) 245-252

The time taken to compute the vector product of the integers

is presented in Table 3. The speedup from 1 to 2 compute nodes

when computing the vector product of the 20 integers was 1.757.

The speedup from 1 to 4 compute nodes was 1.9373, and the

increase from 2 to 4 compute nodes did not include an increase

in processor availability. In spite of the lack of additional pro-

cessors, there was still a 1.1026 speedup between the 2 and 4

compute server trials. When increasing from 1 to 8 compute

nodes, there was a 2.8187 speedup.

The time spent inding the vector product sub-circuits is pre-

sented in Table 6. The time spent inding sub-circuits was less

in the 2, 4, and 8 node trials than the 1 node trial, with the 2 and

8 node trials being less than the 1 and 4 node trials. The differ-

ence in time remains negligible. As with the inding of the vari-

ance and sum sub-circuits, the least number of calls to the ind

sub-circuits method was in the 8 node trial.

The time spent evaluating the vector product circuits is pre-

sented in Table 7. There was a jump from the 1 and 2 node level

to the 4 and 8 node level and the least number of circuits evalu-

ated was in the 8 node coniguration.

The time taken to compute the numerator of the variance of

the integers is presented in Table 3. The speedup from 1 to 2

compute nodes when computing the variance of the 20 integers

was 1.5609. The speedup from 1 to 4 compute nodes was

1.7103, but the increase from 2 to 4 compute nodes did not also

include an increase in processor availability. In spite of the lack

of additional processors, there was still a 1.0957 speedup be-

tween the 2 and 4 compute server trials. When increasing from

1 to 8 compute nodes, there was a 2.3722 speedup.

The overall time spent inding the variance sub-circuits is

presented in Table 8. There was once again an increase from the

time to ind sub-circuits with 1 and 2 nodes to 4 and 8 notes,

though the difference in time is negligible. As with the inding

of the sum sub-circuits, the least number of calls to the ind

sub-circuits method was in the 8 node trial.

The time spent by the computation servers evaluating the

variance circuit is presented in Table 9. There was a jump

from the 1 and 2 node level to the 4 and 8 node level. The least

number of sub-circuits evaluated was in the 8 node conigura-

tion.

5.4. Discussion

The sum trial showed good speedups while all computation

servers were on the same computer as the dispatcher, but

dropped off when computation servers were on a separate com-

puter. This drop off is most likely due to network transfer time

coupled with the small amount of time taken to perform the

sum operations.

The algorithm showed a good speedup in the more complex

and time consuming vector product and variance circuits, with

a speedup of 2.3722 and 2.8187 when distributed over 8 nodes

and two computers.

Despite the lackluster performance of the sum trial, the

speedup of the vector product and variance circuits suggests

that the algorithm is useful for decreasing the time to evaluate

homomorphic circuits.

The vector product was found by irst taking the pair-wise

product of the integers, producing 10 integers. These integers

were then summed.

The numerator of the variance of the integers was taken as

the square of the sum of the integers plus the sum of the squares

of the integers. The circuit generated to compute the sum of the

integers was taken as the base circuit. The sum was squared

into a new output, and each integer was then squared, giving a

total of 21 integers. These integers were then summed.

5.3. Tests results

The time to perform the three evaluations on 1, 2, 4, and 8

compute nodes is shown together in Table 3. The computations

gain the performance as we increase the nodes in the system.

Most computations are not completely parallelizable and re-

quire some amount of communication between machines. Net-

work communication time can remove the benefits of the

parallel algorithm on a cloud system when the computation is

short. In the sum problem, the communications overhead seems

monopolize the processing time. The algorithm doesn’t take

into account the network speed, nor does it make predictions

about operation speed. Also, the algorithm does not prefer to

dispatch long or slow operations before quick ones, instead dis-

patching them in the order they are discovered.

The time taken to compute the sum of the integers is pre-

sented in Table 3. The speedup of the sum algorithm when in-

creasing from 1 computation node to 2 computation nodes was

1.3806. The speedup when increasing from 1 node to 4 nodes

was similar at 1.4044. This lack of speedup can be attributed to

the hardware used in the evaluation, as it provides two processor

cores. Each core is hyper-threaded, so that each one appears to

be two processors to the underlying operating system, but the

operations performed meant that only one process can operate

at a time. The speedup from 2 to 4 nodes was 1.0172, despite the

lack of additional processor resources. The time to execution

increased from 4 to 8 nodes, which is most likely due to the time

taken to transfer data from the dispatcher to the remote compu-

tation servers. The speedup from 1 to 8 nodes was 1.0881.

