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OBJECTIVE: To establish whether alterations of brain structures in Alzheimer’s disease are associated with
executive dysfunction.

METHODS: Nineteen patients with Alzheimer’s disease and 22 older control subjects underwent a
comprehensive evaluation. The clock drawing test, digit span test, executive motor function test, Behavioral
Assessment of the Dysexecutive Syndrome battery (Rule Shift Cards test), and Stroop test were used to evaluate
executive dysfunction. A multiparametric approach using the FreeSurfer image analysis suite provided a
description of volumetric and geometric features of the gray matter structures.

RESULTS: The cortical thickness maps showed a negative correlation between the Behavioral Assessment of the
Dysexecutive Syndrome battery (Rule Shift Cards test) and the right middle frontal gyrus; a positive correlation
between the executive motor function test and the left superior parietal gyrus, left middle temporal gyrus,
bilateral supramarginal gyri, right middle frontal gyrus, and right precuneus; a negative correlation between
the Stroop test (part III) and the right superior parietal gyrus; and a negative correlation between the Stroop
test (part III) and the right middle temporal gyrus.

CONCLUSION: Executive dysfunction in Alzheimer’s disease is correlated with alterations not only in the frontal
areas but also within many temporal and parietal regions.
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& INTRODUCTION

Although the prevailing concept of Alzheimer’s disease
(AD) as an episodic memory disorder is well supported,
there are many examples of clinical heterogeneity (1).
Several non-amnestic presentations of the pathophysiologi-
cal process of AD exist, and probable AD is diagnosed even
if executive function is the main cognitive deficit (2).

Executive function is a multidimensional cognitive
domain that includes attention, sequencing, goal formation,
planning, execution of goal-directed plans, effective perfor-
mance, insight, will, abstraction, and judgment (3).
Executive dysfunctions have heterogeneous manifestations,
and they occur almost universally in all stages of dementia

(4). Furthermore, these dysfunctions are associated with
greater risk for the development of AD (5). Executive
dysfunction is also associated with greater dementia
severity, rapid disease progression, disability, behavioral
disorders, and higher mortality (6–9).
Approaches that focus on the localization of executive

abilities within the frontal lobe have often been criticized;
critics have favored a perspective that emphasizes the
connectivity between the frontal regions and the more
posterior and subcortical brain areas (3). The prefrontal
cortex receives inputs from higher-order association cortical
areas such as the posterior parietal lobe, superior temporal
lobe, and paralimbic regions (10).
Many studies have explored the neural basis of executive

dysfunction in AD. Although most of these studies
correlated changes in the frontal structures with executive
performance impairment, many others correlated executive
dysfunction with posterior cortical areas (11–15).
Automated magnetic resonance imaging (MRI) thickness

measures of individual brain regions can identify mild
cognitive impairment and AD with great accuracy,
specificity, consistency, and reproducibility across multiple
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independent cohorts. These measures correlate strongly with
clinical measures of cognitive decline as well as cellular
biomarkers (16–18). Using software tools, a single volumetric
T1-weighted MRI scan can be completely processed with
little to nomanual intervention in a relatively short amount of
time. Evidence from the literature suggests that cortical
thickness can predict the risk of conversion from mild
cognitive impairment to ADwith a higher degree of accuracy
than clinical and neuropsychological assessments (19,20).
Therefore, this automated measure provides a cost-effective
and efficient method for the early diagnosis of AD and mild
cognitive impairment. Furthermore, these measurements
may serve as a quantitative and biologically meaningful
endpoint in therapeutic trials.
The questionable description of executive functions as

higher-level cognitive functions mediated primarily by the
frontal lobes and the lack of a definitive role for specific brain
structures in certain executive tasks should be better clarified.
Moreover, the lack of a clear correlation between cortical
thickness and executive function performance in healthy
subjects and the limited number of studies assessing the
correlation between the posterior associative cortical thick-
ness and executive functions should be further evaluated.
The aim of this study was to establish whether alterations

in gray matter volume and cortical thickness of brain
structures are associated with executive dysfunction in
patients with mild AD and healthy controls.

