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OBJECTIVES: Aerobic exercise training prevents cardiovascular risks. Regular exercise promotes functional and
structural adaptations that are associated with several cardiovascular benefits. The aim of this study is to investigate
the effects of swimming training on coronary blood flow, adenosine production and cardiac capillaries in
normotensive rats.

METHODS: Wistar rats were randomly divided into two groups: control (C) and trained (T). An exercise protocol was
performed for 10 weeks and 60 min/day with a tail overload of 5% bodyweight. Coronary blood flow was
quantified with a color microsphere technique, and cardiac capillaries were quantified using light microscopy.
Adenine nucleotide hydrolysis was evaluated by enzymatic activity, and protein expression was evaluated by
western blot. The results are presented as the means ¡ SEMs (p,0.05).

RESULTS: Exercise training increased the coronary blood flow and the myocardial capillary-to-fiber ratio. Moreover,
the circulating and cardiac extracellular adenine nucleotide hydrolysis was higher in the trained rats than in the
sedentary rats due to the increased activity and protein expression of enzymes, such as E-NTPDase and 59-
nucleotidase.

CONCLUSIONS: Swimming training increases coronary blood flow, number of cardiac capillaries, and adenine
nucleotide hydrolysis. Increased adenosine production may be an important contributor to the enhanced coronary
blood flow and angiogenesis that were observed in the exercise-trained rats; collectively, these results suggest
improved myocardial perfusion.
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INTRODUCTION

Exercise training is an important factor for preventing
cardiovascular risk and has been associated with several
cardiovascular benefits. To characterize the benefits of
exercise, resting bradycardia has been considered to be the
hallmark of cardiovascular effects for exercise-training
adaptation in animals.1,2 Left ventricular hypertrophy and
angiogenesis also result from aerobic exercise training and

are considered physiologically beneficial to the heart by
improving myocardial perfusion and function.3-5

Adenosine is one of the principal factors that regulates
tissue function, particularly when the energy supply fails to
meet the cellular energy demand. In this manner, adenosine
accumulates during ischemia or hypoxia due to the imbal-
ance between oxygen supply and demand.6 During exercise,
myocardial oxygen demand increases, and adenosine release
is increased to levels that are similar to those of restricted
oxygen supply conditions.7,8 One important factor that
contributes to adenosine accumulation is an increase in the
substrate fromwhich the nucleoside is formed. Therefore, the
cleavage of ATP and the subsequent increase in AMP
concentration, associated with an increase in the activity of
the adenosine-forming enzymes (nucleotidases), lead to the
accumulation of adenosine to increase the energy supply by
vasodilatation and to decrease the energy demand through a
negative-feedback mechanism.6No potential conflict of interest was reported.
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Adenine nucleotides are continuously present in the
extracellular space of the heart. Extracellular ATP is
considered to be a powerful signaling molecule, and a
variety of extracellular enzymes utilize this nucleotide to
induce biological responses. The release of endogenous
nucleotides represents a critical component for the ini-
tiation of a signaling cascade. An important route of
nucleotide appearance in the extracellular milieu is
nucleotide efflux via various pathways, which include
ATP release channels, nucleotide-specific transporters and
vesicular exocytosis.9 The mechanism of sequential ATP
hydrolysis via the conversion of ADP into AMP is
mediated by a family of Ecto-nucleoside triphosphate
diphosphohydrolase (E-NTPDases 1-8) enzymes, which
have been classified in order of their discovery and
classification. E-NTPDases 1, 2, 3, and 8 are expressed
as cell surface enzymes, E-NTPDases 5 and 6 exhibit
intracellular localization and undergo secretion after
heterologous expression, and E-NTPDases 4 and 7 are
exclusively intracellular. Significant homology has been
confirmed between E-NTPDase 1 and human CD39.
Moreover, 59-nucleotidase, which is otherwise known as
CD73, hydrolyses 59-AMP and is expressed in different
tissues, including the heart, where it is located both in the
extracellular and intracellular compartments.9 Changes in
the activities of ectonucleotidases may modify the produc-
tion of adenosine and affect myocardial blood flow. In fact,
increased 59-nucleotidase enzyme activity has been
observed following a single session of endurance and
sprint training,10 and increased ecto-59-nucleotidase activ-
ity in the rat heart was also observed following a higher
intensity program of chronic swimming training.11 The
increase in enzyme activity that was observed in these
studies suggests alterations in the production of adeno-
sine, but the relationships of these alterations with blood
flow have not yet been investigated.

