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OBJECTIVES: We investigated the influence of sildenafil on cardiac contractility and diastolic relaxation and
examined the distribution of phosphodiesterase-5 in the hearts of hypertensive rats that were treated with by NG-
nitro-L-arginine methyl ester (L-NAME).

METHODS: Male Wistar rats were treated with L-NAME and/or sildenafil for eight weeks. The Langendorff method
was used to examine the effects of sildenafil on cardiac contractility and diastolic relaxation. The presence and
location of phosphodiesterase-5 and phosphodiesterase-3 were assessed by immunohistochemistry, and cGMP
plasma levels were measured by ELISA.

RESULTS: In isolated hearts, sildenafil prevented the reduction of diastolic relaxation (dP/dt) that was induced by L-
NAME. In addition, phosphodiesterase-5 immunoreactivity was localized in the intercalated discs between the
myocardial cells. The staining intensity was reduced by L-NAME, and sildenafil treatment abolished this reduction.
Consistent with these results, the plasma levels of cGMP were decreased in the L-NAME-treated rats but not in rats
that were treated with L-NAME + sildenafil.

CONCLUSION: The sildenafil-induced attenuation of the deleterious hemodynamic and cardiac morphological
effects of L-NAME in cardiac myocytes is mediated (at least in part) by the inhibition of phosphodiesterase-5.
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INTRODUCTION

The inhibition of phosphodiesterase type 5 (PDE5) by
selective inhibitors such as sildenafil enhances intracellular
levels of cGMP, which can be beneficial in restoring
physiological function in situations in which nitric OXIDE
(NO) formation is reduced. Although the cyclic GMP–
selective PDE5 has been thought to play a minor role in
cardiac myocytes, recent studies using selective inhibitors
have suggested that PDE5 can modulate chronic cardiac
stress responses.1-3 In addition, recent studies have demon-
strated PDE5 expression and activity in cardiac myocytes
and its targeted inhibition by sildenafil; moreover, a role for

this PDE in cardiomyocyte hypertrophy modulation has
been reported.4-5

The chronic inhibition of NO biosynthesis by the oral
administration of the nonselective NO synthase (NOS)
inhibitor NG-nitro-L-arginine methyl ester (L-NAME) is a
well-established hypertension model6-8 that is associated
with reduced cardiac output, cardiac hypertrophy, exten-
sive areas of fibrosis and myocardial necrosis, changes in
myocardial contractility, and cardiomyocyte and vascular
smooth muscle remodeling.8-13 In a previous study, we
demonstrated that sildenafil confers cardiovascular protec-
tion by inhibiting PDE5, thereby increasing the bioavail-
ability of cGMP.14

Recently, PDE5 distribution in the heart was reported
to be compartmentalized in the Z bands of myocardial
tissue15-16, and sildenafil has been reported to affect cardiac
performance and vascular function in L-NAME–treated
rats.14 These latter findings seem to be related to sildenafil’s
vasodilatory effects that both reduce afterload and improve
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cardiac output. However, it is unknown whether sildenafil
affects cardiac contractility and diastolic relaxation.
Therefore, the aim of this study was to examine the effect
of sildenafil on cardiac contractility and diastolic relaxation
in isolated hearts and to confirm the association between the
cardiovascular effects of sildenafil and the presence and
distribution of PDE5 in the hearts of hypertensive L-
NAME–treated rats.

METHODS

The animal experiments described here were approved
by the Institutional Committee for Ethics in Animal
Experimentation (CEEA/IB/Unicamp) and were performed
in accordance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals and under the ethical
guidelines that have been established by the Brazilian
College for Animal Experimentation (Cobea).