& METHODS

Subjects
Nineteen patients with mild AD and 22 older control

subjects were recruited from a multidisciplinary memory
clinic. The control subjects did not have any cognitive
complaints or functional impairment, and all of the
participants in the patient group fulfilled the National
Institute of Neurological and Communicative Disorders and
Stroke and the AD and Related Disorders Association
criteria for probable AD (2). Patients had Functional
Assessment Staging (21) scores of 3 or 4 and had been
receiving a stable dose of a cholinesterase inhibitor for at
least 2 months. Controls had Functional Assessment Staging
scores of 1 or 2.
Exclusion criteria included significant symptoms of

depression (15-item Geriatric Depression Scale score $6)
(22); significant radiological evidence of ischemic brain
disease; a Modified Hachinski Ischemic score .4 (23); a
previous cerebrovascular event, a Mini-Mental State
Examination score ,20 (24) or evidence of other degen-
erative or secondary dementias; end-stage chronic disease
or an unstable medical condition; a psychiatric history;
antipsychotic or psychoactive medication adjustments in the
2 months prior to study enrollment; significant visual or
hearing impairment; age ,60 years; schooling of less than 2
years; and any other condition that could prevent the
patient from undergoing an MRI examination or cognitive
assessment.
Patients with high levels of depressive symptoms were

excluded to avoid bias in the cognitive evaluation because
such symptoms strongly influence performance on cogni-
tive assessments (25). Both groups were also paired
according to educational level to reduce the effect of this
variable on the cortical thickness results. A flow diagram of
subject inclusion and exclusion is shown in Figure 1.

Procedures
Each subject and the caregivers of the patients with AD

underwent a complete interview with a consultant geria-
trician. The physician collected demographic and medical
information, including history of hypertension or diabetes
mellitus, body mass index, and waist-to-hip ratio.
A functional status assessment was performed using the

Functional Activities Questionnaire (23) and the Disabi-
lity Assessment for Dementia (only in patients) (27).
Neuropsychiatric symptoms were evaluated using the
Neuropsychiatric Inventory (28). The comprehensive cogni-
tive evaluation included executive tests, such as the clock

Figure 1 - Flow diagram of the subject selection procedure. For the
control group, 66 elderly individuals were invited to participate in
the study. Of these individuals, 21missed the clinical assessment or
were not included due to their meeting clinical exclusion criteria.
Of the 45 remaining subjects, 17 were excluded because they
missed the neuropsychological assessment. Of the 28 remaining
subjects, four missed the magnetic resonance imaging (MRI)
assessment. The images of three elderly controls were not
included in the study because they were considered to be of low
quality. Regarding the patient group, 46 AD patients were invited
to participate in the study. Of these patients, 16missed the clinical
assessment or were not included due to their meeting clinical
exclusion criteria. Of the 30 remaining subjects, seven were
excluded because they missed the neuropsychological assessment.
Of the 23 remaining subjects, two missed the MRI assessment. The
images of two AD patients were not included in the study because
they were considered to be of low quality.

CLINICS 2014;69(1):28-37 Cortical thinning and executive dysfunction in AD
Vasconcelos LG et al.

29



drawing test (29), the digit span test, an executive motor
function test (30), the Behavioral Assessment of the
Dysexecutive Syndrome (BADS) (Rule Shift Cards subtest)
(31), and the Stroop test. Each participant also underwent
MRI.

To evaluate executive motor function, a modified version
of the Neuropsi battery subtest was used (30). Each subject
was asked to pay attention to a sequence of three hand
positions, which was performed three times by the
examiner. The subject was asked to reproduce the sequence
in the correct order three times. No verbal cues were given,
but the examiner did indicate whether the reproduction was
correct or incorrect. To perform this task, the subject had to
place his or her dominant hand in three different positions
sequentially: a fist resting horizontally, a palm resting
vertically, and a palm resting horizontally. If the subject was
unable to reproduce the sequence after three attempts, the
score was 1. If the subject was able to reproduce the
sequence after two attempts, the score was 2. If the subject
was able to reproduce the sequence in the first attempt, the
score was 3.

MRI data acquisition, analysis, and post-processing
MRI of the brain was obtained in all subjects using a 1.5-T

scanner [Magnetom Sonata (Maestro Class) Siemens AG,
Medical Solutions, Erlangen, Germany] with an eight-
channel head coil. To minimize variation, a single investi-
gator positioned all of the subjects using the orbitomeatal
line as a landmark. Two conventional sequences were
performed to exclude structural lesions: a) axial T2-
weighted FLAIR (fluid-attenuated inversion recovery) in a
plane parallel to the anterior commissure-posterior com-
missure (AC-PC) line [TR (repetition time) = 8500 ms, TE
(echo time) = 107 ms, IT (inversion time) = 2500 ms, slice
thickness = 5.0 mm, slice interval = 1.5 mm, FOV (field of
view) = 240 mm, matrix size = 2566256, NEX=1] and b)
sagittal T1-gradient echo volumetric acquisition for multi-
planar reconstruction (TR= 2000 ms, TE= 3.42 ms, flip
angle = 15 degrees, FOV=256 mm, 1.0-mm slice thickness