Adenosine, which is produced primarily through the
metabolism of ATP, interacts with adenosine receptors (the
four subtypes of ARs are A1, A2A, A2B, and A3), which are
G-protein-coupled receptors. The divergence of the cou-
pling between each receptor and various G proteins, which
are linked to different enzymes, channels or transporters,
can elicit varied responses in different tissues or cells.
Multiple cardiac cells, including fibroblasts, endothelial
cells, smooth muscle cells, and myocytes, express adenosine
receptors. Among other effects, these G-protein-coupled
receptors in the heart mediate responses of coronary flow
modulation and cardioprotection.12

Therefore, the present investigation was intended to
verify whether a chronic, low-intensity swimming training
protocol could alter coronary blood flow, cardiac capillaries
and the hydrolysis of extracellular adenine nucleotides in
normotensive rats.

METHODS

Animals
Male Wistar rats (weighing 180-250 g) were used in

these experiments. The rats were randomly divided into
control (C) and trained (T) groups and were kept
separated in standard cages. Food and water were
provided ad libitum. The room temperature was main-
tained at 23¡1 C̊, and a 12:12 hours light-dark cycle was
maintained throughout the experiment. The rats were

identified and weighed weekly to determine their adapta-
tion to the workload. The animal protocol was conducted
according to the Guideline for the Care and Use of
Laboratory Animals and was approved by the Ethics
Committee of the School of Physical Education of the
University of São Paulo (No. 2006/05).

Exercise Training Protocol
The swimming training was performed as previously

described;1 it was executed five times each week with a
duration of 60 min in a swimming system with warm
water at 30-32 C̊ for 10 weeks. Adaptation sessions were
performed for the first two weeks of the protocol; during
these sessions, the exercise duration and workload were
gradually increased until the rats could swim for 60 min
while wearing caudal dumbbells that were 5% of their body
weight. The adaptation sessions avoids the excessive
physiological stress observed on the immune system.13

This protocol is defined as low- to moderate-intensity and
long-term training, which is effective for the promotion of
cardiovascular adaptations and increases in muscle oxida-
tive capacity.14

Hemodynamic and Blood Flow Analysis
Coronary blood flow was evaluated by the colored

microsphere technique, which was previously described.15

Briefly, 24 hours after the last exercise session, the rats were
anesthetized with ketamine (90 mg/kg) and xylazine
(10 mg/kg, ip) to facilitate the implantation of two catheters
that were filled with saline solution into the femoral artery
and left ventricle. A PE-10 catheter was positioned into the
abdominal aorta through the femoral artery for the direct
measurement of arterial pressure (AP). The second PE-50
catheter was inserted into the left ventricle through the right
carotid artery for colored microsphere infusion. The catheter
position was determined by observing the characteristic left
ventricular pressure waveform during surgery. To show
that the aortic valves were not injured, arterial pressure was
measured before and after ventricular catheterization. If the
diastolic arterial pressure decreased, suggesting an aortic
valve lesion, the animal was discarded. The catheters were
anchored with silk sutures and exteriorized at the back of
the neck. Rats that received food and water ad libitum were
studied one day after the procedure, and the animals were
conscious and allowed to move freely during the experi-
ments.16

The femoral artery catheter was connected to a pressure
transducer, and arterial pressure signals were monitored
continuously, except during microsphere infusion and
withdrawal of a reference blood sample. The recorded data
were analyzed on a beat-to-beat basis to quantify changes in
the heart rate and the systolic, diastolic and mean blood
pressure. Dye-Trak colored microspheres (15 mm; Triton
Technology, San Diego, CA, USA) were infused at rest (red:
200 000 CM) for blood flow and cardiac output determina-
tion. Microsphere infusion, reference blood samples and
tissues were processed according to the method of
Hakkinen et al.15 After the microsphere infusion, the
animals were sacrificed, and their hearts were removed to
determine blood flow. The absorption spectrum peak for
the red microspheres was obtained at 530 nm, and the
minimum acceptable measurement was 0.010 absorbance
units.
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For each infusion, the tissue flow rates were calculated
according to the following formula:

Qt~At(Qb7Ab ),

where Qt and Qb represent the flow in the sample tissue and
in the reference blood, respectively, and At and Ab represent
the peak absorbance of the tissue sample and of the
reference blood, respectively. The calculation of Qb, in
mL.min-1, was:

Qb~ reference blood sample weight71:05 g:mL
�1
,

reference blood sample volume70:5 mL:min
�1

where 1.05 g.mL-1 is the specific gravity of blood, and
0.5 mL.min-1 is the withdrawal rate. The blood flow rates
were divided by the tissue weights to yield mL.min-1.g-1.

Adenine Nucleotides and Nucleoside Hydrolysis
Isolation of Blood Serum Fraction. The blood samples

were drawn following decapitation, and they were
subsequently centrifuged in plastic tubes at 5,000 x g for
15 min at 4 C̊. The serum samples were stored at -20 C̊ until
they were used in the experiments.
Isolation of Sarcolemmal Fraction. The sarcolemmal

preparation was isolated from the rat hearts as described
by Velema and Zaasgma.17 The ventricles were minced and
homogenized in 80 mL of 20 mM Tris-HCl that contained
1.0 mM EDTA, pH 7.0, using a tissue homogenizer for four
periods of 7-s periods at maximum speed with 15-s resting
intervals. The homogenate was centrifuged for 20 min at
8,800 x g. The supernatant (S1) was centrifuged for 20 min at
12,500 x g. This step was repeated with supernatant S2, and
the resulting supernatant S3 was recentrifuged for 60 min at
44,000 x g. The obtained pellet (P4) was resuspended in
15 mL of 20 mM Tris-oxalate, 0.6 M KCl and 1.0 mM EDTA,
pH 6.8, and was centrifuged for 60 min at 44,000 x g.
The pellet obtained from this final centrifugation step
(sarcolemmal fraction) was suspended in 20 mM Tris-HCl
and stored at -20 C̊. This preparation was used as the
enzyme source. All of the procedures were performed at
4 C̊.
Measurement of ATP and ADP Hydrolysis. ATP and ADP

hydrolysis were determined using a modification of the
method described by Yegutkin.18 The enzyme activity was
routinely determined at 37 C̊ in the following incubation
media: (a) the blood serum was incubated with 112.5 mM
Tris-HCl, pH 8.0, with approximately 1.0 mg of serum
protein at 37 C̊ for 40 min in a final volume of 0.2 mL,
and the reaction mixture contained ADP or ATP as a
substrate19 (2.0 mM or 3.0 mM, respectively); (b) the cardiac
sarcolemmal fraction was incubated with 50 mM Tris-
HCl buffer, pH 7.5, 1.5 mM CaCl, and 0.8–1.0 mg of
protein in a final volume of 0.2 mL, and the reaction
mixture contained ADP or ATP as a substrate20 (3.0 mM or
2.0 mM, respectively).
Both of the reactions were initiated by adding the

substrate to the reaction mixture, which was preincubated
for 10 min at 37 C̊. The incubation times and protein

concentrations were chosen to ensure the linearity of the
reaction. The reactions were stopped by the addition of
0.2 mL of 10% trichloroacetic acid (TCA). The serum
samples alone were centrifuged at 5,000 x g for 15 min to
eliminate any precipitated protein, and the supernatant was
used for the colorimetric assay. All of the samples were
chilled on ice, and the amount of inorganic phosphate (Pi)
that was liberated was measured according to the procedure
of Lanzetta et al.21 To correct for non-enzymatic hydrolysis,
we performed controls by adding the serum after the
reaction was stopped with TCA. The enzyme activities were
expressed as nanomoles of Pi released per minute per
milligram of protein.
Measurement of AMP Hydrolysis. The enzyme activity

was routinely determined at 37 C̊ in the following
incubation media: (a) in the blood serum, the reaction
mixture, which contained AMP as a substrate (2.0 mM) in
100 mM Tris–HCl, pH 7.5, was incubated with 1.0-1.5 mg
serum protein at 37 C̊ in a final volume of 0.2 mL;22 (b) in
the cardiac sarcolemmal fraction, the reaction mixture,
which contained AMP (2.0 mM) as a substrate in 100 mM
Tris-HCl buffer, pH 7.5, and 1.5 mM MgCl was incubated
with 1-2 mg of protein in a final volume of 0.2 mL. All of the
other procedures were the same as for the ATP-
diphosphohydrolase activity, which was described above.
The protein concentration was measured according to the

method of Bradford,23 and bovine serum albumin was used
as a standard.

