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OBJECTIVES: This study tests the hypothesis that local or remote ischemic preconditioning may protect the
intestinal mucosa against ischemia and reperfusion injuries resulting from temporary supraceliac aortic
clamping.

METHODS: Twenty-eight Wistar rats were divided into four groups: the sham surgery group, the supraceliac
aortic occlusion group, the local ischemic preconditioning prior to supraceliac aortic occlusion group, and the
remote ischemic preconditioning prior to supraceliac aortic occlusion group. Tissue samples from the small
bowel were used for quantitative morphometric analysis of mucosal injury, and blood samples were collected
for laboratory analyses.

RESULTS: Supraceliac aortic occlusion decreased intestinal mucosal length by reducing villous height and
elevated serum lactic dehydrogenase and lactate levels. Both local and remote ischemic preconditioning
mitigated these histopathological and laboratory changes.

CONCLUSIONS: Both local and remote ischemic preconditioning protect intestinal mucosa against ischemia and
reperfusion injury following supraceliac aortic clamping.
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H INTRODUCTION

Surgical correction of disease of the abdominal aorta
involving its visceral branches produces intense and abrupt
hemodynamic changes induced by aortic clamping and
unclamping (1,2). However, the main consequences of
temporary visceral aorta occlusion are related to the
ischemia and reperfusion (I/R) injury of the splanchnic
organs (3). Of the splanchnic organs, the intestine is the
most sensitive to I/R injury and plays a pivotal role in the
induction of systemic inflammation response syndrome
(SIRS) and multiple organ dysfunction (MOD) (4,5), a major
cause of morbidity in patients undergoing major aortic
repair (6).
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Strategies to reduce I/R injury are being extensively
investigated, particularly ischemic preconditioning (IPC)
(7). This strategy of submitting tissues to controlled periods
of ischemia and reperfusion prior to the prolonged I/R
injury is initially proven to be beneficial when applied to the
same tissue (local) (8) and also when applied to a different
tissue (remote) (9). Numerous investigators have described
the protective effect of IPC on I/R injury in specific organs
such as the heart (10) and liver (11). Currently, IPC is
considered a ubiquitous phenomenon (12) that involves a
complex mechanism of cell signaling (13), with clinical
applicability that reaches beyond myocardial protection or
organ transplantation (14).

Intestinal I/R injury and the use of IPC was initially
evaluated by occluding the superior mesentery artery
(15,16). The models used thus far typically employ this
concept with different combinations of ischemic and
reperfusion periods (17). Among studies, the precondition-
ing stimulus varies from 1 to 4 cycles of ischemia for 1 to 20
minutes and reperfusion for 5 to 10 minutes (18,19).

Supraceliac aortic occlusion has been evaluated with
regard to the systemic inflammatory response resulting
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from I/R injury. The inhibition of tumor necrosis factor-o
(TNF-o) and interleukin (IL) 1B attenuates pulmonary
neutrophil infiltration (20). Additionally, IL-10 administra-
tion or its endogenous production seems to be protective
(21,22).

Intestinal injury in the clinical context of total splanchnic
and lower torso I/R has not been sufficiently described.
Erling et al. identified that either local or remote IPC
modulates the inflammatory response, reducing endothelial
dysfunction in the mesenteric circulation after supraceliac
aortic clamping (23). However, the possible protective effect
of the IPC achieved in the intestine alone (24) has not been
studied in the setting of supraceliac occlusion.

Using a supraceliac aortic clamping model, this study
evaluated the morphologic alterations in the intestinal
mucosa, variations in laboratory findings caused by multi-
visceral I/R injury, and the modulations in outcomes
resulting from local or remote IPC.

