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Post-transplant complications such as graft-versus-host disease and graft ischemia-reperfusion injury are crucial
challenges in transplantation. Hydrogen can act as a potential antioxidant, playing a preventive role against
post-transplant complications in animal models of multiple organ transplantation. Herein, the authors review
the current literature regarding the effects of hydrogen on graft ischemia-reperfusion injury and graft-versus-
host disease. Existing data on the effects of hydrogen on ischemia-reperfusion injury related to organ trans-
plantation are specifically reviewed and coupled with further suggestions for future work. The reviewed studies
showed that hydrogen (inhaled or dissolved in saline) improved the outcomes of organ transplantation
by decreasing oxidative stress and inflammation at both the transplanted organ and the systemic levels.
In conclusion, a substantial body of experimental evidence suggests that hydrogen can significantly alleviate
transplantation-related ischemia-reperfusion injury and have a therapeutic effect on graft-versus-host disease,
mainly via inhibition of inflammatory cytokine secretion and reduction of oxidative stress through several
underlying mechanisms. Further animal experiments and preliminary human clinical trials will lay the
foundation for hydrogen use as a drug in the clinic.
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’ INTRODUCTION

Transplantation is a therapeutic modality in which healthy
cells, tissues, or organs (an autograft or allograft) are trans-
planted to restore the anatomical structure and function
of damaged organs or tissues. This approach is the final treat-
ment choice for untreatable diseases and end-stage organ
diseases (1). Organ transplantation leads to benefits such
as functional recovery and prolonged survival, but post-
transplantation complications such as ischemia-reperfusion
(I/R) injury and acute graft-versus-host disease (aGVHD)
remain major challenges (2-4). These complications reduce
patients’ quality of life, increase medical costs, and worsen
prognosis.

Graft ischemia-reperfusion injury
During the process of transplantation, blood flow to the

organ to be transplanted is interrupted, leading to ischemia
that can damage the organ. In addition, restoration of blood

flow to the transplanted organ may result in local and
systemic inflammatory responses that can increase tissue
injury. Graft I/R injury is characterized by reactive oxygen
species (ROS) production, complement activation, leukocyte
infiltration, platelet-leukocyte aggregation, increased micro-
vascular permeability, and decreased endothelium-depen-
dent relaxation (5,6). In the process of prolonged ischemia,
adenosine triphosphate (ATP) levels and intracellular pH
decrease because of anaerobic metabolism, leading to lactate
accumulation. In addition, increased intracellular and mito-
chondrial calcium levels (calcium overload) are observed
because certain ATPase-dependent ion transport mechan-
isms become dysfunctional (7). This calcium overload leads
to cell swelling and rupture as well as cell death by necrotic,
necroptotic, apoptotic and autophagic mechanisms.

Graft I/R injury is manifested by increased inflammation
mediated by the complement system and cytokines. Once
activated, the complement pathway damages the trans-
planted organ’s cells by attacking the plasma membrane or
recruiting/activating neutrophils (8,9). Cytokines may play
either pro- or anti-inflammatory roles. Among others, tumor
necrosis factor (TNF)-a is central in graft I/R injury (10).
Increased TNF-a in the graft will lead to increased neutrophil
recruitment, increased ROS production and activation of
the NF-kB and JNK pathways (11). Other cytokines are also
involved: interleukin (IL)-1b, IL-18, and interferon (IFN)-g
increase damage, while IL-6, IL-10, and IL-13 attempt toDOI: 10.6061/clinics/2016(09)10
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control the damage (10). In its severest form, I/R injury can
lead to dysfunction and possibly death of the transplanted
organ (5,6,12).

Graft-versus-host disease
GVHD is a severe complication of organ transplantation,

