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OBJECTIVE: To compare the effects of glimepiride and metformin on vascular reactivity, hemostatic factors and
glucose and lipid profiles in patients with type 2 diabetes.

METHODS: A prospective study was performed in 16 uncontrolled patients with diabetes previously treated with
dietary intervention. The participants were randomized into metformin or glimepiride therapy groups. After four
months, the patients were crossed over with no washout period to the alternative treatment for an additional four-
month period on similar dosage schedules. The following variables were assessed before and after four months of
each treatment: 1) fasting glycemia, insulin, catecholamines, lipid profiles and HbA1 levels; 2) t-PA and PAI-1
(antigen and activity), platelet aggregation and fibrinogen and plasminogen levels; and 3) the flow indices of the
carotid and brachial arteries. In addition, at the end of each period, a 12-hour metabolic profile was obtained after
fasting and every 2 hours thereafter.

RESULTS: Both therapies resulted in similar decreases in fasting glucose, triglyceride and norepinephrine levels, and
they increased the fibrinolytic factor plasminogen but decreased t-PA activity. Metformin caused lower insulin and
pro-insulin levels and higher glucagon levels and increased systolic carotid diameter and blood flow. Neither
metformin nor glimepiride affected endothelial-dependent or endothelial-independent vasodilation of the brachial
artery.

CONCLUSIONS: Glimepiride andmetforminwere effective in improving glucose and lipid profiles and norepinephrine
levels. Metformin afforded more protection against macrovascular diabetes complications, increased systolic carotid
artery diameter and total and systolic blood flow, and decreased insulin levels. As both therapies increased
plasminogen levels but reduced t-PA activity, a coagulation process was likely still ongoing.
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INTRODUCTION

Cardiovascular disease is the leading cause of mortality in
patients with type 2 diabetes mellitus (DM2). The effective
control of glycemia can delay but not prevent vascular
complications, which are likely related to many other poorly
controlled atherogenic factors, such as hyperlipidemia,

hypertension, oxidative stress, accelerated aging, hyperin-
sulinemia, disturbances in coagulation and fibrinolysis (1).
Biguanides and sulfonylureas remain the principal oral

therapeutic options for treating patients with DM2 (2). The
biguanide metformin has been established as a first-line
drug for the management of type 2 diabetes. Its indications
are supported by its potency, lack of weight gain, low
risk of hypoglycemia and mode of action in countering
insulin resistance (3). The drug’s anti-atherosclerotic and
cardio-protective effects appear to reflect a combination of
glucose-independent effects on the vascular endothelium,
suppressant effects on glycation, oxidative stress and the
formation of adhesion molecules, and anti-inflammatory
properties, in addition to stimulating fibrinolysis and
favorable effects on lipid profiles (4).No potential conflict of interest was reported.

CLINICS 2012;67(7):711-717 DOI:10.6061/clinics/2012(07)03

711

This is an Open Access article distributed under the terms of the Creative Commons 

Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) 

which permits unrestricted noncommercial use, distribution, and reproduction in any 

medium, provided the original work is properly cited.



In contrast, sulfonylureas enhance insulin release primar-
ily by closing the ATP-sensitive K+ channels of pancreatic
b-cells. The glucose-lowering potency of sulfonylureas is
similar to that of metformin. However, by stimulating
insulin secretion, sulfonylureas are believed to favor the
development of hypoglycemia and weight gain, accelerate
beta-cell apoptosis and beta-cell exhaustion and impair
endothelial function, thereby increasing the risk for ischemic
complications. The blocking of potassium channels in the
heart by sulfonylureas has raised concern regarding the
drugs’ potential adverse effects in cases of ischemic heart
episodes (5).

Glimepiride is a long-acting and low potency insulin
secretagogue sulfonylurea that has an insulin-sensitizer
effect on the muscles and liver (6) and rarely causes
hypoglycemia (5). Data from studies in humans are scarce
but have suggested that the risks of developing coronary
artery disease and mortality do not appear to be increased
by glimepiride (7-8). In addition, no deleterious effects of
glimepiride on brachial vasodilatation — an acute effect (9)
— or ischemic preconditioning — acute (10) and chronic
(11) effects — have been observed

Only two studies have investigated the chronic vascular
effects of glimepiride measured by forearm arterial blood
flow, and the results were similar to those of glibenclamide
(12-13) and metformin (12). There have been no reports
comparing carotid artery blood flow during glimepiride and
metformin therapy, and only a few have measured hemo-
static factors (14-19), specifically plasminogen activator
inhibitor (PAI-1), fibrinogen and adhesion molecules. In
our study, the effects of glimepiride in patients with type 2
diabetes on vascular reactivity, hemostatic factors, and fat
and carbohydrate metabolism were compared with those of
metformin, the first-line therapy. This comparison is
valuable in that these different classes of oral anti-diabetic
agents — metformin and glimepiride — target the two main
pathophysiological defects of type 2 diabetes, and their
safety is fundamental.