Western Blot Analysis
The protein levels of E-NTPDase 1 (CD 39) and ecto-59-

nucleotidase (CD 73) in the heart muscle were analyzed by
western blotting. The frozen heart muscles (100 mg) were
homogenized in cell lysis buffer that contained 100 mM
Tris-HCl, 50 mM NaCl, 1% Triton X-100, and a protease
inhibitor cocktail (1:100, Sigma Aldrich, Saint Louis, MO,
USA). Insoluble heart tissues were removed by centrifuga-
tion at 3,000 x g at 4 C̊ for 10 min. The samples
were subjected to SDS-PAGE (10%). After electrophoresis,
the proteins were electro-transferred onto a nitrocellulose
membrane (BioRad Biosciences, NJ, USA). Equal loading of
the samples (50 mg) and an even transfer efficiency were
monitored with the use of 0.5% Ponceau S staining of the
blot membrane. The blot membrane was then incubated in a
blocking buffer (5% non-fat, dry milk; 10 mM Tris-HCl,
pH 7.6; 150 mM NaCl; and 0.1% Tween-20) for 2 h at room
temperature. The membrane was then incubated overnight
at 4 C̊ with a rabbit polyclonal antibody directed against
CD39 and CD73 (1:1,000; Santa Cruz Biotechnology, CA,
USA). The binding of the primary antibody was detected
with the use of peroxidase-conjugated secondary antibodies,
and enhanced chemiluminescence reagents (Amersham
Biosciences, NJ, USA) were used to visualize the autoradio-
gram, which was later exposed to photographic film. The
film was developed, and the bands were analyzed using the
Scion Image software program (Scion Corporation, based on
the NIH image program). The heart muscle GAPDH
expression levels were used to normalize the results. The
results are expressed in arbitrary units (AU).

Cardiac Morphometric Analysis
Twenty-four hours after the last exercise session, the rats

were sacrificed by decapitation, and their hearts were
immediately excised and rinsed in physiological solution,
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dried on filter paper and weighed. For the morphometric
analysis, the LV was fixed in 6% formaldehyde and
embedded in paraffin; it was cut into 5-mm sections at the
level of the papillary muscle and subsequently stained with
Periodic Acid Schiff (PAS) to visualize the cellular struc-
tures. From each sample, three microscopic fields were
randomly chosen from the transversal sections using a light
microscope (with an oil immersion objective, x400 magni-
fication). The capillaries were identified as small vessels,
and they contained a uniform lumen with a diameter
,12 mm, which was previously described.5 The quantifica-
tion of the capillaries was determined in microscopic fields
that measured 0.04 mm2, and the measurement was
expressed as a capillary-to-fiber ratio (number of capillaries
per myocyte).

Statistical Analysis
The data are reported as the mean¡ standard error of the

mean (SEM). An unpaired Student’s t-test was used to
compare the means. To indicate how closely two variables
changed in relationship to each other, Pearson’s correlation
coefficient was used. For all of the analyses, values of
p,0.05 were considered to be significant.

RESULTS

Arterial Pressure, Heart Rate and Coronary Blood
Flow

Although the systolic, diastolic, and mean blood pres-
sures were not different between the untrained and trained
groups, the exercise training significantly decreased the
resting heart rate, as demonstrated in Table 1.

Figure 1 demonstrates the increased coronary blood flow
that was observed in the swimming-trained group com-
pared with that of the control group (C: 2.46¡0.33 vs. T:
5.45¡1.47 mL.min-1.g-1; p,0.05).

