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Protective measures against ultrafiltration failure in
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Ultrafiltration failure in patients undergoing peritoneal dialysis is a condition with an incidence that increases over
time. It is related to increased cardiovascular morbidity and mortality and is a major cause of the abandonment of
the treatment technique. Because the number of patients undergoing renal replacement therapy is increasing with
society aging and because approximately 10% of this population is treated with peritoneal dialysis, this matter is
becoming more common in everyday practice for clinicians involved in the care of patients with chronic renal
failure. In this review, we summarize the available measures used to prevent and treat ultrafiltration failure and the
current state of research in the field, both in the experimental and clinical settings, focusing on the possible clinical
applications of recent findings.
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INTRODUCTION

Peritoneal dialysis (PD) is an effective therapeutic
strategy for managing both acute and chronic kidney
disease (CKD) and has been employed as a renal replace-
ment therapy (RRT) modality for CKD for the last five
decades.1 During this time, technical improvements have
led to reduced morbidity and mortality rates. In the last
decade, better outcomes have been noted with PD, whereas
mortality rates have remained stable with hemodialysis
(HD).2 However, the percentage of patients who begin RRT
with PD remains approximately 10% worldwide,3 and
although PD and HD should be considered as complemen-
tary therapy modalities, PD is not routinely offered to
incident patients.
Over the last century, our understanding of the mechan-

isms involved in solute and fluid transport across the
peritoneal membrane (PM) has improved, and this growing
knowledge has allowed apparatus development and PD
prescription in consonance with peritoneal physiology.4

‘‘Pore theory,’’5 the most commonly applied description of
the dynamics of molecular transport through the PM,
basically considers three pore sizes in the walls of sub-
mesothelial capillaries throughwhichmolecules can travel. A
minority of the pores, with diameters of 250 Å, are called
large pores and allow the movement of proteins across the
PM. Most small solutes can pass through the small pores,

which have diameters of 43 Å. Aquaporin-1 (AQP1) has also
been identified in the PM6 and has been called ‘‘ultrapore’’ or
‘‘ultrasmall pore’’ because only water molecules can move
through it. Forty percent of the osmosis during the first
4 hours of a dwell duration is attributed to transport through
AQP1. The fluxes through these channels are dependent on
the Starling forces that act in the peritoneal cavity and blood
compartments, and more recently, importance has been
assigned to the distance of each pore from the cavity, which is
referred to as the ‘‘distributive model.’’7

Because of longer patient survival, PD is used for
increasingly long periods. Dysfunctions in the peritoneal
transport system have been found to develop over time,
with the most prevalent problem being ultrafiltration failure
(UFF).

Ultrafiltration failure
UFF, which can be defined as ultrafiltration (UF) of less

than 400 mL after a 4-hour dwell duration with a 4.25%
dextrose-based peritoneal dialysis fluid (PDF), is a clinical
condition that has an increasing incidence with chronic PD
duration. Thirty to fifty percent of patients develop UFF
after 6 years of PD, and in 24% of cases, changing the RRT
modality is required to maintain clinical stability. 8,9

Signs and symptoms of fluid overload, such as high
arterial pressure, pulmonary congestion and a worsening of
cardiac function are the usual manifestations of UFF, and a
differentiation from the loss of residual renal function (RRF)
or dietary noncompliance is necessary. To this end,
measuring the UF volume after 4 hours is of great value.10,11

Morbidity and mortality rates have been shown to be
significantly higher among PD patients with UFF;12,13 these
higher morbidity and mortality rates have been attributed toNo potential conflict of interest was reported.
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excess fluid and its effects on the cardiovascular system,
such as arterial hypertension and left ventricular hyper-
trophy.14 Atrial natriuretic peptide and brain natriuretic
peptide have been studied in PD patients as markers of
volume overload, and high levels of each have been linked
to an eight-fold increase in mortality relative to patients
with low levels.15 Also important is the correlation
between insulin resistance and metabolic syndrome with
the fast peritoneal transport,17 since these metabolic
changes can potentially contribute to the development
of cardiovascular disease.16 Therefore, prevention, early
identification, and proper clinical management of UFF
are crucial elements of cardiovascular risk reduction
strategies.