Experimental design
Male Wistar rats (specific-pathogen free) weighing

180¡20 g were obtained from the Central Animal House
Services (Cemib, a facility that is engaged in the production
and reproduction of laboratory animals and is affiliated
with the International Council for Laboratory Animal
Science - ICLAS) at Unicamp and were divided into the
following groups, each containing 10-15 rats: control (water
alone); L-NAME (20 mg/rat/day);17 sildenafil (45 mg/kg/
day);18 and L-NAME + sildenafil (20 mg/rat/day and 45
mg/kg/day, respectively). Each group was treated for eight
weeks. Before starting the treatment, the mean volume of
liquid that was ingested by the five rats in each cage was
determined by measuring the volume of water that the rats
drank and dividing this volume by five. This calculated
volume was then used to determine the amount of each
drug to directly dilute in the drinking water to deliver the
desired dose per rat or kg of body weight per day. The L-
NAME and sildenafil citrate were dissolved in the drinking
water at concentrations of 1.1 mM and 1 mM to provide
daily intakes of approximately 74 mmol/rat/day and
67 mmol/rat/day, respectively. In the L-NAME + sildenafil
group, the two drugs were diluted in the same drinking
bottle. The average daily intake of both water and food did
not differ significantly between the L-NAME-treated and
untreated rats. The control rats received the same volume of
tap water alone. In addition, we monitored the water
consumption by the animals in each group daily to verify
that the correct dose was administered.

Non-Invasive (tail-cuff) blood pressure and body
weight measurements

The systolic arterial blood pressure (SBP) of each rat was
measured twice a week for eight weeks using the tail-cuff
method (Codas system), and the mean of these two
measurements was considered as the value for that week.
The rats were also weighed twice a week after obtaining the
blood pressure measurements, and the mean weekly weight
gain was calculated as described for the blood pressure.

Isolated heart preparation (Langendorff)
The method for isolating the beating heart was originally

described by Langendorff.19 At the end of study, the rats
were anesthetized with sodium pentobarbital (50 mg/kg,
i.p.). After opening the chest, the heart was isolated and

perfused in a Langendorff apparatus (Isolated Heart
Perfusion Apparatus, Harvard Apparatus, Hollister, MA,
USA.) under a constant pressure of 70 mmHg. A collapsed
latex balloon was placed in the left ventricular cavity via an
incision in the left atrium, and the initial intraballoon
pressure was adjusted to 4–6 mmHg. The left ventricular
pressure was monitored via a pressure transducer (YS100,
Transonic Systems Inc., NY, USA). Both pressure para-
meters (the left ventricular development pressure, or LVDP,
dP/dt+, dP/dt-, the maximum rate of rise or fall in LVDP)
and heart rate (HR) were continually recorded; the signals
were acquired, amplified, and analyzed using an analog-to-
digital interface (Dataq Instruments, Akron, OH, USA). The
hearts were perfused with a Krebs-Henseleit solution.

PDE immunohistochemistry
PDE5 and PDE3 were measured by immunohistochemis-

try performed in slices of the left ventricle or vessels that were
stained with IgG anti-PDE5 or anti-PDE3 antibodies (Zymed,
Laboratories, South San Francisco, CA). In brief, the slices
were deparaffinized with Citrosolv (Fisher Scientific, Fair
Lawn, NJ). Before tissue rehydration, the endogenous
peroxidase activity was blocked with hydrogen peroxide
and methanol (159) for 20 minutes. Following rehydration,
the samples were rinsed with phosphate-buffered saline
(PBS). Fetal bovine serum (10% FBS in PBS) was used to block
the nonspecific sites for 60 minutes at room temperature,
followed by incubation in 2.5% fat-free dry milk (Molico,
Nestlé, Brazil) for 30 minutes. The primary antibody—either
rabbit anti–PDE5 or goat anti-PDE3—was diluted to 15250 in
2% BSA in PBS and applied to the sections for 16-18 hours
at 4 C̊. Subsequently, the samples were washed and
incubated with the biotinylated secondary antibody
(Zymed Laboratories, South San Francisco, CA) for 60
minutes at room temperature, followed by incubation with
streptavidin-peroxidase complex (151000) for 60 minutes at
room temperature. Finally, a chromogen solution comprised
of 3,39-diaminobenzidine (DAB) (6 mg), hydrogen peroxide
(150 ml) and PBS (10 ml) was applied for two minutes in the
dark at room temperature.
The samples were coded and then assessed by two

independent blinded observers using an optical microscope
(Q500YW, LEICA, UK) equipped with a 40x objective and
coupled to an image analyzer (Quantimet Q500YW, LEICA,
UK).

