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OBJECTIVES: To evaluate the accuracy of magnetic resonance imaging measurements of cartilage tissue-
mimicking phantoms and to determine a combination of magnetic resonance imaging parameters to optimize
accuracy while minimizing scan time.

METHOD: Edge dimensions from 4 rectangular agar phantoms ranging from 10.5 to 14.5 mm in length and 1.25
to 5.5 mm in width were independently measured by two readers using a steel ruler. Coronal T1 spin echo
(T1 SE), fast spoiled gradient-recalled echo (FSPGR) and multiplanar gradient-recalled echo (GRE MPGR)
sequences were used to obtain phantom images on a 1.5-T scanner.

RESULTS: Inter- and intra-reader reliability were high for both direct measurements and for magnetic resonance
imaging measurements of phantoms. Statistically significant differences were noted between the mean direct
measurements and the mean magnetic resonance imaging measurements for phantom 1 when using a GRE
MPGR sequence (512x512 pixels, 1.5-mm slice thickness, 5:49 min scan time), while borderline differences were
noted for T1 SE sequences with the following parameters: 320x320 pixels, 1.5-mm slice thickness, 6:11 min scan
time; 320x320 pixels, 4-mm slice thickness, 6:11 min scan time; and 512x512 pixels, 1.5-mm slice thickness,
9:48 min scan time. Borderline differences were also noted when using a FSPGR sequence with 512x512 pixels, a
1.5-mm slice thickness and a 3:36 min scan time.

CONCLUSIONS: FSPGR sequences, regardless of the magnetic resonance imaging parameter combination used,
provided accurate measurements. The GRE MPGR sequence using 512x512 pixels, a 1.5-mm slice thickness and a
5:49 min scan time and, to a lesser degree, all tested T1 SE sequences produced suboptimal accuracy when
measuring the widest phantom.
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’ INTRODUCTION

Magnetic resonance imaging (MRI) is a non-invasive, multi-
planar imaging modality that enables three-dimensional assess-
ments of joints and their surrounding soft tissue structures. MRI
is the method of choice for the direct, non-invasive visualization
of cartilage (1). MRI-derived cartilage measurements are useful
for exploring the effects of modifiable risk factors on articular
cartilage prior to clinical disease and for identifying potential
preventive strategies. Thus, these measurements are of great

value for monitoring treatment responses in childhood arthritis
(2-4). However, the small dimensions of pediatric articular
cartilage make themeasurement of this tissue using conventional
MRI scanners challenging, as such, it is difficult to obtain
accuracy in such measurements. While past studies have
established that MRI-derived cartilage measurements produce
high face validity when using cadaveric and surgical specimens
from adults (5-12), to our knowledge, few if any prior studies
have determined the criterion validity of MRI-based measure-
ments of maturing cartilage using cadaveric or surgical speci-
mens or phantoms as reference standards. Currently, most of the
available information in the literature relates to observational
studies the effects of sex, age, growth, Tanner stage and physical
activity on articular cartilage volume (12,13).

Determining the accuracies of different MRI sequences
currently being used in clinical practice to assess maturing
cartilage in children and adolescents is crucial given that arti-
cular cartilage thickness tends to reduce during physiologicDOI: 10.6061/clinics/2016(07)09
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growth. Therefore, accurate measurements are required to
discriminate minimal arthropathy (which requires treatment)
from normal physiologic growth. The goals of the current
study were to assess the inter- and intra-reader reliabilities of
direct and MRI-acquired measurements of phantoms, to
evaluate the accuracies of MRI-derived measurements of
pediatric articular cartilage using four different-sized agar
phantoms designed to mimic the average dimensions of
pediatric cartilage tissue and to determine the combination of
MRI sequences and parameters that optimizes accuracy
while minimizing scan time.