METHODS

Patients
A prospective study was performed in 16 uncontrolled

patients with type 2 diabetes according to the ADA criteria
(2); the cohort included ten women and six men with a
mean age of 51.8¡6.5 years (mean¡SD) previously treated
with dietary intervention. Subjects who had fasting blood
glucose values .7.78 mmol/L and/or glycated hemoglobin
exceeding the normal range (4-8.5%) by 1.0% or more after
two or more months of a diet therapy program without
medications (basal values) were included. The participants
were randomly assigned to receive either metformin (M
group) or glimepiride (G group). The drug dosage was
titrated to achieve fasting glucose levels lower than 7.0
mmol/L using domiciliary capillary glucose measurements.
After four months, the patients were crossed over with no
washout period to the alternative treatment for an addi-
tional four-month period on a similar dosage schedule. The
subjects were followed on an outpatient basis every 1-2
weeks throughout the study period for drug and weight-
maintaining diet adjustments. The clinical characteristics of
the patients are depicted in Table 1. Three of the sixteen
subjects smoked, and six had systemic arterial hypertension,
which was treated with converting-enzyme inhibitors.

Seven of the ten women were postmenopausal, and none
had received hormone replacement therapy, while the pre-
menopausal women were tested up to the 8th day of the
follicular phase of their cycles. At the time of enrollment, a
complete medical history, physical examination, and
laboratory evaluation, including urinalysis, renal, hepatic,
and thyroid function tests and serum lipid and electrolyte
levels, were obtained for all of the subjects. An ECG and
echocardiogram were performed, and subjects with left
ventricular systolic dysfunction, valve abnormalities,
arrhythmias and ischemic heart disease were not enrolled.
None of the patients exercised on a regular basis. Other
exclusion criteria included any severe concomitant illness,
nephropathy (serum creatinine .1.6 mg/dL or microalbu-
minuria), uncontrolled hypertension (BP .190x120 mm
Hg), stroke, peripheral vascular disease, marked dyslipide-
mia (total cholesterol .6.5 mmol/L and triglyceride levels
.2.8 mmol/L), coagulopathy, proliferative diabetic retino-
pathy and use of hypolipidemic and anticoagulant medica-
tions. None of the subjects demonstrated clinical evidence of
autonomic neuropathy as assessed by blood pressure
response to standing, beat-to-beat heart rate variation, the
Valsalva maneuver and the handgrip test. The Medical
Ethics Committee of Hospital das Clı́nicas and Heart
Institute (INCOR) approved the study protocol, and all of
the subjects provided written informed consent.

Study protocol
The patients were instructed to continue a similar food

intake and abstain from the use of tobacco, alcohol, coffee,
salty food, and any physical activity for 24 h before test days
and discontinue converting-enzyme inhibitors 72 h before
the evaluation.
The following procedures were performed before (basal

values) and after each four-month treatment period (M and
G groups): 1) hormonal and metabolic evaluations: fasting
plasma glucose, insulin and catecholamine levels, lipid
profiles and HbA1; 2) hemostatic factor determination:
tissue plasminogen activator (t-PA) antigen and activity,
plasminogen activator inhibitor (PAI-1) antigen and activity,
platelet aggregability, fibrinogen and plasminogen levels;
and 3) a cardiovascular evaluation: by high-resolution
ultrasound of the carotid and brachial arteries.
At the end of each treatment period, a 12-h metabolic

profile, including measurements of glucose, insulin, gluca-
gon, proinsulin, and triglyceride levels at fasting and every
2 h (from 7 am to 7 pm), was obtained. The meals offered to
patients (breakfast, lunch, and dinner) contained 50% of

Table 1 - Anthropometric data.