cGMP concentrations
The plasma cGMP concentrations were measured by

enzyme-linked immunosorbent assay (ELISA) using a
commercial kit (Cayman Chemical Co., Ann Arbor, MI).
The plasma samples were initially precipitated with
trichloroacetic acid, extracted with water-saturated ethyl
ether, evaporated to dryness, and then reconstituted in an
assay buffer. The standards and samples were acetylated to
allow the detection of nucleotides in the picomolar range.20

Statistical analysis
The results are expressed as the mean ¡ SEM. An

analysis of variance (ANOVA) for repeated measurements
model was used to assess the differences in body weight
and tail-cuff pressure. A two-way ANOVA was used to
compare the heart weight, left ventricular weight, left
ventricular weight index, mean arterial pressure, cardiac
output, and total peripheral vascular resistance. When the
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ANOVA results were deemed significant, the Bonferroni
test was used to examine the differences among the groups.
In all cases, a two-sided p-value of ,0.05 was considered to
be significant.

RESULTS

Systolic blood pressure
The systolic blood pressure (SBP) increased to a similar

extent in the L-NAME and L-NAME + sildenafil groups
until the sixth week; in addition, the SBP was higher in
both groups than in the control and sildenafil groups from
two weeks onwards. After six weeks, the rats in the L-
NAME group had higher blood pressures than did the
other three groups (p,0.05), while blood pressure in the L-
NAME + sildenafil group essentially returned to normal
(Figure 1).

Isolated heart (Langendorff)
The systolic contractility of the isolated hearts was

measured by the first temporal derivative of the LVDP
positive development (dP/dt+, in mmHg/s), and the
isovolumetric relaxation was measured by the first temporal
derivative of the LVDP negative pressure (dP/dt-, in
mmHg/s). We analyzed all the hearts using the same
diastolic pressure range (4–6 mmHg).
A significant decrease in dP/dt+ was found in the L-

NAME group (4028¡77 mmHg/s) relative to the control
and sildenafil groups (4514¡102 and 4466¡116 mmHg/s,
respectively; p,0.05). Sildenafil prevented this dP/dt+
reduction in the L-NAME–treated rats (4165¡82 mmHg/
s; p,0.05). The L-NAME group showed relatively decreased
dP/dt- (3090¡95 mmHg/s) when compared to the control
and sildenafil groups (3930¡96 and 4079¡113 mm Hg/s,
respectively; p,0.05); however, sildenafil prevented this
impaired cardiac relaxation (the dP/dt- in the L-NAME +

sildenafil group was 3768¡121 mmHg/s; p,0.01) (Table 1).

PDE immunohistochemistry
PDE5. The PDE5 immunohistochemistry revealed positive

staining in the tunicae media and intima but not in the
adventitia of both arteries and veins. The L-NAME treatment
markedly reduced the media staining in the 10-50-mm
diameter arterioles when compared to the control group.
However, this reduction was abolished in the L-NAME +

sildenafil group. Conversely, the rats that were treated only
with sildenafil showed an increase in staining when compared
to the other groups (Figure 2A). Larger arteries (larger than
100 mm in diameter) did not show any relevant alterations in
PDE5 staining and localization in the four groups.
Staining was also observed in the intercalated discs of the

myocardial cells, and this was reduced by the L-NAME
treatment. Sildenafil administered concomitantly with the
L-NAME reversed the L-NAME effect to the control levels.
In addition, sildenafil alone increased PDE5 intensity when
compared to the control group (Figure 2B).
PDE3. The PDE3 immunohistochemistry revealed

positive staining in the adventitia of both arteries and
veins that was intensified in the group that received only
sildenafil when compared to the control, L-NAME, and L-
NAME + sildenafil groups. The endothelium also showed
positive (albeit less intense) staining for PDE3. The cardiac
myocytes had light positive staining for PDE3 in all four
experimental groups (data not shown). Interestingly, areas
of lesions showed an intense staining that was not affected
by the sildenafil treatment (data not shown).