’ MATERIALS AND METHODS

Phantom Preparation and Measurements
Four rectangular tissue-mimicking phantoms composed of

distilled water and 3% by mass agar (high-strength A-6924
Sigma Chemical, St Louis, MO) were prepared as described
elsewhere (14) and served as pediatric cartilage samples
(Figure 1a). The phantoms consisted of four variably sized
agar-based prototypes that were customized to encompass
orthogonally intersecting walls with top-view edge dimen-
sions in length x width of 14.4 x 5.5 mm (phantom 1), 13.6 x
3.8 mm (phantom 2), 10.6 x 2.1 mm (phantom 3) and 14.6 x
1.3 mm (phantom 4). The phantoms’ edge dimensions were
independently measured by two readers, a pediatric radi-
ologist (A.S.D.) and a clinical research assistant (J.R.M.),
using a 15-cm calibrated steel ruler. The dimensions were
measured twice by the readers, who were blinded to each
other’s results. All dimensions were recorded in mm. These
direct measurements served as the reference standards for
this study.

MRI Protocol and Interpretation
Imaging was conducted on a 1.5 Tesla Twin Speed MRI

scanner (General [GE] Electric Medical Systems, Milwaukee,
WI, USA) using an 8-channel volumetric knee coil. Coronal
T1-weighted spin-echo (T1 SE) [3 sequences with different
parameters], fast spoiled gradient-recalled echo (FSPGR)

[3 sequences with different parameters] and multiplanar
gradient-recalled echo (GRE MPGR) [2 sequences with
different parameters] images of the phantoms were obtained
while they were embedded in a saline-Magnevists bath at a
concentration of 469 mg/mL [0.5 mmol/mL]) (Figure 1b).
Details on the MRI sequences are available in Table 1. The
MR images (Figure 2) were independently viewed and
measured on a General Electric (GE) Advantage Workstation
(software version 4.2, General Electric Medical Systems) by
the readers. The MRI data were read twice by each reader in
a random order. A two-week interval was used between
baseline and repeat measurements to reduce any potential
recall effect. The readers were blinded to each other’s
measurements as well as to their own baseline sets of
measurements.

Signal-to-Noise Ratio Calculation
Signal-to-noise ratios (SNRs) were obtained for the MR

images of the phantoms using each sequence, as outlined in
Table 1. Using the GE Advantage Workstation, three small
circular regions of interest (ROIs) (area = 1 mm2) were
positioned within each phantom (Figure 3). Due to the small
size and shape variations of the phantoms, one large ROI
could not be used. The signal intensity (SI, defined as the
mean pixel intensity value in a ROI) was recorded for
each ROI (three ROIs per phantom) and averaged to yield
the mean SI for each phantom. The noise was defined as the
standard deviation (SD) in pixel intensity from three small
circular ROIs placed in background air (homogeneous area,
free from ghosting artifacts) (15). The SNR was calculated as
SNR=0.65*(SI/SD), employing a correction factor of 0.65 for
background noise (Rician distribution) (16).

Spatial Resolution
Spatial resolution served as a factor in determining the

accuracy of an MRI sequence for measuring maturing
cartilage and was calculated as spatial resolution (gross
assessment) = field of view/matrix (17).

Figure 1 - Layout of cartilage-mimicking phantoms (1-4) on a planar surface in ambient air (a) and embedded in a saline-Magnevists

bath (b).
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Statistical Analysis
Intra- and inter-reader reliabilities were examined by

calculating differences between the repeated phantom edge
measurements within and between readers. The mean and
SD of these differences were used to address the issues of
variability for the intra- and inter-reader phantom measure-
ments. The intra- and inter-reader reliability for the
measurements were assessed using coefficients of variations
(CVs). The CVs were calculated as CV = (SD/mean) x 100%
and expressed as a percentage to further assess the
dispersion of data within and between the readers (18-20).
CVs p10 indicated an acceptable agreement between the
readers in this study, based on previously published CVs
from MRI-based measurements of knee cartilage volumes
(21-26).
To determine whether the MRI-derived phantom measure-

ments differed significantly from the direct phantom
measurements (for different matrices and slice thicknesses),
paired t-tests were performed. Bonferroni correction was
used to adjust for multiple comparisons, with statistical
significance set as alphap.007 for all calculations. Borderline
statistically significant differences were considered for
p-values 4.007 and o.05. All statistical analyses were
performed using SAS, version 9.3 (SAS Institute, Cary, NC).