with no gaps, total of 160 slices per slab, matrix
size = 2566256, NEX=1).
The quality of the structural MRI data was rated by two

experienced neuroimaging researchers according to a three-
point rating scale: 0 =no motion artifacts, excellent quality;
1 = a few motion artifacts, fair quality; and 2= moderate/
severe motion artifacts, poor quality. Only datasets with
scores of 0 were considered to be of sufficient quality for
research purposes. The criteria used to define quality were
(a) signal-to-noise ratio; (b) tissue contrast; and (c) artifacts,
including c1) motion artifacts (ghosting and smearing), c2)
edge artifacts (ghosting, chemical shifts, and ringing), c3)
distortions, and c4) aliasing (wrap-around) artifacts. All the
MRI exams were performed between 1 (minimum) and 8
(maximum) weeks after the neuropsychological evaluation.
The interval was not different between the AD and control
subjects.
T1-weighted images were processed using the recon-all

pipeline of the FreeSurfer package, which is documented
and freely available for download online (32,33). A
summary of the options used in the recon-all pipeline and
a detailed description of this methodology are included in
the supplementary material.

Statistical analysis
Demographic, clinical, cognitive, functional, and beha-

vioral data were analyzed with SPSS 18 (SPSS, Chicago, IL,
USA). Prior to conducting the analyses, the measurements
were tested for normality using the Shapiro-Wilk test.
Demographic, clinical, and neuropsychological data, as

well as data on brain structure volumes (Table 1, supple-
mentary material), are presented as the mean ¡ standard
deviation. Student’s t-tests (at a significance level of p,0.05)
were used to compare the data of AD patients and controls.
To evaluate whether there were correlations between

executive functions and brain structures, the volumetric
measures were first transformed to Z scores using the
formula [(value - mean)/SD], and a stepwise back-
ward linear regression was performed. Type I errors in the

Table 1 - Demographic, medical, and cognitive data description.

Variable

Controls (n = 22, 12 females):

Mean (SD); range

Alzheimer’s disease (n = 19,

10 females): Mean (SD); range

Differences between

groups (t; p-value)

Age (years) 70.14 (5.67); 60–80. 75.42 (4.81); 66–86. 23.187; 0.003*

Education (years) 9.14 (5.26); 2–18. 7.68 (4.42); 3–16. 0.947; 0.349

Diabetes (%) 22 21 0.126; 0.900

Hypertension (%) 64 58 0.367; 0.715

Waist-to-hip ratio 0.94 (0.81); 0.7–1.1. 0.92 (0.71); 0.8–1.1. 21.037; 0.306

Body mass index 27.21 (3.71); 19– 32 26.10 (3.62); 21–36. 0.965; 0.340

Modified Hachinski scale 0.95 (0.84); 0–3. 0.68 (0.58); 0–2. 1.175; 0.247

Duration of cholinesterase inhibitor use

(months)

NA 42.63 (27.35); 4–106. NA

Mini Mental State Examination 28.82 (0.90); 27–30. 24.00 (2.62); 20–29. 8.083; 0.000*

Neuropsychiatric Inventory NA 20.36 (19.25); 0–77 NA

Stroop test part III (time - seconds) 48.77 (19.96); 25–103. 67.63 (28.50); 35–155. 22.480; 0.018*

Stroop test part III (errors) 1.59 (2.30); 0–9. 4.95 (4.50); 0–18. 23.067; 0.004*

Digit Span Backwards 3.86 (1.32); 0–6. 3.00 (1.29); 0–4. 2.110; 0.041*

Executive motor function test 2.45 (0.67); 1–3. 1.26 (1.14); 0–3. 4.127; 0.000*

Behavioral Assessment of Dysexecutive

Syndrome: Rule Shift Cards test - rule 2 (time -

seconds)

37.00 (8.25); 25–60. 41.21 (12.70); 26–76. 21.275; 0.210

Behavioral Assessment of Dysexecutive

Syndrome: Rule Shift Cards test - rule 2 (errors)

3.32 (3.92); 0–10. 7.05 (3.45); 0–11. 23.211; 0.003*

Clock drawing test 7.95 (2.36); 4–10. 6.11 (2.74); 2–10. 2.319; 0.026*

NA: not available; * statistically significant difference.
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follow-upmultiple comparisons were controlled via Bonferroni
adjustment (at a significance level of 0.015). The scores on the
executive function tests represented the independent variables
used to predict alterations in brain structures.
The stepwise backward linear regression included the

variables of both groups (n= 41) and a ‘dummy’ variable
(elderly controls vs. AD subjects). All correlations were
controlled for age, gender, and intracranial volume.