Pre-

treatment

Metformin

Group

Glimepiride

Group

Age (yr) 51.8¡6.5

Sex (F:M) 10:06

Dose (mg/day) 1907¡558 4¡2

Weight (kg) 71.1¡13.4 68.9¡12.5 70.5¡14.2 Ns

BMI (kg/m2) 27.6¡3.6 26.7¡3.4 27.2¡3.7 Ns

W/H 0.9¡0.1 0.9¡0.1 0.9¡0.1 Ns

DBP (mm Hg) 83.3¡9.3 79.4¡7.5 81.1¡8.5 Ns

SBP (mm Hg) 141.5¡14.0 129.2¡16.4 134.0¡14.0 Ns

Values are expressed as means¡SDs. DBP=diastolic blood pressure;

SBP= systolic blood pressure; BMI =body mass index; W/H=waist-to-hip

ratio.
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their total calories as carbohydrates, 20% as protein, and
30% as fat, and the meals were provided by the Metabolic
Unit of the Hospital das Clı́nicas.

Cardiovascular evaluation
The study was performed in a laboratory setting at a

temperature of 23 C̊ and in low luminosity, with the
patients in the supine position. A catheter was inserted into
the forearm vein 30 minutes before blood sample collection
for catecholamine, insulin, sodium, and potassium determi-
nations and maintained with a saline infusion.
During the study, the heart rate and systolic, diastolic,

and mean blood pressure were registered using a non-
invasive, automatic oscillometric device (Dinamap 1486,
Critikon, Inc., Tampa, FL, USA). The images for flow
velocity and diameters of the arteries were first established
after a 10-minute equilibration period using a transducer
(Apogee-800 Plus, ATL Inc., Bothell, WA, USA). Intima-
media thickness (IMT), the compliance and distensibility of
the carotid artery, and the total and systolic blood flow
indices (TFI and SFI) were obtained. Flow-mediated
vasodilation of the brachial artery was measured using a
method reported elsewhere (20). A cuff placed on the left
forearm was inflated to 200 mm Hg for 5 minutes. Imaging
of the artery was performed before cuff inflation (baseline;
B) and at 60 seconds after cuff deflation (reactive hyperemia;
RH) to obtain measurements of flow velocity and the
diameter of the artery. Fifteen minutes after acquisition of
the post-occlusion image, the baseline image was reobtained
(rebase; RE), after which nitroglycerin was administered
sublingually; 3 and 5 minutes later, another image was
acquired (N3 and N5, respectively) to establish endothe-
lium-independent vasodilation. The total and systolic flow
indices (TFI and SFI) of the brachial artery were also
calculated based on these images.

Biochemical and hormonal analyses
Glucose was determined by the glucose oxidase method

(Labtest, São Paulo, Brazil) (21), and HbA1 (normal values: 4
to 8.5%) was determined by ionic chromatography (Labtest,
São Paulo, Brazil) (22). Total cholesterol was measured by
employing the cholesterol oxidase/peroxidase method; HDL
cholesterol was separated using the phosphotungstic acid/
Mg2+ method and measured using the oxidase/peroxidase
method, while triglycerides were measured by the lipase/
glycerol kinase method (Labtest, Sao Paulo, Brazil) (23). LDL
was estimated using the Friedewald equation (LDL choles-
terol = total cholesterol minus HDL cholesterol minus 0.26
triglycerides). The intra-assay and inter-assay coefficients of
variation (CVs) for the glucose and lipid determinations were
,3% and 0%, respectively. Insulin, proinsulin and glucagon
were quantified by a double-antibody radioimmunoassay
(Linco Research, St. Louis, MO, USA) (24). Catecholamines
were measured by high-performance liquid chromatography
(25). The intra-assay and inter-assay CVs for the hormonal
analyses were 6.8% and 9.6% for insulin, 4.4% and 6.5% for
glucagon, 5.5% and 6.8% for catecholamines, and 5% and
5.3% for proinsulin, respectively.
Hemostatic factors were measured using the same

assay. Plasminogen was measured by chromogenic assay
(Plasminogen Accucolor TM Sigma Diagnostic, ST Louis, MO,
USA), and the intra-assay coefficient of variation was,3.0%.
Fibrinogenwas determined by the CLAUSSmethod (26) with
Fibriquick Assay (Sigma Diagnostics, ST Louis, USA). The

intra-assay CV was 8%. Platelet aggregation was performed
using amethod described by Born (27). The activities of tissue
plasminogen activator (t-PA) and plasminogen activator
inhibitor (PAI-1) were determined by quantitative assays
(ChromolizeTM t-PA and ChromolizeTM PAI-1, respectively,
Biopool, Umea, Sweden); the intra-assay CVswere 3.9% for t-
PA and 3.7% for PAI-1. PAI-1 and t-PA antigens were
determined by Imulyse and Tint-Elize (Biopool, Umea,
Sweden), respectively. The intra-assay CVs were 5% for
PAI-1 and 5.5% for t-PA. All of the analyses were performed
in duplicate.