’ RESULTS

Direct Measurements vs. MRI-Derived
Measurements
High inter-reader reliability was observed for both the

direct phantom measurements, with CVs ranging from 2.50
to 6.40% (average, 4.40%) and for the MRI measurements,
with CVs ranging from 0.61 to 7.75% (average, 3.15%). The
intra-reader reliability was also high for both the direct and
the MRI-derived measurements, with CVs ranging from 0.00
to 6.40% (average, 3.47%) and 0.00 to 6.49% (average, 1.64%),
respectively.

Definite differences were noted between the mean direct
measurements and the mean MRI-derived measurements for
phantom 1 for the GRE MPGR sequence (512 x 512 pixels,
1.5-mm slice thickness, 5:49 min scan time; difference=
0.61 mm, p=.007). Borderline statistically significant differ-
ences were noted for the TI SE sequences with the following
parameters: 320 x 320 pixels, 1.5-mm slice thickness, 6:11 min
scan time (difference=0.45 mm, p=.049); 320 x 320 pixels,
4-mm slice thickness, 6:11 min scan time (difference=0.48
mm, p=.02); and 512 x 512 pixels, 1.5-mm slice thickness, 9:48
min scan time (difference=0.48 mm, p=.03). Borderline
significant differences were also noted for the FSPGR
sequence with 512 x 512 pixels, a 1.5-mm slice thickness,
and a 3:36 min scan time (difference=0.40 mm, p=.048).
No differences were noted between the mean direct
measurements and the mean MRI-derived measurements
(p-values4.05 for the different MRI sequences) for phantoms
2, 3 or 4 (Table 1).

Signal-to-Noise Ratio & Spatial Resolution
SNR values were calculated for all the MRI sequences

under investigation (Table 2). The SNR values were sufficient
and ranged from 8.60 to 90.7, with an average of 32.9. The
spatial resolutions (gross assessment) of the MRI sequences
were appropriate and ranged from 0.16 to 0.47 (Table 3).

’ DISCUSSION

The results of the current study show that FSPGR
sequences, regardless of the combination of MRI parameters
used and the thickness of the cartilage-mimicking structure
under assessment, provide accurate measurements. There-
fore, when considering feasibility from the perspective of
scanning time, the 0.5-mm slice thickness, 512 x 512 pixel,
3:38 min scan appears to be the most appropriate sequence
for imaging maturing cartilage. The 512 x 512 pixel, 1.5-mm
slice thickness, 5:49 min GRE MPGR sequence and, to a

Table 1 -Magnetic resonance imaging sequence parameters and statistically significant differences (p-values) between the mean direct
measurements and the mean MRI measurements (shown in bold).

Pulse sequence T1 SE GRE MPGR FSPGR

MRI

parameters

Matrix (pixels) 320x320 320x320 512x512 320x320 512x512 512x512 512x512 1024x1024

Slice thickness (mm) 1.5 4 1.5 4 1.5 1.5 0.5 1.5

NEX 2 2 2 2 2 1 1 1

Scan time (min) 6:11 6:11 9:48 3:40 5:49 3:36 3:38 10:33

TE (ms) 12 12 12 15 15 Min full Min full Min full

TR (ms) 568 568 568 450 450 N/A N/A N/A

Bandwidth (kHz) 31.2 31.2 31.2 15.6 15.6 31.2 31.2 31.3

FOV (mm) 150 150 150 150 150 160 160 160

Dimension 2D 2D 2D 2D 2D 3D 3D 3D

Differences

(p-values)

in the mean values

between the direct

measurements

and the

MRI measure-

ments (mm)

Phantom 1

(Min width = 3.0 mm,

m.d.e.m. = 9.94 mm)

0.45

(p=0.05)

0.48

(p=0.02)

0.48

(p=0.03)

0.35

(p=0.11)

0.61

(p=0.007)

0.40

(p=0.05)

0.39

(p=0.10)

0.41

(p=0.05)

Phantom 2

(Min width = 2.5 mm,

m.d.e.m. = 8.69 mm)

0.25

(p=0.22)