Ethics statement
This study was approved by the Joint Ethics Committee of

the Universidade Federal de São Paulo, and participants (or
the guardian or caregiver of the patients with AD) provided
written informed consent in accordance with the De-
claration of Helsinki.

& RESULTS

Demographic, clinical, cognitive, functional, and
behavioral data
Table 1 shows the baseline characteristics of the study

population. The mean age of the total sample was 72.5 years
(SD 5.8, range 60–86 years). The mean ages of the elderly
controls (n = 22, 12 females) and the AD patients (n = 19, 10
females) were 70.14 years (SD 5.67, range 60–80 years) and
75.42 years (SD 4.81, range 66–86 years), respectively. The
AD subjects were significantly older than the elderly
controls (t 23.187; p= 0.003). The mean educational levels
(years) of the elderly controls and AD patients were 9.14
years (SD 5.26, range 2–18 years) and 7.68 years (SD 4.42,
range 3–16 years), respectively. No significant differences
with respect to educational level were observed between the
groups (t = 0.947; p= 0.349).
One patient scored 29 on the MMSE. This subject had

been followed over the previous 2 years because of mild
executive cognitive impairment. During the follow-up
period, a progressive cognitive and functional decline was
observed through neuropsychological and clinical evalua-
tions. The patient developed dementia and was therefore
included in the study.
The mean scores on the geriatric depression scale for

patients and controls were 2 (range 0–5) and 1.3 (range 0–5),
respectively. No significant differences with respect to
prevalence of depressive symptoms were observed between
the groups. The mean score of patients on the Functional
Activities Questionnaire was 9.8 (SD 4.7, range 2–22). The
control group did not show any functional impairment.
The Disability Assessment for Dementia and the
Neuropsychiatric Inventory were also administered to
patients with AD to complete the functional and behavioral
assessment. The mean scores were 87% (SD 11, range 60–
100%) and 22 (SD 19, range 0–77), respectively.

Volumetric assessment
Compared with controls, patients with AD exhibited

significantly smaller volumes of the bilateral caudal middle
frontal gyri, isthmus of cingulate, left pars opercularis, right
pars orbitalis, left pars triangularis, rostral middle frontal
gyri bilaterally, superior frontal gyri bilaterally, frontal pole
bilaterally, middle temporal gyri bilaterally, precuneus
bilaterally, superior parietal gyri bilaterally, inferior parietal
gyri bilaterally, supramarginal gyri bilaterally, and left
fusiform gyrus. A detailed description of the volumetric

neuroimaging data of the participants is provided in the
supplementary material (Table 1, Supplementary Material).
The volume of the right superior parietal gyrus correlated

negatively with results on the Stroop test part III (errors)
(beta =20.093, t =20.359, p= 0.012) and differentiated the
AD group from the healthy controls (beta =20.986,
t =23.071, p= 0.005).

Cortical thickness maps
The cortical thickness maps of the patients and control

subjects showed a negative correlation between the BADS
score (Rule Shift Cards test, rule 2, errors) and the thickness
of the right rostral middle frontal gyrus; see Figure 2,
images 1A and 2A. A positive correlation between the
executive motor function test and the left superior parietal
gyrus, left middle temporal gyrus, bilateral supramarginal
gyri, right caudal middle frontal gyrus, and right precuneus
thickness was noted (see Figure 2, images 1B, 2B, 1C, and
2C). There was a negative correlation between the results of
the Stroop test part III (errors) and the right superior
parietal gyrus (see Figure 2, image 1D). There was a
negative correlation between the results of the Stroop test
part III (time) and the right middle temporal gyrus (see
Figure 2, image 2D). Table 2 provides the parameters of the
lesion extension and the location of the findings shown in
Figure 2. Scatterplot graphs of the correlations between the
executive motor function test scores and the left middle
temporal gyrus and bilateral supramarginal gyri cortical
thickness are provided (Figure 2).
Analysis by group of the cortical thickness maps showed

that the main differences between elderly controls and AD
patients were in structures of the frontal, parietal, and
temporal lobes; the fusiform bilaterally; and a few areas of
the occipital lobe. A detailed description of the related brain
structures, parameters of lesion extension, and location of
cortical thickness differences is provided in the supplemen-
tary material (Table 2).

