
Comments

Time-to-event assessment for the discovery of
the proper prognostic value of clinical
biomarkers optimized for COVID-19

In the early days of the pandemic, clinical COVID-19 biomarkers

were investigated to predict mortality.1 Yan et al., for instance, proposed

a straightforward decision tree with three variables: Lactic Dehydroge-

nase (LDH), high-sensitivity C-Reactive Protein (hs-CRP), and lympho-

cyte percentage. They claimed to obtain more than 90% accuracy on a

test set. Although it is an interesting approach, Yan et al. considered the

problem a classification task (dead vs. alive), which may not be the

proper way to deal with continuous time-to-event data.2−4 Moreover,

machine-learning-based assessment is pruned to over-optimistic results

using small sampling for training. In addition, it has been shown that

their model has limited performance on external datasets.5−7 These two

limitations are possibly due to data overfitting.

Therefore, the authors performed time-to-event analyses using the

original dataset to find a proper predictive potential for the investigated

biomarkers. The authors’ evaluation aimed to optimize the clinical vari-

ables previously modeled and discover other biomarkers with prognostic

value. By opposing the original strategy, the authors also focused on

identifying biomarkers for different sub-populations, according to

patient aging and hospitalization time.

Original data is publicly available.1 The dataset comprised demo-

graphics data of age (varying 18−95, averaging 58.8 ± 16.5 years old)

and sex (224 men, 151 women), along with the results of 74 blood tests

in different hospitalization times. The variables obtained for each

patient is listed as follows: 2019-ncov nucleic acid detection, activation

of partial thromboplastin time, albumin, alkaline phosphatase, amino-

terminal brain natriuretic peptide precursor, antithrombin, aspartate

aminotransferase, basophil count, basophil percentage, calcium, cor-

rected calcium, creatinine, d-d dimer, direct bilirubin, egfr, eosinophil

count, eosinophils percentage, esr, ferritin, fibrin degradation products,

fibrinogen, globulin, glucose, glutamic-pyruvic transaminase, hbsag,

hco3-, hcv antibody quantification, hematocrit, hemoglobin, hiv anti-

body quantification, hypersensitive cardiac troponini, hypersensitive c-

reactive protein, indirect bilirubin, interleukin 10, interleukin 1β, inter-

leukin 2 receptor, interleukin 6, interleukin 8, international standard

ratio, lactate dehydrogenase, lymphocyte count, lymphocyte percentage,

mean corpuscular hemoglobin, mean corpuscular hemoglobin concen-

tration, mean corpuscular volume, mean platelet volume, monocytes

count, monocytes percentage, neutrophils count, neutrophils percent-

age, ph value, platelet count, platelet large cell ratio, plt distribution

width, procalcitonin, prothrombin activity, prothrombin time, quantifi-

cation of treponema pallidum antibodies, rbc distribution width sd, red

blood cell count, red blood cell distribution width, serum chloride,

serum potassium, serum sodium, thrombin time, thrombocytocrit, total

bilirubin, total cholesterol, total protein, tumor necrosis factorα, urea,

uric acid, white blood cell count, and γ-glutamyl transpeptidase.

The authors split the dataset into discovery and validation subsets to

perform a robust assessment and validate the results. The thresholds

identified in the discovery set were then applied in the validation set to

confirm further performance. Patient risk groups were stratified accord-

ing to the variables’ median.3,4 The log-rank test assessed the difference

between Kaplan-Meier curves and Cox proportional hazards regression

models. R v4.1.0 packages of survival v3.2.3 and survminer v0.4.7 per-

formed statistical analyses, with p < 0.05 considered significant.

As expected, the older the patient is, the worst is the prognosis;8,9 the

threshold of 62 years obtained significant difference on survival curves

(Fig. 1a). The overall assessment disregarding patient age and hospitali-

zation timing found predictive value in 53 variables, including LDH and

hs-CRP (Fig. 1b−c). Moreover, other biomarkers yielded relevant infor-

mation on COVID-19 prognostication (Table 1). For instance, high-risk

groups stratified by fibrin degradation products presented a 97% likeli-

hood of death and a Hazard Ratio (HR) of 4.26 (95% Confidence Interval

[95% CI]: 1.88−9.64); and elevated Interleukin-6 (IL-6) associated

with 65% likelihood of death and HR of 18.20 (95% CI: 2.42-136.54).

Furthermore, LDH and hs-CRP combined presented complementary

predictive potential in multivariate assessment (Fig. 1d). With both bio-

markers’ values elevated, patients showed a likelihood of death of 87%,

the mean survival time of 9.5 days, and HRs of 8.19 (95% CI: 2.27

−29.52) and 3.90 (95% CI: 1.41−10.72). Conversely, when either LDH

or hs-CRP yielded low value, potentially indicating lower risk, the age

determined the worse prognosis in the multivariate signature

(p<0.001), resulting in a likelihood of death of 72% and HR of 7.01

(95% CI: 3.10−15.84) for the elderly patients.