UFF generally develops as the result of one or more of the
following phenomena: a significant increase in the perito-
neal vascular surface area, a decrease in the osmotic
conductance of the PM, increased lymphatic absorption,
and the reduction of the peritoneal surface area by scars or
adhesions.18

Uremia,19 infectious peritonitis,20 high glucose concen-
trations in PDF,21 glucose degradation products (GDPs)
formed during heat sterilization,22 and the generation of
advanced glycation end-products (AGEs)23 have all been
implicated in UFF development. These factors are pri-
marily related to chronic and acute inflammation of the
peritoneum,24 which in turn leads to local neoangiogen-
esis, vasculopathy, the epithelial-to-mesenchymal transi-
tion (EMT) of mesothelial cells25 and collagen deposition
in the compact submesothelial zone with subsequent PM
thickening.26 These morphological changes translate clini-
cally into faster small-solute transport with rapid vanish-
ing of the osmotic gradient between the blood and
the cavity and diminished osmotic conductance of the
membrane, meaning that there is less osmosis even
though a gradient is present. Both effects are associated
with a functional decline in the peritoneum as a dialyz-
ing membrane. There is evidence that the decrease in
the peritoneal osmotic conductance is related to AQP1
dysfunction27 and that the acceleration of small-solute
transfer is related to the thickening of the collagen layer
and high vascular density.

A rare, though dramatic, clinical condition also asso-
ciated with the loss of dialyzing and UF capacity is known
as sclerosing peritonitis, encapsulating sclerosing peritoni-
tis (ESP) or abdominal cocoon. One possible explanation
for the development of this condition is a ‘‘two-hit’’ model,
in which a denuded, thickened PM resulting from long-
term PD undergoes a second inflammatory insult.28 These
second stimuli, even when very slight, could trigger the
development of ESP in a severely damaged peritoneum,
while a less-damaged membrane would likely require
more potent stimuli. The most characteristic feature of ESP
is the formation of a peritoneal capsule as the result of the
deposition and organization of fibrin, which are likely the
key events in ESP’s pathogenesis. The fibrin seems to
derive from increased plasma exudation from the perito-
neal microvessels, and the adhesion of the peritoneum
causes serious intestinal immobility, thus resulting in
ileus.29

However, some researchers believe this condition to be a
separate nosological entity as opposed to a further stage of
progressive peritoneal damage caused by bio-incompatible
PDFs.30 These researchers argue that the different natural

history, the association with autoimmune diseases31 and the
frequent occurrence in individuals not being treated with
PD and even in other species favor this hypothesis. In
addition, animal models for these conditions require
different aggressors to be simulated.32 In this hypothesis,
PD would act as a risk factor, not as the etiologic agent of the
condition.
This review focuses on the established clinical measures

and ongoing research on the possible interventions aimed at
preventing the gradual degeneration of PM related to
chronic PD.

UFF prevention
Peritonitis. Because peritonitis episodes are consistently

related to the loss of UF capacity,33 adequate prevention and
early treatment are essential to the success of the technique.
It is believed that compliance with the antiseptic routine is
related to a reduction in the number of infectious episodes,34

which consequently results in lower dropout rates.
Specific measures to reduce the incidence of peritonitis

begin with catheter insertion. These measures include
positioning the tip downward, not using stitches to close
the exit site wound and using prophylactic intravenous
antibiotics, all of which have been shown to decrease
infection.35,36

Over the long term, hand washing is crucial for the
prevention of contamination; the training nurse is the most
important professional for this activity. There is evidence
that, in addition to hand washing, topical prophylaxis with
mupirocin37,38 or gentamycin39 reduces peritonitis rates.
Because exit site infections are also related to peritoneal
cavity infections, early and aggressive treatment of exit site
lesions and infections should be started as soon as the first
signs appear and should be maintained until the lesion or
infection has been resolved.40

Avoiding contamination from other sources through
antibiotic prophylaxis is also recommended when invasive
procedures are performed and when there is another intra-
abdominal source of contamination.