resulting in morbidity and mortality. GVHD consists of three
phases, and several of the involved mechanisms are shared
with the classical mechanisms of I/R injury. During the
first phase, tissues are damaged by the recipient’s condition-
ing regimen, which leads to the release of inflammatory
cytokines such as TNF-a, IL-1, and IL-7 (13). These cytokines
induce activation of host antigen-presenting cells (APCs).
During the second phase of GVHD, the host APCs activate
the donors’ cells through IL-12 and IL-23 release, resulting in
the production of Th1-related cytokines such as IL-2, IL-6,
and TNF-g. IL-10 downregulates the synthesis of these cyto-
kines, but it is usually itself downregulated in the inflam-
matory context. The activated Th1 cells from the donor secrete
IFN-g to induce secretion of indoleamine 2.3-dioxygenase by
the host APCs, thus stimulating immunotolerizing Tregs.
IFN-g also stimulates mononuclear cells to secrete IL-1 and
TNF-a, which are inflammatory cytokines (13). Finally, in
the third phase, the Th1 cells promote the proliferation
and differentiation of cytotoxic T lymphocytes (CTLs) and
stimulate natural killer (NK) cells, which in turn induce
apoptosis of the cells of the transplanted organ (14). Cellular
and inflammatory cytokines such as TNF-g, IL-1, and IL-6
then directly assault various host tissues, leading to the
clinical manifestations of GVHD (15). The activated cells also
produce ROS, resulting in severe cell damage and the
development of GVHD (16). Several studies have shown that
GVHD is characterized by increased oxidative stress (17-19),
and it has thus been suggested that antioxidants could be
used to prevent GVHD (20).

Hydrogen as an antioxidant
Hydrogen is an inert gas that was long considered to have

no effect on higher living organisms. Interestingly, however,
in 2007, Ohsawa et al. (21) observed that hydrogen could
reduce the levels of hydroxyl radicals (the most cytotoxic of
all ROS), effectively protecting cells (22). Subsequently, many
studies showed that hydrogen acts as an antioxidant and
it has been used broadly in the prevention and treatment
of many illnesses in experimental animal models (23-28).
The hydrogen used in these studies mainly consisted of two
types (hydrogen gas and hydrogen-rich saline) delivered
through a number of methods, such as ventilation with mixed
gas containing hydrogen (29), oral administration of hydro-
gen-rich saline (30), intraperitoneal injection of hydrogen gas
or hydrogen-rich saline (31), and intravenous injection of
hydrogen-rich saline (32).

Hydrogen as a therapeutic modality against
transplantation-related I/R injury and GVHD
Increasing evidence has shown that molecular hydrogen

could play an important role in the prevention and treatment
of GVHD and graft I/R injury. Hence, the current literature
regarding the effects of hydrogen on different animal models
mimicking GVHD and I/R injury will be reviewed. The
mechanisms of hydrogen’s effects on I/R injury and GVHD
are summarized in Table 1, but although many studies were
performed in models of I/R injury, these were not necessarily

models of graft I/R injury. Therefore, the results may provide
clues about the use of hydrogen for the treatment of graft I/R
injury, but caution must be taken when examining these
results. The studies mainly examined the use of hydrogen
for organ pre-conditioning before harvesting, during organ
preservation, and just before or during transplantation. Indeed,
prolonged hypothermic preservation prior to transplantation
is a challenge in the process of transplantation. In addition,
graft I/R injury is common during transplantation, wherein
multiple factors are involved and contribute to ROS produc-
tion and ultrastructural injury. A number of studies have
shown that hydrogen can decrease inflammation and apo-
ptosis in graft organs, as detailed below.

Heart
Nakao et al. (33) showed that hydrogen could significantly

reduce heart I/R injury induced by prolonged hypothermic
preservation prior to transplantation through hydrogen’s
anti-inflammatory and antioxidant properties, as revealed by
decreased levels of malondialdehyde (MDA) (an oxidation
marker) and levels of troponin I and creatine phosphokinase
(markers of heart injury). Similarly, Noda et al. (34) docu-
mented that a novel hydrogen-supplemented preservation
solution efficiently improved myocardial injury due to cold
I/R in a rat heterotopic transplantation model. In this study,
the hydrogen-rich preservation solution led to decreased
levels of IL-6, IL-1b, TNF-a, ICAM-1, iNOS, and CCL2,

Table 1 - Mechanisms of the therapeutic effects of hydrogen on
ischemia-reperfusion injury and graft-versus-host disease.