& DISCUSSION

Our results showed that executive dysfunctions in mild
AD may be correlated with the thinning of the parietal and
temporal cortices.
A correlation between the volume and cortical thickness

of the right superior parietal gyrus and scores on executive
function tests was observed. The volumetric correlation
could be used to differentiate AD patients from controls.
The cortical thickness of the left superior parietal gyrus,

bilateral supramarginal gyri, right precuneus, and left
middle temporal gyrus correlated positively with perfor-
mance on the executive motor function test. The executive
functions assessed by this cognitive test, such as working
memory, planning, and praxis, did not correlate with the
structures mentioned in previous studies.
The right superior parietal gyrus and the right middle

temporal gyrus correlated negatively with the scores of the
Stroop test part III, supporting the role of these structures in
inhibitory control. Similar results are not found in the
literature, although one study correlated response inhibition
with the right parietal cortices in bipolar disorder type 1
patients (34).
The anatomical correlations of the Stroop test and the

executive motor function test occurred predominantly and
with higher intensity in the right hemisphere, confirming
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previous studies (34,35). These findings highlight the
capacity of the practical cognitive tests (mentioned above)
to detect executive dysfunction in patients with mild AD.

Many other studies using different neuroimaging meth-
ods have correlated parietal and temporal structures with
executive functions. Few of these studies used cortical
thickness as a variable (11,15). Voxel-based morphometry
studies revealed that patients with AD without the epsilon 4
allele of apolipoprotein had poorer executive task perfor-
mance and greater frontoparietal atrophy (11) and that grey

matter reduction of the bilateral insula and left lateral
temporal lobe was a predictor of clinical progression of
dysexecutive mild cognitive impairment (36). Radionuclide
studies have revealed correlations between executive func-
tions and the parietal and temporal regions (12,37).
Functional MRI studies have correlated the right frontal
regions and the associative parietotemporal areas with
executive deficits in patients with AD (13,38).
The relationship between cortical thickness and perfor-

mance on cognitive tests has not been fully elucidated and

Figure 2 - Cortical thickness maps of associations between brain regions and executive functions. Red, orange, and yellow colors
represent positive correlations, and blue represents negative correlations. 1A and 2A illustrate the negative correlation between the
BADS score (Rule Shift Cards test, rule 2, errors) and the thickness of the right rostral middle frontal gyrus; 1B, 2B, 1C, and 2C illustrate
the positive correlation between the executive motor function test and the left superior parietal gyrus, left middle temporal gyrus,
bilateral supramarginal gyri, right caudal middle frontal gyrus, and right precuneus thickness; 1D illustrates the negative correlation
between the results of the Stroop test part III (errors) and the right superior parietal gyrus; and 2D illustrates the negative correlation
between the results of the Stroop test part III (time) and the right middle temporal gyrus. The scale indicates z-scores. Scatterplots of
the correlations between the executive motor function test scores and the left middle temporal gyrus and bilateral supramarginal gyri
cortical thickness are provided. Table 2 provides the parameters of the lesion extension and the location of the findings shown in this
figure.
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warrants further investigation. We found positive correla-
tions between cortical thickness and cognitive test perfor-
mance, both in controls and patients. However, previous
studies have yielded different results that showed an
inverse relationship between cortical thickness and perfor-
mance on executive function tests in control subjects (39,40).
The differential aspects of this study should be men-

tioned. The selective pathological involvement of some
neocortical areas and temporal lobe structures, which is
common in AD (41), was also observed in our neuroimaging
findings and correlated with executive dysfunction.
Previous studies based on analysis of the cortical surface
have also shown that AD patients present cortical thinning
in the various areas of the frontal, parietal, and temporal
lobes (42,43). Cardiovascular risk, an important factor in
cognitive decline and executive impairment and a possible
confounder in AD studies, was considered in this investiga-
tion (44,45).
The populations in developing countries are exposed to