B MATERIAL AND METHODS

Animal model and surgical preparation

The experimental protocol was approved by the Ethical
Committee of Federal University of Sao Paulo (CEP 1016/
06) and was performed according to the National Institutes
of Health guidelines on the use of experimental animals.
Twenty-eight male Wistar rats weighting 190-250 g were
kept in a non-stimulating environment for a week prior to
the experiment. The subjects were fasted overnight prior to
the procedure, with free access to water. Anesthesia was
induced with intraperitoneal sodium pentobarbital (50 mg/
kg). A tracheostomy was performed through a right anterior
cervical incision to allow for airway control and sponta-
neous breathing. The common carotid artery and external
jugular vein were dissected and cannulated with polyethy-
lene catheters. Venous access was used to inject solutions,
while arterial access was used to monitor mean arterial
pressure (MAP) (MP 100, Biopac System Inc., Goleta, CA,
USA). A midline abdominal incision was performed, and
the aorta was dissected and controlled proximally at the
supraceliac portion between the diaphragmatic crura and
distally at the aortic bifurcation. The strings utilized for
aortic control were used to create a 4 cm long Rumel
tourniquet. The abdominal wall was exposured and
controlled with the exteriorization of the tourniquets at the
top and bottom of the incision to allow for aortic occlusion
throughout the experiment. In this model, the supraceliac
aortic occlusion produced ischemia in all splanchnic organs
and the striate muscle of the lower torso, while the aortic
bifurcation occlusion produced ischemia in the striate
muscle of the lower torso and the caudal portion of the
large bowel (25). Aortic occlusion and flow restoration,
which were necessary in some experimental groups, were
confirmed by an abrupt rise and fall in the MAP. Heparin
(100 IU/kg) was administered intravenously, and the
animals were kept warm during the experiment.

Experimental design and study groups

After identical initial surgical preparation and stabiliza-
tion, the animals were allocated into four experimental
groups according to the duration of ischemia and reperfu-
sion. The control group was kept at rest during the entire
experiment, without aortic occlusion. The IR (ischemia-
reperfusion) group was submitted to 20 minutes of
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supraceliac aortic occlusion, followed by 120 minutes of
reperfusion. The LIPC (local ischemic preconditioning)
group was submitted to 2 cycles of supraceliac occlusion
(5 minutes of ischemia and 5 minutes of reperfusion),
followed by 20 minutes of supraceliac aortic occlusion and
120 minutes of reperfusion. The RIPC (remote ischemic
preconditioning) group was submitted to 2 cycles of
infrarenal occlusion (10 minutes of ischemia and 10 minutes
of reperfusion), followed by 20 minutes of supraceliac aortic
occlusion and 120 minutes of reperfusion (Figure 1A).

Hemodynamic stability at the time of supraceliac clamp
opening (occluded for 20 minutes) was accomplished by an
infusion of 1.5 mL of 0.9% saline. Subsequent doses of
0.5 mL of 0.9% saline were administered after 30, 60, 90, and
120 minutes of reperfusion. This volume expansion was
provided at the same time point for all four groups. At the
end of the experiment, the animals were exsanguinated by
aortic puncture.

Blood and tissue sampling

Peripheral blood collected from the tail at the beginning
and at the end of the experiment was used for hematocrit
and leukogram determinations. Arterial blood samples for
lactate and blood gas analysis were collected through the
carotid catheter at surgical preparation and at the end of
experiment. A blood sample for measuring lactic dehydro-
genase (LDH) was collected directly by aortic puncture.

The bowel was stripped from its mesentery, and three
samples of tissue were harvested from the proximal jejunum
3 em distal to its origin, the middle portion of the small
intestine, and the distal ileum 3 cm proximal to the cecum.
Tissue was fixed in buffered 10% formalin for 24 hours and
then embedded in paraffin wax. Sections of 5 pm were cut
and stained with hematoxylin and eosin (HE). An indepen-
dent pathologist blinded to the experimental group of the
samples performed the histological analysis. Images were
captured using a high-resolution Samsung camera coupled
to a light Nikon E200 microscope and subsequently
analyzed using AxioVision-Rel software (Zeiss). Total
mucosal thickness, villous height, and crypt depth were
evaluated. Each variable was measured three times for all
three portions of the intestine, so the final value of a given
variable for one specimen is the mean of these nine
measurements.

Statistical analysis

All data are expressed as the mean + standard error (SE).
A paired t-test was used for repetitive measurements in the
same group. Multiple comparisons between groups were
performed using one-way ANOVA and post-hoc analysis
with the Tukey test. The results were considered significant
for p-values less than 0.05.