Plasma cGMP concentrations
After eight weeks, the plasma cGMP levels (in pmol/ml)

were decreased in the L-NAME group and increased in the
sildenafil group (p,0.05 vs. the control group). The cGMP
levels were restored to the control values in the L-NAME +

sildenafil group (Figure 3).

DISCUSSION

Using the isolated heart preparation, the decrease in
dP/dt- that was observed in the L-NAME group was
prevented in the L-NAME + sildenafil group. This result
may be interpreted as an effect of sildenafil on the
L-NAME–induced diastolic relaxation because the cardiac

Figure 1 - The changes in systolic blood pressure (SBP, in mmHg)
during the eight weeks of the study. Control (squares, n=15); L-
NAME (diamonds, n =15); sildenafil (circles, n=15) and L-NAME +

sildenafil (triangles, n=15). The data points and error bars
represent the mean ¡ SEM. *p,0.05 for L-NAME and L-NAME +

sildenafil groups vs. control group. #p,0.05 for L-NAME group
vs. L-NAME + sildenafil group.

Table 1 - Isolated heart (Langendorff technique).
Development of left ventricular systolic (LVSP, mmHg) and
diastolic (LVDP, mmHg) pressures, first temporal derivative
of LVDP positive development (dP/dt+, mmHg/s), first
temporal derivative of the LVDP negative pressure (dP/dt-,
mmHg/s) and heart rate (HR, bpm).

CONTROL

(n=12)

SILDENAFIL

(n = 10)

L-NAME

(n=10)

L-NAME+

SILDENAFIL

(n = 12)

LVSP (mmHg) 138¡16 132¡17 127¡12 129¡18

LVDP (mmHg) 4.5¡0.9 5.3¡0.5 4.6¡0.9 4.6¡0.8

dP/dt+

(mmHg/s)

4514¡102 4466¡116 4028¡77* 4165¡82**

dP/dt-

(mmHg/s)

3930¡96 4079¡113 3090¡95* 3768¡121**

HR (bpm) 275¡25 291¡19 270¡28 297¡18

*p,0.05 vs. CONTROL and sildenafil.

**p,0.01 vs. L-NAME.
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load was pre-controlled and there were no significant
differences in heart rates among the various groups. In
cardiac myocytes, cAMP mediates catecholamine signaling,
while cGMP mediates the effects of nitric oxide and atrial
natriuretic peptide. cGMP activates PKG, which is then
capable of countering the cAMP-PKA contractile stimula-
tion.21 Moreover, the duration and magnitude of these
actions are determined by cGMP generation and by its
hydrolysis, which is catalyzed by PDE5 that is compart-
mentalized within the cell, thereby facilitating the regula-
tion of specific targeted proteins.22

While sildenafil had no effect on blood pressure in the
normotensive (control) group, the compound produced a
small but significant attenuation of the increase in blood
pressure that was seen in the rats that were treated with L-
NAME alone. Moreover, we have previously showed that
enalapril and amlodipine decrease blood pressure in L-
NAME–treated rats but do not prevent cardiac lesions.17,36

Therefore, we suggest that this hemodynamic effect may
have been at least partially mediated by an inhibition of
PDE5 in arterial resistance vessels23-24 and that it was
associated with a slight reduction in the total peripheral
vascular resistance and with enhanced cardiac output.14 An
alternative explanation could be sildenafil’s effect of
preventing the impaired diastolic relaxation (dP/dt-) that
was diminished by L-NAME.