various adverse conditions. A combined disadvantage in
education, income, wealth, and occupation was associated
with poor cognitive function in late life (46). Education has
been found to be the most consistent socioeconomic factor
associated with cognitive dysfunction (47). Our sample had
a mean education level of 8 years, higher than the average
years of schooling of the adult Brazilian population, which
is estimated at 7.4 years (48). Most of the studies in this field
were performed in developed countries with more highly
educated individuals than our sample (11,15,18,36).
Although our study population had a higher education
level than most of the country, our sample is more
representative of the local population than those used in
other studies, and our results could be used as a reference
for future studies evaluating the cortical thickness of AD
patients with a low education level.
The results of this study should be interpreted with

caution because our study presents a few limitations. The
main limitations include the small sample size and the age
difference between patients and control subjects. Other
possible sources of bias could be 1) the use of age as a
covariate and the omission of education level as a covariate
in the stepwise backward linear regression; 2) the MRI
contraindications; 3) spurious correlations due to the large
amount of data used in the neuroimaging analysis; 4)
restriction to subjects with a high burden of cerebrovascular
disease; and 5) use of the FreeSurfer package template,
which is based on MRI scans of young, healthy subjects.

The poor ecological validity of some executive tests and the
complex interdependence of the executive functions in other
cognitive domains should be mentioned as a potential problem
in the assessment of the executive functions of AD patients (3).
Cholinesterase inhibitors have been shown to decrease

hippocampal and cortical atrophy (49,50) and improve
cognitive performance in AD patients (51). Although the
treatment time varied between the patients (4–107 months),
the patients had similar clinical staging (Functional
Assessment Staging score of 3 or 4). To the best of our
knowledge, no studies have assessed the effects of choli-
nesterase inhibitors on cortical thickness.
In the early phases of AD, before the intense period of

neuronal loss, synaptic reorganization changes to compen-
sate for the degenerative effects of brain damage are usually
observed (52). The differences between groups observed in
this study could also be a result of this process and not only
a direct effect of AD neuropathology.
This study has implications for our understanding of how

functional deficits in patients are associated with their under-
lying structural basis. Neuroimaging techniques have demon-
strated that executive abilities are not confined to the frontal
area of the brain but instead consist of complex interactions
among different brain regions (53). Our results are consistent
with those of other AD studies, which have suggested that
executive function may not depend entirely on the prefrontal
cortex but on other posterior cortical areas as well.
The association between modern neuroimaging methods

and practical tests, such as the Stroop test and the executive
motor function test, could be very useful for identifying
executive dysfunction in patients with AD. Future neuroi-
maging studies addressing the connection between these
posterior cortical areas and the relationships between
cortical thickness and education level would add to the
understanding of the neural basis of AD.
Executive dysfunction in mild AD is associated with

abnormalities not only with the frontal areas but also with
many temporal and parietal regions. The pathophysiology
of executive dysfunction is complex and includes abnorm-
alities in multiple brain regions and, most likely, the
connections between them.
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Left supramarginal gyrus 925.10 31.82 211.13 3.09

Right supramarginal gyrus 823.56 61.6 239.5 27.0
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& APPENDIX - SUPPLEMENTARY MATERIAL

Cortical thickness surface-based analysis: FreeSurfer
software
The FreeSurfer package is software used for the assess-

ment and visualization of structural and functional brain
imaging data. It is fully automated structural imaging
software for processing neuroimaging data.
The FreeSurfer package is documented and freely avail-

able for download online (https://surfer.nmr.mgh.harvard.
edu/fswiki/FreeSurferWiki).
The software employs a method that is reproducible,

consistent, and precise.
The main steps of this approach are gray/white matter

segmentation, pial and white matter surface modeling,
transformation of the cortical surface to spherical coordi-
nates, nonlinear surface registration based on curvature
(gyrus and sulcus), analysis of multiple subjects, and
automated parcellation of cortical areas. A set of five
morphometric parameters per vertex is used as an input
to the multimodal classifier: average convexity or concavity,
mean radial curvature, metric distortion, cortical thickness,

and surface area. The average convexity or concavity is used
to quantify the primary folding pattern of a surface. This
parameter can capture large-scale geometric features,
indicating the depth-height above the template surface of
the FreeSurfer and the sulcal depth or gyral height. The
mean radial curvature is used to assess folding of the
cortical surface. Metric distortion is calculated as the degree
of displacement of the cortical surface when registered to
the FreeSurfer template.
The FreeSurfer uses as a template the MNI 305 atlas. It is a

template based on an average of 305 T1-weighted MRI scans
of young, healthy subjects, linearly transformed to Talairach
space. All the images assessed in the study were fitted to
this template to enable comparison between them.
Cortical thickness and surface area were used to quantify

volumetric differences. Significant difference maps were
constructed using a general linear model, assuming a
significance level of 5%, corrected for multiple comparisons
using the false discovery rate.