Bl RESULTS

At baseline, there were no differences between groups
regarding weight, MAP, or any other laboratory value
(Table 1). The supraceliac aortic occlusion resulted in a
significant MAP increase in all groups, while the aortic
release significantly decreased MAP to values below the
baseline or values at the corresponding time in the control
group (Figure 1). Infrarenal aortic occlusion in the RIPC
group did not increase MAP, and aortic release caused a
transient but non-significant decrease in MAP (Figure 1).
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Figure 1 - Experimental protocol (A) and main arterial pressure variations during the experiment in the control, ischemia and
reperfusion (IR), local ischemic preconditioning (LIPC), and remote ischemic preconditioning (RIPC) groups (B). Data are expressed as
the mean + SE for 7 animals per group. (*) p<0.001: IR, LIPC, and RIPC vs. control, () p<0.001: LIPC vs. control.

The results of laboratory testing, summarized in Table 1,
showed that there was an increase in hematocrit values at
the end of the experiment in groups submitted to aortic
occlusion, even in preconditioned animals (p=0.036),
compared with baseline values. Compared with the control
group, this increase was higher in the IR (p=0.015) group,
but not in the LIPC (p =0.208) or the RIPC (p =0.443) groups.
The total leukocyte counts at the end of the experiment were
increased from baseline values in all groups (p=0.004).
Compared with the control group, leukocytosis was more
pronounced in the IR group (p=0.005) and less intense in
the LIPC (p=0.041) and RIPC (p=0.149) groups. The
percentage of polymorphonuclear (PMN) leukocytes
increased at the end of the reperfusion compared with
baseline values (p=0.002) and increased similarly among all
groups (p =0.647). The results also showed decreases in the
percentage of monocytes (p=0.032) and lymphocytes
(p=0.002) in all groups at the end of the experiment.

The blood gas analysis showed that the pH was constant
in the control group throughout the experiment but
decreased in other groups (p<<0.02). Arterial base excess
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(BE) decreased in all groups (p=0.003). Compared with the
control group, BE at the end of experiment was lower in the
IR (p<<0.001), LIPC (p =0.020), and RIPC (p =0.024) groups.
The arterial partial pressure of CO, and the HCO;
concentration also decreased during the experiment in all
groups (p<<0.04). Compared with the control group, both
pCO; and the HCOj; concentration at the end of experiment
were lower in the IR, LIPC, and RIPC groups (p=0.003).
Compared with the baseline, arterial lactate concentration
increased in all groups (p<<0.02) at the end of experiment.
The increases in the IR, LIPC, and RIPC groups were higher
than in the control group (p=0.001), but the values were
lower in the LIPC and RIPC groups than in the IR group
(p<0.01). Compared with the control group, the LDH
concentrations were higher in all three groups submitted
to aortic occlusion. Compared with the IR group, the LDH
concentrations were lower in the RIPC group (p =0.007) but
were not significantly different in the LIPC group (p = 0.129).
The histological analyses of the intestine showed a
decrease in villous height in all groups submitted to aortic
occlusion when compared with the control group (IR:



CLINICS 2013;68(12):1548-1554 Ischemic preconditioning in aortic surgery

Erling Jr N et al.