Liquid and salt balance. It is prudent to frequently
remind PD patients of the importance of fluid and salt
restriction because the ability of the kidneys to reach a
neutral sodium balance is diminished with the loss of RRF.
In PD, sodium removal occurs through diffusive trans-

port with glucose-based solutions. When icodextrin is
employed, convective transport contributes to global
sodium loss as well.41 In the initial phase of the glucose-
based fluid dwell, the osmotic gradient is maximal, and
intense osmotic water transport occurs through the ultra-
small pores (AQP1), leading to sodium sieving. Sodium
sieving is a consequence of the exclusive traffic of water
free of solutes, leaving significant sodium loss restricted to
the later phase of the dwell.4 The shorter the prescribed
dwells are, the more important sodium retention becomes.
Clinically, patients treated with automated peritoneal
dialysis (APD) tend to lose less sodium than patients
treated with chronic ambulatory peritoneal dialysis
(CAPD) due to the short night dwells.42,43 For APD
patients, sodium restriction is even more important in
achieving sodium and fluid balance. With icodextrin, the
removal of salt through convection can be enhanced
because with every 100 mL of UF, approximately 0.9 mg
of sodium chloride is removed.44
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In individuals who respond, who are generally those with
residual clearance, the use of high-dose loop diuretics may
help in achieving dry weight through an increase in renal
fluid and sodium excretion without an additional increase
in the glucose load – a measure that does not interfere in
RRF.45,46

Initial and continuous counseling regarding the impor-
tance of complying with the dietary restrictions and
adjusting these recommendations according to RRF loss
over time may allow the prescription of fewer anti-
hypertensive drugs47 and a lower glucose concentration to
promote adequate osmosis and maintain dry weight. To
ensure an objective approach to patient management, the
reassessment of dietary intake and the renal component of
Kt/V (RRF) should be routine practice.
Dialysis fluids. In most countries, glucose is the primary

osmotic agent used in PD. It has been demonstrated that
glucose acts as a promoter of angiogenesis and fibrosis in the
peritoneal cavity in a manner similar to that seen in damaged
end-organs in diabetes.48,49 The greater the necessity to
promote UF, which is related to the RRF and fluid and salt
ingestion, the bigger the required glucose load. Also
important is the baseline small-solute transfer rate of an
individual patient, which influences the glucose load
prescribed by the nephrologist.10 As the speed of solute
transport and the dissipation of the osmotic gradient
increase, the amount of glucose required to obtain adequate
fluid balance also increases. Avoiding unnecessary glucose
overload in the cavity is recommended during long-term
follow-up to prolong the modality lifespan.
Alternatives to glucose have been researched in the last

decade, and the glucose polymer icodextrin is already
routinely available in some countries. It is an isosmolar
compound that promotes UF through colloid osmosis, and
its use is currently restricted to 1-2 daily exchanges to avoid
systemic accumulation.50 In general, it is prescribed for the
longest dwell, which is the night dwell in CAPD and the
day dwell in APD. A slower decline in peritoneal function
over time has been demonstrated with icodextrin than with
high glucose concentrations.
The avoidance of glucose-based PDF also helps mini-

mize the exposure of the membrane to GDPs and AGEs,
which are also associated with a fast transport profile and
UFF. GDPs are toxic to mesothelial cells and lead to the
faster formation of AGEs in the membrane than glucose
does.51 Fluids with neutral pH and low GDP content lead
to an increase in effluent cancer antigen 125 (CA-125), a
mesothelial cell mass marker in PD, indicating preserva-
tion of the mesothelium.52 Minimizing AGEs is also of
interest, but it should be remembered that the PDF is not
the only source of these molecules; the uremic serum is a
site of AGE formation as well, but the peritoneal accu-
mulation of AGEs can be reduced if PDFs with lower
glucose concentration are prescribed.
An alternative is to prescribe purely bicarbonate-buffered