Inhibitors of nitric oxide synthesis may cause an afterload
increment in hypertensive animals that can subsequently
induce cardiac hypertrophy, fibrosis and/or ischemia.25

Figure 2 - A) The PDE5 immunohistochemistry in the cardiac arteries after 8 weeks of treatment. Representative photomicrographs and
a summary graph of the quantitative analysis of the staining intensity in the vascular smooth muscle cells of small arteries are shown. B)
The PDE5 immunohistochemistry in the cardiac tissue after 8 weeks of treatment. Representative photomicrographs and a summary
graph of the quantitative analysis of staining intensity in the intercalary discs between myocytes. The data are expressed in arbitrary
units; n = 5/group; *p,0.05 vs. control; #p,0.05 vs. L-NAME.

Figure 3 - The plasma cGMP levels after eight weeks of treatment
in the control (open column, n=15), L-NAME (black column,
n=15), sildenafil (grey column, n=15) and L-NAME + sildenafil
(horizontally striped column, n=15) groups. The bars represent
the mean ¡ SEM. *p,0.05 vs. control group; #p,0.05 vs. L-
NAME group.
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These three changes, either alone or in combination, predis-
pose the heart to impaired left ventricular relaxation. In
addition, decreased left ventricular diastolic distensibility
may arise from a dysfunction of the dynamics of ventricular
relaxation.26 Thus, the impaired cardiac output could be due
to these alterations in ventricular diastolic function through a
reduction in the isovolumic relaxation time (IVRT).
In support of this idea, another important finding in the

present study is that sildenafil prevented the L-NAME–
induced reduction in PDE5 staining in the myocardium and
in the arterioles, while it did not alter the PDE3 staining.
Consistent with previous studies,15-16 we found that PDE5 is
localized at the intercalated discs. Importantly, low con-
centrations of cGMP in unstimulated hearts can augment
contractile function, and this effect is likely mediated by
cross-talk with cAMP-dependent signaling.27 However,
PDE5 inhibition targets cGMP–PKG activity in a region
that is strategically linked to adrenergic regulation. In this
region, it depresses myofilament calcium sensitivity by
increasing troponin I phosphorylation, thereby accounting
for the positive lusitropic28-29 and negative inotropic
effects.30 Thus, our immunohistochemical findings are
consistent with previous findings in isolated hearts in
which sildenafil prevented the L-NAME–induced impair-
ment in diastolic relaxation (dP/dt-).
In contrast to our findings, however, a previous study has

reported a shift in the intracellular localization of PDE5
from its normal Z band localization to a more diffuse
cytosolic distribution following a chronic NOS inhibition by
L-NAME that eliminated sildenafil’s effectiveness even
when exogenous NO was provided.16 In the present study,
we found no shift in PDE5 localization. These contradictory
results may be explained by differences in the experimental
protocols; the aforementioned study administered L-NAME
for one or two weeks following the sildenafil treatment,
while we studied the effect of co-treatment with L-NAME
and sildenafil for eight weeks and found that sildenafil
prevented the L-NAME–induced effects.
Another finding from our study is that sildenafil

increased circulating cGMP and abolished the decrease
that was caused by L-NAME. Importantly, although cGMP
is considered to reflect natriuretic peptides in patients with
cardiac dysfunction and to be an indicator of NO synthase
activity in healthy subjects,31 Castro et al has reported that
PDE-5 regulation appears to be compartmentalized in
cardiac myocytes, where it interacts with NO but not with
natriuretic peptide-stimulated cGMP.32 In addition, chronic
L-NAME–induced NOS inhibition decreases cGMP,8,33-35

suggesting that the natriuretic peptide pathway in this
model is unable to rescue the impaired cGMP formation
caused by NOS inhibition. Therefore, the changes in the
plasma cGMP levels that we found in the present study are
likely the result of NO pathway modulation.

CONCLUSIONS

In conclusion, our results suggest that the sildenafil-
mediated attenuation of L-NAME–induced deleterious
hemodynamic and morphological alterations is at least
partially modulated by PDE5 inhibition in cardiac myo-
cytes, as supported by our immunohistochemical and
isolated heart findings. Finally, sildenafil’s effects on cardiac
relaxation should be studied further as a new therapeutic

approach for treating hypertensive patients with diastolic
dysfunction.
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