Statistical methods
Numerical data are reported as means and standard

deviations, and nominal data are reported as proportions.
Differences (95% CI) between the treatment groups were
initially tested for treatment-time interaction (28) and then
compared by an analysis of variance for repeated measure-
ments and a Tukey’s post-test or Student’s two-tailed test,
with p,0.05 considered statistically significant.

RESULTS

A significant treatment period interaction effect was
demonstrated for triglycerides, VLDL cholesterol, plasmi-
nogen and norepinephrine levels; hence, only the values
from the first treatment period were analyzed.

Anthropometric, biochemical, hormonal and
hemostatic factor measurements
Weight, waist-to-hip ratio, and systolic and diastolic blood

pressure did not change after glimepiride or metformin
treatment (Table 1). Fasting plasma HbA1 (p= 0.000009) and
glucose levels (p= 0.00009) decreased by equal amounts in
both treatment groups (Table 2). Fasting insulin levels were
greater in the G group (p= 0.009) compared with the M
group. Similar decreases in VLDL cholesterol (p= 0.007),
triglycerides (p= 0.023) and norepinephrine (p= 0.042) levels
were obtained in both groups. There was an increase in
plasminogen levels (p= 0.025) after the initial four months of
M (118.2¡8.26142.4¡32.0) or G (128.4¡8.66130.2¡8.1)
therapy, which although persistent did not remain significant
when the groups switched to the alternative drugs. LDL and
HDL cholesterol and epinephrine levels were unchanged.
Both therapies decreased t-PA activity (p= 0.024). There was
no significant effect of either of the therapies on the other
hemostatic factors measured (PAI-1 antigen and activity,
fibrinogen levels and platelet aggregation — data not
shown).

12-h metabolic profile
Only the areas under the curve during glimepiride and

metformin therapy were analyzed (Figure 1). The 12-h
integrated areas for glucose (M:87.7¡11.03 vs. G:104.61¡
36.63 mmol/L/h) and triglycerides (M:20.47¡9.68 vs. G:22.4
¡11,03 mmol/L/h) were similar for both therapies.
Treatment with metformin was associated with higher

glucagon (M:1361.69¡473.25 vs. G:1044.22¡326.90 ng/L/h;
p= 0.0046) and lower insulin-integrated (M:1076.61¡389.02
vs. G:1718.69¡837.03 pmol/L/h — p= 0.02) and proinsulin-
integrated (M:565.38¡279.11 vs. G:834.71¡299.96 pmol/L/
h — p= 0.0016) areas compared with the G group (Figure 1).
The proinsulin-to-insulin molar ratios during the M
(0.58¡0.32) and G (0.60¡0.37) therapies did not differ.
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Table 2 - Glucose, glycated hemoglobin, insulin, total and fractional cholesterol, triglycerides and catecholamine levels.

Pre-treatment Metformin Group Glimepiride Group p-value

Glucose (mmol/L) 15.1¡5.12 7.10¡1.34 8.3¡1.7 a0.00011 b0.037

HbA1 (%) 10.8¡2.3 8.2¡1.4 7.8¡1.3 a0.009 b0.001

Insulin (pmol/L) 59.5¡22.9 55.9¡29.4 79.6¡25.8 c0.009

Total cholesterol (mmol/L) 5.41¡1.29 5.05¡0.93 5.23¡1.09 Ns

HDL cholesterol (mmol/L) 0.99¡0.21 1.01¡0.18 0.95¡0.22 Ns

LDL cholesterol (mmol/L) 3.45¡1.16 3.32¡0.80 3.64¡0.90 Ns

VLDL cholesterol (mmol/L) 0.92¡0.54 0.66¡0.31 0.70¡0.25 d0.007

Triglyceride (mmol/L) 2.01¡1.19 1.38¡0.67 1.46¡0.60 d0.023

Norepinephrine (nmol/dL) 1481.0¡986.4 913.3¡497.5 958.7¡414.7 d0.042

Epinephrine (nmol/dL) 104.7¡176.8 26.1¡72 16.3¡49.6 Ns

t-PA activity (IU/mL) 1.1¡0.5 0.7¡0.3 0.8¡0.3 d0.024

a(pre-treatment vs. metformin); b(pre-treatment vs. glimepiride); c(metformin vs. glimepiride); d(pre. vs. post-treatment). Values are expressed as means ¡

SDs.