Results confirmed poor short-term prognosis to abnormal levels of

some indicators, such as LDH,1,9-11 CRP,1,8-11 lymphocytes,1,8-10 IL-6,12

and procalcitonin.11 These findings could provide insights into COVID-

19 research, such as key levels of fibrin degradation products, which are

directly associated with the Dimerized plasmin fragment D and could

indicate active coagulation and thrombosis.9-11

Yan et al. had already mentioned that lymphocytes might serve as a

potential therapeutic target.1 Still, the authors highlight the role of IL-6,

a cytokine that induces inflammatory response and has prognostic value.

Although IL-6 blockade is not the standard strategy for COVID-19 treat-

ment, interleukin-6 remains the best available biomarker for severity

assessment and still holds great potential for targeted therapy.12

In this work, the authors have identified relevant biomarkers that are

fully available in medical practice and be a mainstay for the clinical eval-

uation of COVID-19. These biomarkers correlated with short-term out-

comes and could support the management of the disease with early

interventions, ultimately leading to better endpoints such as decreased

deterioration and mortality. Future works include a prospective
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evaluation to increase robustness and the assessment across different

geographic populations, as each region has its genomic specificity.
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Fig. 1. Kaplan-Meier curves of the clinical biomarkers of (a) age, (b) Lactic Dehydrogenase (LDH), (c) high-sensitivity C-Reactive Protein (hs-CRP), (d) LDH combined

with hs-CRP.

Table 1

Discovered biomarkers according to the patient age and hospitalization time.

High-risk group Low-risk group

Relevant biomarkers Threshold

discovered

Proportion

of deaths

Mean survival

days

Proportion

of deaths

Mean survival

days

Log-rank

p-value

Demographics: 1 significant variable Age 62 0.824 7.9 0.146 11.2 < 0.001

Sex Male / Female 0.542 9.5 0.296 10.1 0.120

Overall (disregarding patient age and hospitali-

zation timing): 53 significant variables

Lactate dehydrogenase 334 0.835 10.1 0.041 12.8 < 0.001

Hypersensitive c-reactive protein 47.2 0.785 9.6 0.089 13.1 < 0.001

Lymphocyte (%) 11.6 0.793 10.8 0.134 13.2 < 0.001

Fibrin degradation products 16.9 0.974 10.4 0.226 10.8 < 0.001

Interleukin-6 18.3 0.655 10.7 0.045 12.8 < 0.001

Hypersensitive cardiac troponinI 22.8 0.902 6.8 0.273 12.3 < 0.001

First sample after admission (disregarding

patient age): 40 significant variables

Lactate dehydrogenase 328 0.732 8.8 0.094 11.2 < 0.001

Hypersensitive c-reactive protein 51.9 0.732 8.6 0.065 11.6 < 0.001

Lymphocyte (%) 14.9 0.700 8.8 0.125 11.3 < 0.001

Fibrin degradation products 4.9 0.875 9.0 0.095 9.6 <0.001

Interleukin-6 19.53 0.667 10.2 0.071 12.0 < 0.01

Procalcitonin 0.09 0.853 8.2 0.071 13.6 < 0.001

Last sample before discharge or death (disre-

garding patient age): 46 significant variables

Lactate dehydrogenase 261 0.733 8.6 0.000 11.8 < 0.001

Hypersensitive c-reactive protein 23.9 0.780 8.0 0.000 12.4 < 0.001

Lymphocyte (%) 14.35 0.806 8.3 0.083 11.5 < 0.001

Fibrin degradation products 5.9 0.952 8.7 0.125 9.7 < 0.001

Procalcitonin 0.09 0.882 8.0 0.036 13.8 < 0.001

HCO3- 24.1 0.638 7.6 0.115 13.9 < 0.001

Patients with age <62 years (disregarding hos-

pitalization timing): 31 significant variables

Lactate dehydrogenase 232.5 0.360 14.1 0.000 18.3 < 0.001

Hypersensitive c-reactive protein 11.6 0.417 14.1 0.000 18.6 < 0.001

Lymphocyte (%) 22.15 0.362 15.6 0.089 16.0 < 0.01

Fibrin degradation products 4 0.769 9.1 0.000 14.4 < 0.001

International standard ratio 1.05 0.531 11.4 0.000 18.0 < 0.001

Calcium 2.15 0.463 14.8 0.042 16.2 < 0.001

Patients with age ≥62 years (disregarding hos-

pitalization timing): 29 significant variables

Lactate dehydrogenase 470 0.986 11.6 0.603 16.4 < 0.001

Hypersensitive c-reactive protein 88.3 0.922 12.4 0.596 16.2 < 0.001

Lymphocyte (%) 5.3 0.967 13.3 0.627 14.2 < 0.01

Hypersensitive cardiac troponin I 51.4 1.000 11.9 0.800 14.2 < 0.01

Monocytes (%) 4.1 0.986 13.5 0.552 14.1 < 0.001

Alkaline phosphatase 77 0.952 11.1 0.687 16.2 < 0.001
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