0.25

(p=0.56)

0.31

(p=0.29)

0.05

(p=0.47)

0.42

(p=0.35)

0.19

(p=0.35)

0.32

(p=0.14)

0.23

(p=0.12)

Phantom 3

(Min width = 1.5 mm,

m.d.e.m. = 6.38 mm)

0.042

(p=0.83)

0.33

(p=0.27)

0.06

(p=0.20)

-0.017

(p=0.40)

0.008

(p=0.76)

0.09

(p=0.74)

-0.050

(p=0.71)

0.07

(p=0.69)

Phantom 4

(Min width = 0.5 mm,

m.d.e.m. = 7.94 mm)

0.20

(p=0.51)

3.12

(p=0.22)

3.17

(p=0.21)

0.11

(p=0.45)

3.19

(p=0.20)

0.16

(p=0.63)

0.41

(p=0.20)

0.26

(p=0.34)

FOV field of view, FSPGR fast spoiled gradient-recalled echo, GRE MPGR multiplanar gradient-recalled echo, Min full minimum achievable TE with full

echo acquisition, m.d.e.m.mean direct edge measurement,Min widthminimum width, N/A not applicable, NEX number of excitations, T1 SE T1-weighted

spin-echo, TE echo time, TR repetition time.
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Figure 2 - Coronal MR images generated by various sequences and parameters.
(a) T1-weighted spin-echo (SE), 320 x 320 pixels, 1.5-mm slice thickness; (b) T1 SE, 320 x 320 pixels, 4-mm slice thickness; (c) T1 SE, 512 x
512 pixels, 1.5-mm slice thickness; (d) Multiplanar gradient-recalled echo (GRE MPGR), 320 x 320 pixels, 1.5-mm slice thickness; (e) GRE
MPGR, 512 x 512 pixels, 1.5-mm slice thickness; (f) Fast spoiled gradient-recalled echo (FSPGR), 512 x 512 pixels, 0.5-mm slice thickness;
(g) FSPGR, 1024 x 1024 pixels, 1.5-mm slice thickness; (h) FSPGR, 512 x 512 pixels, 1.5-mm slice thickness.
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lesser degree, all the T1 SE sequences (regardless of the
combination of parameters used) appeared suboptimal
for producing accurate measurements of the phantom with
the largest width.
To determine the accuracy of an MRI sequence in

measuring pediatric articular cartilage, the paradigm of
no statistically significant differences (and to a lesser extent
no borderline differences) between the mean direct measure-
ments and the mean MRI-derived measurements was taken
into consideration, in addition to the SNRs, spatial resolu-
tions and scan times for each given set of parameters.
Finally, it should be noted that the cartilage layers of a

maturing skeleton have a similar thickness to the diameters
of the phantoms used in this study (27).

Phantom 1
Differences between the mean direct measurements and

the mean MRI-derived measurements were only observed
for phantom 1, the phantom with the largest width. This was
the case for all MRI sequences (T1 SE, GRE MPGR and
FSPGR) employed in this study, regardless of parameter
variations. A possible explanation for this is the limitation
imposed by the ruler used, which is only precise to 1 mm
(±0.5 mm). Therefore, any direct phantom edge measure-
ment that fell between the 1-mm ruler increments was
subjective. Given this fact, all the recorded measurements
were rounded to the nearest 1-mm increment, resulting in a
measurement error of ±0.5 mm. Thus, we hypothesized
that the widths of phantoms 2, 3 and 4 (3.8 mm, 2.1 mm and
1.3 mm, respectively) were too close to the measurement
error of ±0.5 mm to allow the readers to obtain accurate
direct measurements. Therefore, because phantom 1 (largest
width) was the only sample to provide accurate direct
measurements of width, only this phantom was used to
evaluate the accuracies of the MRI sequences in quantita-
tively maturing cartilage. The p-values, SNRs, spatial
resolutions and scan times associated with phantom 1 are
summarized in Table 3.