Effects Mechanism

Antioxidation *Inhibition of increased myeloperoxidase (MPO)

activity (56)

*Elimination of toxic reactive oxygen species

(35,46)

*Decreased levels of 8-hydroxydeoxyguanosine

(36,37,66)

*Decreased tissue malondialdehyde levels

(36,42,52,56,64,65,67)

*Decreased lipid peroxidation (42,49)

*Increased expression of heme oxygenase-1 (43)

*Decreased MPO activity (56)

*Decreased levels of 8-iso-prostaglandin F2a

(64,65)

*Decreased levels of 4-hydroxynonenal (66)

*Improved superoxide dismutase activity (67)

*Decreased hypoxia-inducible factor-1 levels (40)

Anti-inflammation *Inhibition of the secretion of a variety of

inflammatory cytokines (31,42,46,56)

*Decreased inflammatory index and oxidative

stress (41)

*Reduced macrophage infiltration and

sequestration (42)

*Reduced recruitment of neutrophils (46)

*Inhibition of the gene expression of

proinflammatory factors (49)

Anti-apoptosis *Increased levels of the B-cell lymphoma-2 and

Bcl-extra-large proteins (42)

*Reduced number of NF-kB-positive cells (71)

Other *Inhibition of the release of serum alanine

aminotransferase (58)

*Improved suppression of the graft muscle

contractility induced by transplantation (49)

*Increased release of brain-derived neurotrophic

factor (64,65)

*Regulation of signaling pathways (54,64,70,71)
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which are all markers of inflammation. Another study
by Noda et al. showed that drinking hydrogen-rich water
after heart transplantation could enhance cardiac allograft
survival due to hydrogen’s antioxidant properties, eliminat-
ing toxic ROS and reducing chronic intimal hyperplasia of
the aortic artery after heart and artery transplantation (35).
Indeed, this study showed that hydrogen led to increased
ATP levels and more efficacious mitochondrial respiratory
chain function as well as decreased IL-2 and IFN-g levels and
intimal hyperplasia (35). Therefore, the use of hydrogen in
heart transplantation seems to be associated with reduced
oxidative stress and inflammation. However, the available
studies on heart grafts are limited in number and scope.

Kidneys
Hydrogen-rich saline from the University of Wisconsin

has been used during hypothermic preservation of renal
grafts and has been shown to decrease oxidative stress,
as represented by lower MDA and serum 8-hydroxydeoxy-
guanosine (8-OHdG) levels as well as by prolonged graft
survival (36). This preservation solution also decreased
macrophage infiltration of this type of graft (36). In animal
models of kidney transplantation, Shingu et al. (37) showed
that treatment with hydrogen-rich saline could significantly
attenuate renal graft I/R injury by reducing the levels of
8-OHdG, therefore improving renal transplant function and
maintaining normal tissue structure after transplantation.
Cardinal et al. (38) found that oral administration of hydrogen-
rich saline could improve kidney function and increase over-
all survival after allotransplantation through reduction of
oxidative stress and limited activation of inflammatory
pathways such as MAPK pathways. Taken together, these
results suggest that hydrogen improves kidney graft out-
comes by decreasing inflammation and oxidative stress.

Lungs
One study showed that lung inflation with 3% hydrogen

during the cold ischemia phase lowered graft myelo-
peroxidase (MPO) activity and serum IL-8 and TNF-a levels,
resulting in alleviated lung graft injury and improved
function (39). A study by Noda et al. (40) showed similar
results in a rat model of lung transplantation using hydrogen
preconditioning during the ex vivo period. The study also
showed that the levels of hypoxia-inducible factor-1 were
decreased in hydrogen-treated lungs, leading to decreased
levels of the inflammatory cytokines IL-6, IL-1b, and TNF-a
(40). In rat models of brain-dead donor/recipient lung
transplantation, it was demonstrated that hydrogen inhala-
tion by the donors and the recipients could improve
both lung function and graft histology by decreasing the
inflammatory index (higher IL-8 and lower TNF-a levels),
oxidative stress (increased superoxide dismutase (SOD)
activity and lower MDA levels), and apoptosis (41). In
another rat lung transplantation model, inhalation of mixed
gas (98% oxygen and 2% hydrogen) alleviated lung graft I/R
injury (42) by reducing inflammatory mediator upregula-
tion as well as macrophage infiltration and sequestration;
lowering tissue MDA levels 2 hours after reperfusion; and
increasing the levels of the B-cell lymphoma (Bcl)-2 and
Bcl-extra-large proteins, two proteins involved in apoptosis.
A study by the same group showed that inhalation of mixed
gas (2% hydrogen and 98% oxygen) by the organ donor
could reduce the severity of I/R injury by reducing tissue