Table 4 shows for each trial the time the dispatcher spent

inding sub-circuits, and the number of times the method was

called to ind sub-circuits. Although there were fewer calls to

the ind sub-circuits method in the 4 and 8 node trials, the ind-

ing of sub-circuits took longer, though not by a signiicant factor.

A probable explanation for the increase in time is that the dis-

patcher was running on the same hardware as the computation

servers, even though they were on different virtual computers.

This explanation is supported by the lack of increase from 4 to

8 nodes, as the additional 4 compute nodes were on separate

hardware. There were 2 fewer calls to the ind sub-circuit meth-

od in the 8 node trial, which is common with the variance trials.

The time spent evaluating sub-circuits is presented in Ta-

ble 5. Similar to the time to ind sub-circuits, there was an in-

crease from 2 to 4 nodes, but a decrease from 4 to 8 nodes. The

jump in level is once again most likely due to the limit in pro-

cessor availability across threads, leading to execution waiting

for processor resources.

 R. Hayward, C.-C. Chiang / Journal of Applied Research and Technology 13 (2015) 245-252 251

The time to compute sub-circuits was on the order of

0.0003 s in the sum trials, 0.0004 s in the vector product trials,

and 0.0018 s in the variance trials. This time is very low when

compared with the time spent performing the actual computa-

tions.

6. Conclusions

The computing power and resources of cloud computing are

more provided than a single machine where the computations

on data are performed by clusters of machines. Cloud comput-

ing has been widely used to process massive data. However, for

cloud computing, organizations have a concern of data privacy

for their data. In this paper, we described the problem of data

privacy in cloud computing. Fully homomorphic encryption is

a solution to resolve the data privacy in the cloud where the

encrypted data are processed and the encrypted results are re-

turned. However, fully homomorphic encryption runs slow and

the faster fully homomorphic encryption schemes are needed.

Gentry’s encryption scheme is fully homomorphic with slow

performance. Several methods have been proposed to speed up

the performance of fully homomorphic encryption schemes.

Parallel processing is one effective way of doing this

(Vukmirovi et al., 2012; Ortega-Cisneros et al., 2014). Our

parallel processing for Gentry’s encryption was presented in

this paper and tested in a private cloud computing environment.

The experimental results show that the proposed parallel pro-

cessing of Gentry’s encryption improves the performance better

than the computations on a single node.

References

Amazon EMR (2015). AWS Products & Solutions. Amazon Web Services—

An Amazon Company. Retrieved on March 3, 2015 from: http://aws.

amazon.com/elasticmapreduce

Cloudera. (2015). Ask Bigger Questions. Cloudera, Inc. Retrieved on March

3, 2015 from: http://cloudera.com

Dean, J., & Ghemawat, S. (2008). Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51, 107-113.

Diffie, W., & Hellman, M. (1976). New directions in cryptography. IEEE

Transactions on Information Theory, 22, 644-654.

ElGamal, T. (1985). A public-key cryptosystem and a signature based on

discrete logarithms. IEEE Transactions on Information Theory, 31, 469-

472.

Fujitsu (2013). Fujitsu Develops World's First Homomorphic Encryption

Technology that Enables Statistical Calculations and Biometric

Authentication. Fujitsu Press Releases. Retrieved on March 3, 2015 from:

http://www.fujitsu.com/global/news/pr/archives/month/2013/20130828-01.

html

Gentry, C. (2009). A fully homomorphic encryption scheme (Ph.D.

dissertation). Stanford: Department of Computer Science, Stanford

University.

Gentry, C., & Halevi, S. (2011). Implementing Gentry’s fully-homomorphic

encryption scheme (pp. 129-148). Tallinn, Estonia: International

Conference on the Theory and Application of Cryptographic Techniques.