Figure 1 - 12-h metabolic profiles of glucose, triglyceride, insulin, proinsulin and glucagon levels. Mean levels are indicated.
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Vascular reactivity
The elastic arterial properties were evaluated.
Carotid artery (Table 3): Both the total (p= 0.004) and

systolic (p=0.002) carotid flow indices increased with metfor-
min therapy compared with baseline values and glimepiride
therapy. Moreover, the carotid systolic diameter changed in
opposite directions during the therapies; its percentage change
(from basal levels) increased with metformin and decreased
with glimepiride, and these different behaviors reached
significance (p= 0.028). The compliance, distensibility and
intima-media thickness of the carotid artery did not change
significantly with any therapy (data not shown).
Brachial artery: There was a similar increase in flow-

mediated vasodilatation of the brachial artery after reactive
hyperemia (endothelium-dependent) and sublingual nitro-
glycerin (endothelium-independent) stimuli across the
groups. There were no significant effects of medications
on systolic diameter or the total and systolic flow indices of
the brachial artery (data not shown).

DISCUSSION

This study compared the actions of two different classes
of drugs (the biguanide metformin, an insulin sensitizer,
and the sulfonylurea glimepiride, an insulin secretagogue)
on carbohydrate and lipid metabolism, hemostatic factors
and vascular reactivity. We evaluated the same patients
with type 2 diabetes before and after four months of
treatment with metformin or glimepiride. The aim of this
strategy was to minimize the influence of metabolic control
on specific drug effects other than glucose control. The
data in the literature remain poor and contradictory re-
garding the direct actions of these drugs on the cardiovas-
cular risk-related factors analyzed in the present study (15-
19,30-33).

Carbohydrate and lipid metabolism
Both treatment groups achieved similar and significant

mean decreases from baseline in fasting plasma glucose and
HbA1 levels. The lower insulin and proinsulin levels (at
fasting and during the 12-h metabolic profile) observed
during metformin therapy compared with glimepiride were
in agreement with reports of metformin’s sparing effects on
beta cell function, thus lowering the basal and postprandial
insulin requirements for the same metabolic control (3,17).
These differences in insulin secretion could not be
accounted for by changes in body weight, which were
unaffected in both groups. Although some authors have
found no increases in insulin levels (18) and others have
reported that glimepiride’s insulin trophic effect might
diminish in the presence of normoglycemia (34), the insulin
levels in this study were found to be higher during therapy
with glimepiride than metformin.

Despite these findings, the proinsulin-to-insulin ratio
areas under the curve during the 12-h metabolic profile
were similar for both therapies, suggesting that glimepiride
did not worsen the previous secretor dysfunction of beta
cells, as reported with other sulfonylureas (35).
The overall effects on plasma lipids were small, with

similar lowering of fasting VLDL cholesterol and triglyceride
levels after the initial four months of both therapies. TG levels
during the 12-h metabolic profile were also similar between
the two drugs. LDL and HDL cholesterol levels were
unaffected by treatment. Metformin. and glimepiride-asso-
ciated improvements in lipid metabolism were expected, but
the reported changes have been small (3,16,30). The near
normal triglyceride and cholesterol levels of our patients
prior to both therapies were likely factors that influenced
these modest results.
Despite causing lower insulin and higher glucagon secre-

tion, metformin kept glucose and lipid profiles at similar
levels compared with glimepiride. The blood glucose-low-
ering actions of metformin result primarily from an ameliora-
tion of insulin resistance, increase in peripheral glucose
disposal, decrease in fatty acid oxidation and activation of the
enzyme adenosine monophosphate (AMP) kinase to increase
glucose transporter 4 (GLUT4) translocation to plasma
membrane cells in the muscles and fat and reduce gluconeo-
genesis in the liver (3,36). The higher glucagon levels are
unlikely to have interfered with metformin’s action, as
glucagon appears to have little effect on the presence of
insulin, suggesting that its diabetogenic action occurs only
under conditions of high insulin deficiency (37). In addition,
glucagon’s effects on hepatic glucose production could have
been strongly counteracted by metformin.