T1 SE
Despite adequate SNR and spatial resolution, the relatively

long scan time (compared to the GRE MPGR and FSPGR
sequences) and the borderline differences between the MRI-
derived measurements and the reference standard measure-
ments observed in this study led us to conclude that using a
T1 SE sequence is inappropriate for accurately measuring
pediatric articular cartilage in a clinical setting.

GRE MPGR
One of the two GRE MPGR sequences tested in this study

(512 x 512 pixels, 1.5-mm slice thickness, 5:49 min scan time)
appeared to be inappropriate for accurately measuring thin
structures due to the significant differences observed
between the MRI-derived measurements and the reference
standard measurements. The SNR for this sequence was low
(for all four phantoms) compared to all other sequences, with
values ranging from 8.6 to 11.7 (average, 10). Therefore, noise
may have contributed to poor image quality and thus less
accurate MRI-derived measurements. Measurements from
the other GRE MPGR sequence tested in this study (320 x 320
pixels, 4.0-mm slice thickness, 3:40 min scan time) demon-
strated higher CVs and an overall better SNR than the above-
referenced GRE MPGR sequence and could be performed

faster (Table 3). However, this sequence had poorer spatial
resolution (0.47 mm). GRE MPGR sequences are routinely
used in clinical practice (28-30).

FSPGR
No significant differences were observed between the

direct and MRI-derived measurements for any of the tested
FSPGR sequences. Despite its good spatial resolution
(0.16 mm), the FSPGR sequence using a 1024 x 1024 pixel
resolution, 1.5-mm slice thickness and 10:33 min scan time
appeared to be inappropriate for accurately measuring
maturing cartilage given its low SNRs (range, 12.3-18.0;
average, 15.1) and lengthy scan time. The other two FSPGR
sequences, both using 512 x 512 pixel matrices, had
comparable scan times and spatial resolutions (Table 3).
However, the FSPGR sequence using a 512 x 512 pixel
resolution, 0.5-mm slice thickness, and 3:36 min scan time
had MRI measurements that were borderline statistically
significantly different (p=.048) from the reference standard
measurement for phantom 1.

Overall, according to this study, the FSPGR sequence using
a 512 x 512 pixel matrix, 0.5-mm slice thickness and 3:38 min
scan time appeared to be the most appropriate sequence for
accurately measuring the dimensions of pediatric articular
cartilage. This sequence had the second shortest scan time
compared to the other sequences with similar parameters,
making it desirable in a clinical setting. It also had an
appropriate SNR and spatial resolution.

Almost two decades ago, a study was published showing
that non-fat-suppressed and fat-suppressed fast low angle
shot MRI (FLASH) sequences provided the most accurate
determinations of the volume and thickness of adult

Figure 3 - Signal-to-noise ratio (SNR) calculation using MR images
of phantoms 1-4 embedded in a saline bath. SNR was calculated
as SNR=0.65*(signal intensity/standard deviation), employing a
correction factor of 0.65 for background noise. The grey ovals
represent 1-mm2 regions of interest (ROIs).
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cartilage (10). More recent studies have confirmed this
conclusion, stating that the use of FLASH at 1.5 T or 3 T
remains the standard for quantifying articular cartilage
(31-33). In recent years, double-echo steady-state imaging
(DESS) with water excitation has gained interest as an
alternate imaging modality for assessing cartilage due to its
faster acquisition time and lower achievable slice thickness
(34-38). However, it should be noted that DESS is still
undergoing validation with regard to its ability to accurately
measure cartilage dimensions (39). Other promising sequences
for the assessment of cartilage include driven equilibrium
Fourier transform (DEFT), which displays greater cartilage-to-
fluid contrast than FLASH (40), balanced steady-state free
precession (bSSFP) or true fast imaging with steady state
(FISP) and its variant, fluctuating equilibrium magnetic
resonance (FEMR) (41). Lastly, iterative decomposition of
water and fat with echo asymmetry and least squares
estimation (IDEAL) in combination with bSSFP demonstrates
superior SNR, faster acquisition times and better contrast than
FLASH (40). Again, it should be emphasized that quantitative
cartilage data have not yet been presented with respect to any
of the aforementioned sequences (DESS, DEFT, bSSFP/FISP,
and IDEAL) (40). At the time of this writing, FLASH remains
the MRI sequence of choice for accurately measuring the
thickness and volume of maturing cartilage. This is con-
cordant with the findings from the current study showing that
FSPGR was the most appropriate sequence for accurately
measuring pediatric cartilage-mimicking phantoms.