Summary of the Recon-all of the FreeSurfer
software

N Step 1:

N Motion correction

N Intensity normalization

N Talairach transformation: Transformation from the
original volume to the MNI305 atlas

N Removal of the skull

N Step 2

N Topological normalization

N Topological correction

N Gaussian atlas classification

N Subcortical segmentation

N White matter segmentation

N Surface smoothing

N Surface inflation

N Cortical parcellation

N Step 3

N Spherical registration

N Cortical spherical parcellation

N Parcellation statistics: Summary of cortical parcella-
tion statistics for each structure, including: 1. structure
name; 2. number of vertices; 3. total surface area
(mm2); 4. total gray matter volume (mm3); 5. average
cortical thickness (mm); 6. standard error of cortical
thickness (mm); 7. integrated rectified mean curvature;
8. integrated rectified Gaussian curvature; 9. folding
index; and 10. intrinsic curvature index.
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Supplementary Table 1 - Volumes [mm3] of different brain structures measured with an automated volumetric method
(FreeSurfer).

Brain structure

volume (mm3)

Left hemisphere:

mean (SD)

Differences between

groups (t; p-value)

Right hemisphere:

mean (SD)

Differences between

groups (t; p-value)

Caudal anterior cingulate Control 1685.23 (434.84) 20.087; 0.931 2056.09 (506.72) 1.513; 0.138

Patient 1697.74 (483.08) 1832.26 (428.73)

Caudal middle frontal Control 5849.32 (980.91) 2.902; 0.006* 5346.50 (1132.18) 2.207; 0.033*

Patient 4940.79 (1021.33) 4701.26 (626.98)

Isthmus cingulate Control 2509.59 (484.52) 2.428; 0.020* 2379.59 (377.58) 2.631; 0.012*

Patient 2181.74 (358.88) 2083.11 (337.96)

Lateral orbitofrontal Control 7392.73 (883.47) 1.797; 0.080 7416.23 (855.54) 0.832; 0.411

Patient 6934.47 (724.62) 7192.89 (859.13)

Medial orbitofrontal Control 5382.05 (898.86) 1.527; 0.135 4976.59 (596.86) 1.472; 0.149

Patient 4983.89 (747.20) 4669.37 (739.16)

Paracentral Control 2938.86 (593.83) 1.941; 0.059 3392.91 (579.42) 1.523; 0.136

Patient 2609.79 (472.53) 3139.37 (469.71)

Pars opercularis Control 4435.59 (851.00) 2.521; 0.016* 3542.05 (717.96) 1.844; 0.073

Patient 3853.21 (577.81) 3196.21 (419.41)

Pars orbitalis Control 2007.95 (373.62) 1.983; 0.054 2612.77 (373.91) 2.893; 0.006*

Patient 1822.16 (175.96) 2300.37 (307.44)

Pars triangularis Control 3307.91 (581.73) 2.088; 0.043* 3917.32 (641.66) 1.701; 0.097

Patient 2966.84 (441.38) 3592.79 (568.64)

Rostral anterior cingulate Control 2720.32 (470.85) 1.432; 0.160 2222.45 (465.68) 1.498; 0.142

Patient 2513.68 (448.79) 2042.42 (257.33)

Rostral middle frontal Control 14221.68 (1798.14) 2.834; 0.007* 15501.50 (2029.12) 2.794; 0.008*

Patient 12770.32 (1422.34) 13800.11 (1840.23)

Superior frontal Control 19761.64 (2997.74) 2.791; 0.008* 19168.27 (2624.50) 3.779; 0.001*

Patient 17521.11 (1936.71) 16500.89 (1722.51)

Frontal pole Control 713.41 (181.72) 3.527; 0.001* 952.59 (178.94) 5.105; 0.000*

Patient 542.89 (114.51) 686.16 (151.06)

Superior temporal Control 11017.32 (1678.8) 1.874; 0.68 10467.68 (1396.09) 1.244; 0.221

Patient 10161.68 (1146.63) 9937.89 (1326.80)

Middle temporal Control 9677.50 (1394.84) 2.031; 049* 10797.59 (1296.25) 4.130; 0.000*