Hydrolysis of Adenine Nucleotides in Blood Serum
and Cardiac Sarcolemmal Fraction

Swimming training increased the hydrolysis of adenine
nucleotides in the blood serum fraction as follows
(Figure 2A): ATP (C: 0.62¡0.03 vs. T: 0.85¡0.08 nmol
Pi

.min-1.mg-1 protein; p,0.05), ADP (C: 0.88¡0.07 vs. T:
1.41¡0.08 nmol Pi

. min-1.mg-1 protein; p,0.001), and AMP
(C: 0.47¡0.03 vs. T: 0.60¡0.04 nmol Pi

.min-1.mg-1 protein;
p,0.05). Similarly, the hydrolysis of nucleotides in the
cardiac sarcolemmal fraction (Figure 2B) were increased by
swimming training as follows: ATP (C: 101¡8 vs. T:
217¡14 nmol Pi

.min-1.mg-1 protein; p,0.001), ADP (C:
50¡2 vs. T: 109¡7 nmol Pi

.min-1.mg-1 protein; p,0.001),

and AMP (C: 1.9¡0.2 vs. T: 3.8¡0.6 nmol Pi
.min-1.mg-1

protein; p,0.05).

Western Blot
In the heart muscle, the swimming training increased the

protein expression of both ectonucleoside triphosphate
diphosphohydrolase (protein expression CD39: C 0.44¡0.1
vs. T 1.63¡0.2 AU; p,0.001) and ecto-59-nucleotidase
(protein expression CD73: C 0.72¡0.1 vs. T 1.62¡0.2 AU;
p,0.01) (Figures 3A and B, respectively).

Cardiac Capillaries
Figure 4A demonstrates that the swimming training

induced angiogenesis by the capillary-to-fiber ratio in-
creased (C 0.89¡0.02 vs. T 1.20¡0.05 capillaries/myocyte;
p,0.001). Additionally, Figure 4B shows a high positive
correlation between the capillary/myocyte ratio and cor-
onary blood flow (r = 0.83; p,0.01).

DISCUSSION

The primary findings reported here show that swimming
training increases coronary blood flow, capillary supply in the
myocardial and extracellular nucleotide hydrolysis. This
increased nucleotides hydrolysis produces more adenosine, a
potent vasodilator that may contribute to augmented coronary
blood flow and angiogenesis. Moreover, the exercise-training-
induced angiogenic process that was observed in the heart
contributes to improved cardiac perfusion.
Regular exercise improves the autonomic control of

cardiovascular function and results in the adaptation of the
autonomic nervous system, which is commonly observed as a
reduced resting heart rate24 and is considered to be a
physiological marker for the aerobic adaptation to exercise
training.1,2 Indeed, resting bradycardia was observed in the
trained group, which confirmed the effectiveness of the
exercise training protocol; however, blood pressure did not
change as an effect of exercise training. The effect of aerobic
exercise training on the blood pressure of normotensive
animals and humans seems to beminimal, and our results are
consistent with other studies.1,2,25,26

In contrast to the pathological left ventricular hypertro-
phy that was observed in hypertensive heart disease,27

Table 1 - Hemodynamic parameters.

SBP DBP MBP HR

mm Hg mm Hg mm Hg bpm

C (n =5) 115.9¡3.5 94.5¡1.6 107.2¡2.1 328.5¡7.3

T (n= 5) 118.3¡6.4 87.7¡4.7 103.4¡5.1 285.8¡6.7*

Systolic blood pressure (SBP), diastolic blood pressure (DBP), mean blood

pressure (MBP) and heart rate (HR) are presented for the control (C) and

trained (T) groups. The values are represented as the means ¡ SEMs;

n =number of observations. (*) p,0.01, comparing the trained group

versus the control group.

Figure 1 - Coronary blood flow (mL.kg-1.min-1). The values are
represented as the means¡ SEMs; (*) p,0.05 compared with the
control group. The number of animals (n) is indicated in the
figure.
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chronic endurance exercise led to physiological left ven-
tricular hypertrophy3 and coronary vascular adaptations
that can improve the myocardial oxygen supply.28 Oxygen
supply can also be improved by increased blood flow; in
this study, we observed that swimming training increased
coronary blood flow (Figure 1), which was previously
demonstrated in dogs that had performed a single session of
treadmill exercise29 and during hypoxemic conditions that
were designed to promote coronary dilatation in rats that
underwent treadmill training.30