low-GDP fluids, which seem to improve peritoneal mem-
brane integrity, as indirectly evaluated using human perito-
neal mesothelial cell (HPMC) culture;53 preserve host defense
mechanisms as shown in animal models;54 and provide a
better effluent marker profile, with lower levels of transform-
ing growth factor-b (TGF-b) and vascular endothelial growth
factor (VEGF) levels in patients.55 However, these fluids are
not widely available. Additionally, these fluids seem to have
a positive effect on RRF, but it is not yet possible to foresee

how the PM of patients will respond over the long term with
chronic exposure to these new solutions.
Oxidative stress. Many links have been identified

between oxidative stress and the activation of fibrogenic and
angiogenic pathways, mostly through TGF-b and VEGF. The
expression of growth factors induced by GDPs, such as
methylglyoxal and acetaldehyde, have been successfully
blocked in in vitro and in vivo studies by the antioxidant
agents N-acetylcysteine (NAC)56 and catalase.57 Our group
has also shown that NAC prevents PM thickening in vivo58.
GDPs are precursors of AGEs, which also induce the
production of cellular reactive oxygen species (ROS),59,60 and
ROS in turn promote AGE formation and thus signal
amplification.61 In the PM, GDPs, and AGEs play an
essential role in chronic inflammation when glucose-based
fluids are employed, and it has been found that NAC and
angiotensin receptor antagonists (ARBs) prevent PDF-induced
collagen I and heat shock protein accumulation in the
omentum, results that strongly suggest that ROS are major
mediators of peritoneal fibrosis.62

In addition, cyclooxygenase-2 inhibitors63 and peroxi-
some proliferator-activated receptor-c (PPAR-c) antago-
nists64 have been tested in HPMC studies and in animal
studies to determine the ability of these drugs to prevent the
connection between inflammatory stimuli and profibrotic
pathways; positive results have been reported.
The final goal is the translation of these results into

clinical practice. In patients, NAC, angiotensin-converting
enzyme inhibitors (ACEis) and ARBs have been tested, and
the results are discussed in the following sections.
Fibrosis. TGF-b1 is the most important cytokine involved

in peritoneal fibrosis, and its synthesis in peritoneal
mesothelial cells and the synthesis of its receptors are
stimulated by bio-incompatible PDFs.65,66,67 Interleukin-1
(IL-1) and tumor necrosis factor-a (TNF-a), which are
released during peritonitis episodes, also contribute to
peritoneal fibrogenesis, probably through the induction of
EMT,68which is a phenomenon experiencing growing interest
amongst recent publications. Other cytokines, such as TGF-b2,
TGF-b3, platelet-derived growth factor, fibroblast growth
factor-2, and connective tissue growth factor69 are involved,
together with plasminogen activator inhibitor-1,70 in the
initiation of fibrosis. There is also evidence that angiotensin
II induces fibronectin expression in mesothelial cells via
extracellular-signal-regulated kinase 1 (ERK-1), ERK2 and
mitogen-activated protein kinase (MAPK)71,72 and that it
takes part in the membrane’s cellular immune response.73

In experiments with cultured HPMCs and animal models,
attempts to block fibrosis through interference with these
factors have been made, with variable results. Among the
tested interventions, positive results for fibrosis and EMT
prevention were achieved with bone morphogenic protein-
7,74 emodin,75 mammalian target of rapamycin inhibitors,76

pentoxifylline,77 diltiazem,78 tranilast,79 and dipyrida-
mole.80 In collaboration with Spanish colleagues, we have
tested the beta-blocker nebivolol in vivo and have achieved
success in reducing fibrogenesis and neoangiogenesis, in the
PM.81 The adenovirus-mediated gene transfer of decorin has
also been tested and was shown to reduce peritoneal
collagen content in an animal model of PD.82