edema and the number of apoptotic pulmonary epithelial
cells and especially by increasing the expression of heme
oxygenase-1 (HO-1), which is a potent, inducible transcrip-
tion factor with antioxidant, anti-inflammatory, and anti-
apoptotic properties, therefore playing important roles in
lung graft protection (43). Additionally, a recent study in pigs
showed that hydrogen gas inhalation during ex vivo lung
perfusion improved lung function after donation following
cardiac death; the hydrogen group also had lower expression
of IL-1b, IL-6, IL-8, and TNF-a as well as lower scores for
lung injury severity (44). Taken together, these studies all
suggest that the use of hydrogen in lung grafts reduces
inflammation, oxidative stress, and apoptosis.

Liver
One study examined the outcomes of perfusing the donor

liver with hydrogen-saturated lactate Ringer’s solution just
before reperfusion and showed significantly lower aspartate
aminotransferase and lactate dehydrogenase levels in ani-
mals with hydrogen-perfused livers, suggesting better graft
function than in untreated grafts (45). In a rat model of small
intestinal transplantation wherein both donors and recipients
received 2% hydrogen inhalation, Buchholz et al. (46) found
that hydrogen treatment significantly decreased the levels of
CCL2, IL-1b, IL-6, and TNF-a, leading to improved gastro-
intestinal transit and decreased lipid peroxidation as well as
attenuated post-transplant breakdown of mucosal barrier
function. Shigeta et al. (47) showed that luminal injection of
hydrogen-rich solution attenuated I/R injury in a rat model
of intestine transplantation by reducing oxidative stress. In a
rat model of pancreas transplantation, hydrogen-rich saline
was shown to protect against I/R injury, as demonstrated by
better histopathological damage scores (based on edema,
inflammation and necrosis) and better pancreatic function as
well as by reduced levels of TNF-a, IL-1b, and IL-6 (48). In a
rat model of small-bowel transplantation, rats suffered from
symptoms of gastroparesis, and Buchholz et al. (49) showed
that hydrogen could alleviate this transplantation-related
gastroparesis by improving the suppression of graft muscle
contractility, inhibiting the gene expression of proinflam-
matory factors, and reducing the systemic inflammatory
response.

Bone marrow and GVHD
Few studies have specifically examined the effects of hydro-

gen on GVHD. Qian et al. (50) studied the effects of hydrogen-
rich saline treatment in a mouse model of haploidentical
allogenic bone marrow transplantation and found that the
hydrogen-rich saline group had significantly reduced GVHD,
significantly higher survival and faster recovery of peripheral
blood leukocytes compared with the control group. This
study further expanded the application range of hydrogen
and introduced a new method for treating GVHD. However,
the study did not examine the exact mechanisms involved in
the results and suggested that reduced TNF-a, IL-2, and/or
ROS levels may play roles in the benefits of hydrogen
against aGVHD after bone marrow transplantation (50). In a
mouse model consisting of lethal irradiation followed by
allogeneic hematopoietic stem cell transplantation, hydrogen-
rich saline was shown to improve the survival rate, to lower
the rate of GVHD and the serum levels of inflammatory
cytokines, and to reduce tissue damage (51). Again, the exact
mechanisms involved have not been explored.
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Hydrogen as a treatment for non-graft I/R injury
A number of studies have shown that hydrogen could

be used to prevent I/R injury. In an experimental model of
bilateral renal pedicle occlusion for 45 minutes, Wang et al.
(31) showed that intraperitoneal injection of hydrogen-rich
saline five minutes before reperfusion could alleviate I/R
injury by inhibiting the secretion of a variety of inflammatory
cytokines. In a rat model of I/R injury, inhalation of 2.5%
hydrogen initiated 10 minutes before reperfusion and
continued for 120 minutes could attenuated renal I/R injury
by decreasing MDA levels (52). Sun et al. (53,54) also showed
that hydrogen could reduce myocardial damage in a rat
heart with regional myocardial I/R through antioxidative
and anti-inflammatory effects.
In a New Zealand white rabbit model of lung I/R injury,