Hayward, R., & Chiang, C.-C. (2013). Building a cloud computing system in

OpenStack: An experience report. Taipei, Taiwan: The International

Conference on Applied and Theoret ical Information Systems

Research. Retrieved on March 3, 2015 from: http://academic.atisr.org/

ATISR2013CD/BUILDING_A_CLOUD.pdf

Table 6

Finding vector product sub-circuits time and count.

Number of nodes Time inding sub-circuits (s) Count of inding sub-circuits

1 0.000567913 39
2 0.0003468988 35
4 0.0004131794 33
8 0.00036788 33

Table 7

Evaluating vector product sub-circuits time and count.

Number of nodes Time evaluating sub-circuits

(s)

Count of evaluating

sub-circuits

1 950.87 19
2 1032.99 17
4 1730.39 16
8 1813.90 16

Table 8

Finding variance sub-circuits time and count.

Number of nodes Time inding sub-circuits (s) Count of inding sub-circuits

1 0.001274585 87
2 0.0013685228 91
4 0.0017488003 93
8 0.0018241404 85

Table 9

Evaluating variance sub-circuits time and count.

Number of nodes Time evaluating sub-circuits

(s)

Count of evaluating

sub-circuits

1 2494.11 43
2 2684.95 45
4 4340.87 46
8 4643.11 42

Table 3

Nodes vs. time in microseconds.

Node size Processing time (μs)

Sum Vector product Variance

1 34.90 952.17 2496.62
2 25.28 541.92 1599.50
4 24.85 491.50 1459.75
8 32.08 337.80 1052.45

Table 4

Finding sum sub-circuits time and count.

Number of nodes Time inding sub-circuits (s) Count of inding sub-circuits

1 0.0003137588 33
2 0.0003530978 33
4 0.0005590916 33
8 0.0004246236 31

Table 5

Evaluating sum sub-circuits time and count.

Number of nodes Time evaluating sub-circuits

(s)

Count of evaluating

sub-circuits

1 33.89 16
2 37.00 16
4 50.20 16
8 49.24 15

252 R. Hayward, C.-C. Chiang / Journal of Applied Research and Technology 13 (2015) 245-252

An architecture proposal for a network-on-chip switch based on

bufferless data flow. Journal of Applied Research and Technology, 12,

153-163.

Paillier, P. (1999). Public-Key cryptosystems based on composite degree

residuosity classes (pp. 223-238). Praque, Czech Republic: International

Conference on the Theory and Application of Cryptographic Techniques.

RANDOM.ORG (2015). Random Integer Generator. Retrieved on March 3,

2015 from: http://www. random.org/integers/

Rivest, R.L., Shamir, A., & Adleman, L. (1978a). A method for obtaining digital

signatures and public-key cryptosystems. Communications of the ACM,

21, 120-126.

Rivest, R.L., Adleman, L., & Dertouzos, M.L. (1978b). On data banks and

privacy homomorphism. Foundations of Secure Computation, 4, 169-180.

Vukmirovi , S., Erdeljan, A., Imre, L., & apko, D. (2012). Optimal workflow

scheduling in critical infrastructure systems with neural networks.

Journal of Applied Research and Technology, 10, 114-121.

Hayward, R., & Chiang, C.-C. (2013). An architecture for parallelizing fully

homomorphic cryptography on cloud (pp. 72-77). Taichung, Taiwan:

The 7th International Conference on Complex, Intelligent, and Software

Intensive Systems.

Kamara, S., & Raykova, M. (2013). Parallel homomorphic encryption

(pp. 213-225). Okinawa, Japan: The 17th International Conference on

Financial Cryptography and Data Security.

Lauter, K., Naehrig, M., & Vaikuntanathan, V. (2011). Can homomorphic

encryption be practical? (pp. 113-124). Chicago, IL: The 3rd ACM

Workshop on Cloud Computing Security.

Naone, E. (2015). 10 Breakthrough Technologies, Homomorphic Encryption

— Making Cloud Computing More Secure. MIT Technology Review.

Retrieved on March 3, 2015 from: http://www2.technologyreview.com/

article/423683/homomorphic-encryption/

Ortega-Cisneros, S., Cabrera-Villaseñor, H.J., Raygoza-Panduro, J.J.,

Sandoval, F., & Loo-Yau, R. (2014). Hardware and software co-design:

	Parallelizing fully homomorphic encryption for a cloud environment