In addition to the prevention of fibrogenesis, collagen
turnover is becoming an object of scrutiny in PD. The matrix
metalloproteinases 2 and 9 (MMPs) are gelatinases involved
in the regulation of inflammation and in the degradation of
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the extracellular matrix, and thus they facilitate the
migration of cells in processes such as EMT. When in
excess, MMP activity may impair wound healing.83 ACEis
have been studied in this context and have shown direct
anti-MMP-2 activity in PD by binding to its active site and
forming complexes in the drained effluent.84 This activity
could possibly blunt EMT.

These experiments have been extremely useful in further
improving our understanding of UFF pathogenesis indepen-
dent of the clinical application of the specific drug employed.
Comprehension of the involved mechanisms has been
essential in adapting PD to peritoneal physiology and in
determining which drugs could be beneficial to patients with
signs of fibrosis progression and PM degeneration in PD.

Angiogenesis. The inhibition of angiogenesis has been
tested in vitro and in vivo in different scenarios, such as wound
healing,85 carcinoma metastasis,86 and PD.82 Inhibition has
been achieved with anti-proliferative agents such as
angiostatin and anti-VEGF antibodies.87 In the context of
wound healing, slower or incomplete tissue repair has been
found to be a consequence of this inhibition.88 In carcinomas,
the results have been positive, and anti-VEGF antibodies are
already clinically available as adjuvant drugs to inhibit the
growth and metastases of a variety of tumors.

In vivo, systemic angiogenesis inhibition has been related
to different clinically undesirable effects, which differ
according to the developmental phase. In adults, one of
the most prominent unwanted events is the worsening of or
de novo proteinuria,89,90 which can lead to additional loss of
RRF. In retinal vascular proliferative diseases, however,
where AGEs stimulate the expression of VEGF mRNA,91

anti-VEGF agents are used locally with success.92 The
possibility of using locally active agents without systemic
side effects is an attractive idea in the management of
progressively accelerating small-solute transport because
VEGF activation is thought to play an essential role in the
observed membrane damage93 and because the preservation
of RRF is related to survival in dialysis patients.94

Experimental protocols are currently under development.
Captopril, enalapril and losartan have also been studied

in HPMC culture and have been shown to lead to a decrease
in VEGF production after exposure to TNF-a and IL-1.95 In
humans, a retrospective analysis comparing small-solute
transport in 36 patients receiving an ACEis or ARBs with
that in 30 controls revealed that in the treated group, small-
solute transport decreased over 2 years of follow-up,
whereas transport increased among controls.96 Although
the available evidence is not considered strong, as discussed
in a recent meta-analysis,97,98 the use of either ACEis or
ARBs in PD patients is commonly advocated to preserve
RRF and prevent cardiovascular events.

Most of the experimental protocols targeting the vascular
component of UFF pathogenesis are focused on its preven-
tion, and important answers concerning the reversal of
established excessive vascularization are still lacking.

UFF reversal
A few strategies have led to recovery from UFF, including

membrane rest involving four weeks of hemodialysis, with
which positive results have been obtained in recently
diagnosed cases.99,100 In addition, in cases of UFF associated
with beta-blockers, where scant tissue damage is observed,
the reversal of the dysfunction has been described with the
discontinuation of the drug.101 However, reversal is not

guaranteed in severe cases of UFF in which histological
damage is clear or when the diagnosis is only made at later
stages. A delayed diagnosis can be common in patients with
significant RRF who can maintain adequate fluid balance
without being dependent on peritoneal clearance. In cases of
established tissue damage, such as diffuse fibrosis and
significant established neoangiogenesis, no satisfactory
clinical or pharmacological intervention has been found.
Mesothelial cell transplantation has been studied as