Hemostatic factors
Glimepiride and metformin had similar effects on hemo-

static factors; both increased plasminogen levels (significant
after four months on each therapy) and decreased t-PA
activity. These findings observed in the G group have not
been reported previously.
The improvements in fibrinolysis after metformin and

glimepiride therapy suggested by the increases in plasmi-
nogen levels occurred along with an unexpected decrease in
another marker of fibrinolysis — t-PA activity. In contrast to
our results, an increase in t-PA activity during metformin
therapy has been described (38). However, as active t-PA
declines as a function of increasing concentrations of PAI-1
and considering that PAI-1 antigen and activity did not
change in our experiment, we can speculate that the formed
complexes of PAI-1 and t-PA cleared in an accelerated
fashion by the liver (39) contributed to the decrease in t-PA
activity and that an impairment of fibrinolysis continued to
occur. These data are likely implicated in the high frequency
of cardiovascular disease in type 2 diabetes. No additional
effects of any of the therapies were observed on the other

Table 3 - Total (TFI) and systolic (SFI) flow indices and percentage changes in the systolic diameter of the carotid artery.

Pre-treatment Metformin Group Glimepiride Group p-value

TFI (L/min/m2) 0.319¡0.079 0.382¡0.094 0.285¡0.091 a0.024; c0.003

SFI (L/min/m2) 0.599¡0.155 0.738¡0.167 0.563¡0.152 a0.006
c0.003

% Systolic Diameter 2.75¡9.93 -3.50¡11.46 ,0.05

a(pre-treatment vs. metformin); c(metformin vs. glimepiride). Values are expressed as means ¡ SDs.
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hemostatic factors analyzed (fibrinogen levels and platelet
aggregation — data not shown).

Vascular reactivity
Increased carotid artery systolic diameter and blood flow

were demonstrated only with metformin therapy, whereas
an opposite trend in carotid diameter was observed with
glimepiride use. Similar trends were observed even after
patients treated for hypertension were excluded. No
changes were observed for the other properties of the
carotid (compliance, distensibility, and intima-media thick-
ness) or brachial arteries (flow and diameter measurements
after stimulus with reactive hyperemia and nitroglycerin).

Metformin’s effects on carotid artery flow, independent of
glucose decay or changes in systolic and diastolic blood
pressure, likely afford more protection against cerebral
diabetes complications. Its countering of insulin resistance
action is likely implicated. Furthermore, we observed a
negative correlation between fasting serum insulin levels
and carotid compliance in the M group (r = -0.5; p= 0.04).
Several observational analyses have suggested cardio-
protective benefits with metformin use in patients with
cardiovascular disease (3-4,40). Patients on metformin
exhibited reduced nitroxidant metabolites and increased
nitric oxide levels (30). As the carotid artery is more elastic
and more proximal to the heart than the brachial artery, it
might be more amenable to these improvements.

As both therapies improved glucose control in very
similar manners, their beneficial effects on lipid profiles,
hemostatic factors and norepinephrine levels can likely be
ascribed to improvement in the metabolic milieu and not to
a specific drug effect. Our study is the first to demonstrate
decreases in norepinephrine levels after the first four
months of glimepiride therapy and similar trends for
epinephrine levels. The same results were obtained for
metformin.

Although metformin has been confirmed as the first-line
option for treating diabetes, troublesome gastrointestinal
intolerance occasionally precludes its use (3). Thus, sulfo-
nylureas remain important adjuvants for patients with
intolerance to metformin or limited insulin secretion (5).
When compared with metformin, glimepiride achieved
similar efficacy in controlling weight and improving
metabolic and hemostatic factors. Although it led to greater
insulin secretion, glimepiride did not worsen beta cell
function, as measured by the proinsulin-to-insulin ratio or
vascular reactivity. Long-term studies are needed to
ascertain whether glimepiride can reduce beta cell exhaus-
tion or apoptosis.

Our study has some limitations. The four-month treat-
ment duration could have not been sufficient to demon-
strate all of the effects of these medications. Additionally, as
a crossover study with no washout period, a treatment
period interaction effect was demonstrated for some
variables (triglyceride, VLDL cholesterol, plasminogen and
norepinephrine levels). To minimize this problem, only the
values from the first treatment period were analyzed.

In patients with type 2 diabetes inadequately controlled
by dietary therapy, M and G resulted in similar overall
improvements in glycemic control, lipid profiles, norepi-
nephrine levels, and levels of the fibrinolytic factor
plasminogen. All of these beneficial effects were likely due
to improvement of the metabolic environment and were not
drug-specific. However, as both therapies reduced t-PA

activity, the coagulation process continued, which can
worsen cardiovascular disease. Only metformin countered
insulin resistance and induced an increase in carotid artery
diameter and blood flow indices. Neither drug affected
small brachial artery vasodilation.
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