Study Limitations
One limitation of this study was the use of a steel ruler to

obtain reference measurements. By using a ‘‘regression to the
mean’’ approach (42), we expected to reduce human
measurement error in this regard. We preferred to use
‘‘human eye’’ measurements as opposed to a contact-sensing
dimension gage such as a micrometer because the mechan-
ical perturbations associated with the use of a micrometer
could have damaged the delicate phantoms used in this

study. In addition, we preferred to use paired t-test tests with
Bonferroni corrections for multi-testing to compare the test
and reference standard measurements rather than other
methods that account for unequal variances such as Welch’s
method (43). The rationale for this was the fact that Welch’s
method is not suitable for paired comparisons and could
over-correct the results in a pilot study with a restricted
sample size. A limitation inherent in the use of paired t-tests
was the assumption that the variances in the distributions of
the test measurements and reference standard measurements
were equal. As a consequence, one could argue that the
results of this study could be unreliable if the variances
between the underlying samples varied (43). Another
limitation of the study was the fact that the same readers
performed measurements of MR images and phantom
specimens, which could have prompted recall bias. To avoid
such bias, a time interval between reading sessions was
established a priori. Finally, although the agar phantoms
used in this study may not fully simulate the signal intensity
or SNR of maturing cartilage on MRI, it would be extremely
challenging to assess the signal intensities of layers of
cartilage collected from cadavers of children for ethical
reasons and results from animal cadavers would not
represent the thickness of maturing cartilage in children.
In conclusion, based on scan time, reference standard

comparability and accuracy, FSPGR proved to be the most
optimal MRI sequence for measuring maturing cartilage-
mimicking phantoms. Further translation of these results
into the clinic should be performed to validate them and thus
optimize the use of MRI sequences for the assessment of
maturing cartilage in the pediatric population.
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Table 2 - Signal-to-noise ratios for the magnetic resonance imaging sequences employed in this study.

T1 SE GRE MPGR FSPGR

Matrix (pixels) 320x320 320x320 512x512 320x320 512x512 512x512 512x512 1024x1024

Slice thickness (mm) 1.5 4 1.5 4 1.5 1.5 0.5 1.5

SNR Phantom 1 44.4 66.5 25.8 35.0 11.7 39.2 21.7 15.4

Phantom 2 38.2 79.8 31.0 44.9 8.6 47.6 22.4 18.0

Phantom 3 27.0 90.7 34.1 19.2 10.0 31.9 21.1 12.3

Phantom 4 33.6 84.9 33.5 23.7 9.7 36.8 20.7 14.5

FSPGR fast spoiled gradient-recalled echo, GRE MPGR multiplanar gradient-recalled echo, SNR signal-to-noise ratio, T1 SE T1-weighted spin-echo.

Table 3 - Summary of factors influencing the appropriateness of different MRI sequences for measuring maturing cartilage using
phantom 1.

Pulse sequence T1 SE GRE MPGR FSPGR

Matrix (pixels) 320x320 320x320 512x512 320x320 512x512 512x512 512x512 1024x1024

Slice thickness (mm) 1.5 4 1.5 4 1.5 1.5 0.5 1.5

FOV (mm) 150 150 150 150 150 160 160 160

Scan time (min) 6:11 6:11 9:48 3:40 5:49 3:36 3:38 10:33

Spatial resolution (mm) 0.47 0.47 0.29 0.47 0.29 0.31 0.31 0.16

p-value 0.049 0.020 0.030 0.111 0.007 0.048 0.10 0.051

SNR 44.4 66.5 25.8 35.0 11.7 39.2 21.7 15.4

FOV field of view, FSPGR fast spoiled gradient-recalled echo, GRE MPGR multiplanar gradient-recalled echo, SNR signal-to-noise ratio, T1 SE T1-weighted

spin-echo.
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