The alteration in myocardial blood flow may have
resulted from the production of adenosine, which is a
purine nucleoside that is recognized as a major local tissue-
function regulator. Nucleoside production is increased in
conditions in which ATP utilization increases, such as
during shear stress, hypoxia, and stretching. In the
cardiovascular system, the nucleotide hydrolysis chain
represents the major route for the generation of extracellular
adenosine.9 This study describes for the first time that in the
myocardium of normotensive rats that were submitted to
chronic swimming training, the activity (Figure 2) and
expression (Figure 3) of nucleotidases, such as E-NTPDase
(expression of CD39) and 59-nucleotidase (CD73), were
higher than in sedentary rats; this increased the hydrolysis
of extracellular nucleotides and contributed to adenosine
production.
E-NTPDase 1/CD39 is one of the most studied members

of the E-NTPDase family, and it has the same preference for
ATP and ADP hydrolysis (1:1). This enzyme has a well-
described role in regulating blood flow and platelets by
converting ATP and ADP, which are the vasoconstrictor
and promoter of platelet aggregation, respectively, to AMP.
The association of this enzyme with 59-nucleotidase/CD-73
converts AMP into adenosine, which is a potent anti-platelet
vasodilator. Indeed, the phenotype of the CD39-null mouse
is consistent with thromboregulation disorders, which

display heightened susceptibility to inflammatory vascular
reactions.9,31 Although we only evaluated E-NTPDase 1
(CD39) expression in the myocardium, we cannot rule out
the participation of other E-NTPDases that are involved in
extracellular nucleotide hydrolysis, primarily E-NTPDase 2
(CD39L1) and E-NTPDase 6 (CD39L2), which are highly
expressed in the heart.32 Moreover, circulating nucleotides
are also known to be important signaling molecules.
Therefore, in this work, we evaluated nucleotide hydrolysis
in blood serum. Similar increases were observed in the
activity of both soluble enzymes. Therefore, circulating
blood serum enzymes, such as E-NTPDases and 59-
nucleotidase, may contribute to the reduction of excess
nucleotides and the increase in the concentration of
adenosine.
It has been well documented that functional and

structural adaptive changes, such as angiogenesis, are
induced by chronic exercise training.33 Our results demon-
strated an angiogenic process in response to swimming
training (Figure 4A). An increased capillary supply in the
myocardium of exercised rats has already been described by
other researchers.5,34 Regular exposure to the increased
shear stress that results from increased blood flow during
exercise is considered to be the primary signal for exercise-
training-induced adaptations.35 Indeed, we demonstrated a
positive correlation between increased coronary blood flow
and the number of cardiac capillaries (Figure 4B). One of the
effects of adenosine is the promotion of vessel growth, and
evidence has indicated that adenosine plays an important
role in neovascularization (including angiogenesis and
vasculogenesis).12 Higher levels of adenosine may be an
important factor for the angiogenesis that is induced by
exercise training due to adenosine’s capacity to increase
levels of pro-angiogenic molecules (e.g., VEGF). Studies in
humans and animals have confirmed myocardial capillary
proliferation in response to exogenous adenosine or

Figure 2 - Activity of ATP diphosphoydrolase and 59-nucleotidase enzymes (nmol Pi
.min-1.mg-1 protein) on the blood serum fraction (A)

and cardiac sarcolemmal fraction (B). The values are represented as the means ¡ SEMs. (*) p,0.05 compared with the control group.
The number of animals (n) is indicated in the figure. All of the samples were assayed in duplicate, and only samples in which the two
absorbance values were in accordance were considered in the experiment.
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augmented endogenous adenosine.12 Therefore, enhanced
angiogenesis is an adaptive response to functional adapta-
tions, such as augmented local blood flow and higher
adenosine levels, which are induced by exercise, and
angiogenesis is a prominent beneficial effect of exercise
training on the myocardium.
The present study demonstrated that chronic swimming

training is efficient for producing functional and structural
adaptations of the cardiovascular system. Changes in the
extracellular hydrolysis of adenine nucleotides by augmen-
ted activity and the expression of enzymes, such as E-
NTPDase and 59-nucleotidase, may increase adenosine
production and could be among the mechanisms that
contribute to the increased coronary blood flow and
angiogenesis that is observed in exercise-trained rats.
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