Patient 8686.00 (1729.73) 9025.37 (1451.89)

Inferior temporal Control 10044.91 (1718.88) 1.843; 0.73 10144.77 (1779.39) 1.631; 0.111

Patient 9104.84 (1515.960 9217.16 (1846.91)

Para- hippocampal Control 1984.68 (278.07) 2.041; 0.48 1886.32 (351.04) 1.441; 0.261

Patient 1804.53 (285.11) 1763.37 (335.98)

Postcentral Control 8457.32 (1209.36) 0.479; 0.634 8230.00 (1060.68) 1.294; 0.203

Patient 8246.05 (1608.57) 7789.89 (1115.48)

Precuneus Control 8381.86 (872.34) 3.710; 0.001* 8882.95 (1015.76) 3.900; 0.000*

Patient 7256.16 (1070.60) 7612.00 (1068.80)

Superior parietal Control 11734.91 (1091.82) 3.382; 0.002* 11404.82 (1242.52) 3.439; 0.001*

Patient 10278.68 (1644.83) 9844.47 (1657.50)

Inferior parietal Control 11814.50 (2018.33) 2.267; 0.029* 137299.55 (20629.7) 2.607; 0.013*

Patient 10474.37 (1722.94) 121180.53 (18645.8)

Supramarginal Control 9614.05 (1476.46) 2.575; 0.014* 9000.36 (1232.09) 2.507; 0.016*

Patient 8496.47 (1272.31) 8084.63 (1084.58)

Fusiform Control 9403.27 (1293.04) 3.404; 0.002* 87853.64 (13171.89) 1.750; 0.088

Patient 8161.11 (995.04) 81200.00 (10807.03)

Intracranial Control 1520000.31 (167.94) 0.354; 0.726

Patient 1501000.57 (170.88)

*Statistically significant difference.
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Supplementary Table 2 - Differences in brain structures,
lesion extension parameters, and locations of cortical
thickness between elderly control subjects and
Alzheimer’s disease patients.

Brain structure Size (mm2) Talairach Coordinates

Left hemisphere

Caudal middle frontal 65.72 238.1 19.9 29.7

Caudal middle frontal 1626.04 232.7 23.0 44.2

Superior frontal 1076.06 29.6 20.1 59.6

Pars opercularis 96.65 248.4 22.1 18.2

Pars triangularis 491.21 246.9 25.9 5.7

Precentral 11.08 247.7 0.2 8.8

Isthmus cingulate 232.86 215.8 249.0 0.9

Posterior cingulate 164.68 24.1 212.1 37.7

Lateral orbitofrontal 77.61 233.6 24.3 219.0

Precuneus 794.88 24.8 258.3 13.6

Precuneus 364.24 29.2 250.6 65.3

Superior parietal 42.99 226.7 253.4 40.6

Inferior parietal 499.03 236.6 270.8 45.8

Superior temporal 941.20 247.6 210.6 211.5

Superior temporal 43.42 249.5 212.6 215.3

Middle temporal 35.31 257.8 258.6 0.2

Lateral occipital 58.40 234.1 282.0 8.4

Cuneus 114.62 24.5 283.2 17.4

Fusiform 2617.10 228.9 245.6 219.0

Insula 13.64 230.9 229.4 15.3

Right hemisphere

Caudal middle frontal 8783.39 28.7 18.7 43.6

Parsopercularis 300.05 45.7 14.4 21.0

Precentral 541.95 15.3 226.8 59.1

Medial orbitofrontal 20.53 7.0 19.4 211.9

Precentral 494.04 45.5 28.5 37.7

Precentral 16.44 30.5 214.5 59.2

Superior parietal 530.65 30.6 245.3 61.5

Superior parietal 180.71 22.7 285.8 26.2

Superior parietal 87.87 19.4 272.5 44.2

Inferior parietal 615.15 38.1 271.7 42.3

Inferior parietal 203.37 43.2 245.2 35.5

Postcentral 112.83 49.8 221.5 54.3

Supramarginal 823.56 61.6 239.5 27.0

Superior temporal 606.90 63.2 211.7 1.0

Superior temporal 98.88 55.7 230.0 1.5

Entorhinal 4813.42 23.7 27.0 232.7

Lateral occipital 926.51 33.0 289.5 23.1

Lateral occipital 24.98 14.4 291.9 14.7

Lingual 538.99 20.2 273.9 27.0

Fusiform 21.84 41.2 247.3 218.3
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