hydrogen-rich saline treatment protected the lung from I/R
injury by increasing the PaO2/FiO2 ratio and reducing the
lung wet/dry ratio (55); in particular, the hydrogen-rich
saline group displayed a significantly lower proportion of
alveolar hemorrhage and pathologic lesions compared with
the control group. In a rat model of lung injury induced by
intestinal I/R injury, Mao et al. (56) showed that hydrogen-
rich saline could reduce lung injury by decreasing MDA
levels and MPO activity in the lung tissues.
In a liver injury mouse model, Sun et al. (57) showed

that hydrogen-rich saline treatment could have protective
effects on the liver. Similarly, in a mouse model of liver I/R
injury, Fukuda et al. (58) found that hydrogen inhalation
could significantly reduce liver I/R injury by inhibiting
the release of serum alanine aminotransferase and MDA
production.
Spinal cord injuries can be divided into two phases: i.e.,

direct mechanical tissue disruption, followed by cell damage
by a cascade that includes oxidative stress, calcium mobiliza-
tion, glutamate toxicity, and inflammation (59). Increased
ROS production during spinal cord injuries plays a role in
neuronal death and subsequent neuronal deficits (60,61).
In addition to causing direct insults to macromolecules,
these ROS act as intracellular messengers of neuronal death
(62,63). Neurons are among the cells most sensitive to
ROS (59). It was found that hydrogen reduced acute spinal
cord contusion injury by increasing the release of brain-
derived neurotrophic factor and decreasing the levels of
oxidative products such as 8-iso-prostaglandin F2a and
MDA (64,65).
Retinal I/R injuries are often observed in conditions such as

acute angle-closure glaucoma, retinal artery occlusion, and
amaurosis fugax. In animal models, retinal I/R injuries are
often induced by transient elevation of intraocular pressure.
In a model of retinal I/R injury, hydroxyl radicals caused
irreversible cellular damage by affecting lipids, proteins and
nucleic acids (66). Hydrogen-loaded eye drops were used
in these animals and markers such as 4-hydroxynonenal
and 8-hydroxy-2-deoxyguanosine were used to evaluate I/R
injury. The hydrogen-loaded eye drops dramatically decreased
4-hydroxynonenal and 8-hydroxy-2-deoxyguanosine levels and
reduced subsequent retinal cell death after I/R injury (66).
Testicular torsion occurs when the spermatic cord twists,

thereby cutting off the testicle’s blood supply. This urological
condition usually affects children and adolescents and
inflammatory cytokines and free radicals play important
roles. One study assessed the effect of hydrogen-rich saline
on testicular I/R injury after testicular torsion and showed
that the injury score in the hydrogen treatment group was

the lowest among all tested groups. Moreover, compared
with the other groups, in the hydrogen treatment group,
MDA levels were significantly lowered and SOD activity
was significantly improved (67).
In a rat model of in utero I/R injury, Mano et al. (68)

studied the effects of hydrogen on rat fetal hippocampal
damage caused by I/R on day 16 of pregnancy. The results
indicated that oral administration of hydrogen-saturated
water could reduce placental oxidative damage, alleviate
neonatal growth retardation and improve the rat fetal
hippocampal damage caused by in utero I/R (68). Similar
effects were observed in another study (69).
Therefore, a number of animal experiments over the last

few years have shown that hydrogen can obviously reduce
the damage caused by organ transplantation. From the initial
simple effect of antioxidative activity (23) to anti-inflamma-
tory and anti-apoptotic activity and regulation of signaling
pathways (31,54,64,70), the effects of hydrogen treatment
have been demonstrated in many experiments.
A substantial body of experimental evidence suggests that

hydrogen can significantly alleviate I/R injury related to
transplantation and has a therapeutic effect on complications
of transplantation (including GVHD), mainly via inhibition
of inflammatory cytokine secretion and reduction of oxida-
tive stress. However, the exact mechanisms leading to these
effects are currently ill known. In addition, many studies on
the effects of hydrogen were performed in models of I/R
injury, but not in models of graft I/R injury. Nevertheless, the
results may provide clues about the use of hydrogen for the
treatment of graft I/R injury, although caution must be taken
when examining these results.
With the advantages of being easily available, having

a low price, and being a nontoxic small molecule that is
easily absorbed, hydrogen has a strong prospect of clinical
applications. Further animal experiments and preliminary
human clinical trials are needed to lay the foundation for
hydrogen use as a drug in the clinic in the near future.
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