another possibility for promoting PM repair, as these cells
play a central role in local inflammatory responses, in the
regulation of peritoneal microcirculation and in maintaining
the balance between fibrin deposition and degradation.102 A
few studies have been published evaluating this intervention
in animals and in humans,103,104,105 but activation of the PM,
with prolonged inflammation and increased thickness in the
early post-transplant phase, has been noticed.106 Whether
this activation is a result of the cell culturing conditions or of
the transplant itself has yet to be established; therefore, the
applicability of this technique is not yet clear.
Another possible intervention for the future could be the

transplantation of bone marrow-derived cells because
markers indicative of their implantation were detected in
the PM 7-42 days after their intraperitoneal injection;
however, this result is very preliminary, and it is not
possible to define the role of bone marrow-derived cells in
the context of membrane failure.107

CONCLUSION

In the near future, it is possible that new pharmacological
interventions aiming to minimize the occurrence of UFF will
emerge as a result of ongoing worldwide research in this
field because many of the processes involved in the
progression of damage have been unveiled. However, few
strategies are available to date. ACEis or BRAs are already
frequently prescribed to the PD population in an attempt to
preserve RRF and prevent UFF, regardless of the limited
available evidence supporting their use. It is desirable to
avoid the current bio-incompatible PDFs, which allow
immediate control of fluid overload but accelerate the
degeneration of the membrane; thus, more compatible
fluids must be made available. Adequate training, nutri-
tional advice and surveillance, and patient compliance to
the diet and to sterile techniques are already feasible
procedures and should be monitored on a routine basis as
part of PD preservation strategies.
Collectively, the cited studies show that many distinct

parallel event chains can ultimately lead to the fast
transporter phenotype and that it is probably necessary to
simultaneously block different triggers to effectively mini-
mize inflammation and its local consequences. Beyond
considering one factor as the defining step, the balance
between the activation of pro- and anti-inflammatory
pathways seems to define the final phenotype.
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Pérez-Lozano ML, et al. BMP-7 blocks mesenchymal conversion of
mesothelial cells and prevents peritoneal damage induced by dialysis
fluid exposure. Nephrol Dial Transplant. 2010;25:1098-108, doi: 10.
1093/ndt/gfp618.

75. Chan TM, Leung JK, Tsang RC, Liu ZH, Li LS, Yung S. Emodin
ameliorates glucose-induced matrix synthesis in human peritoneal
mesothelial cells. Kidney Int. 2003;64:519-33, doi: 10.1046/j.1523-1755.
2003.00113.x.

76. Patel P, Sekiguchi Y, Oh KH, Patterson SE, Kolb MR, Margetts PJ.
Smad3-dependent and -independent pathways are involved in perito-
neal membrane injury. Kidney Int. 2010;77:319-28, doi: 10.1038/ki.2009.
436.

77. Hung KY, Huang JW, Chen CT, Lee PH, Tsai TJ. Pentoxifylline
modulates intracellular signalling of TGF-beta in cultured human
peritoneal mesothelial cells: implications for prevention of encapsulat-
ing peritoneal sclerosis. Nephrol Dial Transplant. 2003;18:670-6, doi: 10.
1093/ndt/gfg141.

78. Fang CC, Yen CJ, Chen YM, Chu TS, Lin MT, Yang JY. Diltiazem
suppresses collagen synthesis and IL-1beta-induced TGF-beta1 produc-
tion on human peritoneal mesothelial cells. Nephrol Dial Transpl
2006;21:1340-7.

79. Kaneko K, Hamada C, Tomino Y. Peritoneal fibrosis intervention. Perit
Dial Int. 2007;27:S82–6.

80. Hung KY, Chen CT, Huang JW, Lee PH, Tsai TJ, Hsieh BS.
Dipyridamole inhibits TGF-beta-induced collagen gene expression in
human peritoneal mesothelial cells. Kidney Int. 2001;60:1249-57, doi: 10.
1046/j.1523-1755.2001.00933.x.
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