e e p<0.001, LIPC: p =0.013, and RIPC: p = 0.005) (Figure 2A). Crypt
S99 s o ¢ . . .
TA58RIS8Mm depth (Figure 2B) and total mucosal thickness (Figure 2C) were
= RN AR only reduced in the IR group (p<<0.001). The villous height-crypt
s % *é R ,{ 1{: g ;i depth ratio was diminished in the IR, RIPC (p=0.001), and LIPC
AIIIFNILcR (p<<0.035) groups (Figure 2D). Compared with the IR group, the
4 BNBRY = m reductions in total mucosal thickness, villous height, crypt
e o depth, and villous height-crypt depth ratio were lower in the
XXX . .
LehZ3AKRAM LIPC and RIPC groups (p<<0.001). Representative photomicro-
e 2ETYSRRNRD graphs are presented in Figure 3.
RIIXLLJJIZM
SNYB8NYamc T
RN ~ e B DISCUSSION
< ~N
o™ oo This study indicates that local and remote IPC decreases
E a E § “Zogauni the intestinal I/R injury resulting from supraceliac aortic
g LYY LSS S clamping. The results of the LIPC group confirmed our
T labhrtbirred hypothesis that the protection achieved in superior mesen-
RNIBIMSERE G teric artery (SMA) occlusion models of I/R and IPC could
RQAEWSm ™~ TRENTY also apply to the total splanchnic I/R injury of aortic
4 occlusion. The results of the RIPC group show that the
- . . . . . .
SN s @« method is also protective in this setting, extending the
8gLSB5I3IR3 3 clinical applicability of IPC and strengthening the interest in
“RMMOS S o~ S X ] . .
S| HHHHHHH A this technique in aortic surgery.
E @ § E 58w RS This experiment mimicked the scenario of complex
gfey "~ 0" visceral aortic procedures. The redistribution of blood flow
in the territories under ischemia (and also during reperfu-
P TP, sion) in very different tissues with varying vascular bed
Sfadhognue resistance and tolerance to the I/R injury makes the local
-1 R A A and systemic consequences of supraceliac aortic occlusion
. ;2; g 3,3 Lhi 1; o g i g different from isolated SMA occlusion. This difference was
RIS E NN . . .
< $3R98% Rl demonstrated by the near 100% mortality rate in our pilot
@ EORR O~ experiments after 1 h of reperfusion when supraceliac aortic
0| o clamping in excess of 20 minutes was tested, in contrast
wv . . . .
@ | = < with the 90 minutes of SMA occlusion employed in some
9 SRS RT g m 'S models (26,27). The duration and number of IPC cycles were
o 2232353333555 chosen based on the most commonly published models
1= 2 ;,:}' &‘ o\t‘ ;‘ n\t‘ E' S é‘ 5‘ ; %‘ (17,28), in accordance with the findings of our pilot
S SNYTYd<Ync=o-g§ experiments.
[J] aNSINTISVYRR T @ P
g STRRT " The intestine is very susceptible to I/R injury, and severe
= changes occur in the intestinal epithelium after this insult. We
‘g L2 e~ objectively measured and quantitatively assessed various
- Sme85sERI components of the intestinal mucosa. This morphometric
O —LWLWO OO+~ OO . . . . .
c e 233 RIRITII evaluation showed a reduction in mucosal thickness in the 1/
0
:. FlayirkRhyng R groups. In accordance with other reports, this reduction was
= % & B § UL mainly attributable to the loss in villous height, with a relative
‘g s “8an sparing of the crypt depth (29,30). Our experiment also
— |t demonstrated that both forms of IPC consistently decrease the
2 S § n R Crnopgy magnitude of the mucosal damage.
[a\] N =~ o .
§ f€NNSSs-osR Laboratory parameters are useful clinical markers of
Q e a\tl A c\t‘ ; o\t‘ g' g' ; %' ; %‘ advanced mesenteric ischemia. Lactate and LDH serum
% ¥PIR™ NI IR levels were also measured to evaluate the I/R injury and the
9 SRR effect of local IPC (31,32). We also observed these changes,
&
2 with our results indicating markedly high levels of lactate
& & y g
£ and LDH in the IR group. The preconditioned groups had a
] . . . . ..
< reduced increase in the level of these variables, which is in
° £ agreement with the minor intestinal mucosal damage that
) e 3 occurred in these groups.
@ £3 Arterial blood gas derangement and leukocytosis, which
o 5 2 & 8 Y
- @ 5 reflect an increased PMN count, demonstrated the systemic
38 %S g consequences of the I/R injury. Our results indicate that
[ 25 Clag local and remote IPC can modulate the SIRS caused by
EOocvwn —~ o . . . .
! 5Sacg HE g Ex supraceliac aortic occlusion. This phenomenon could be due
o g25eg £E=45 ither th ic anti-infl fect of TPC
g R_ESS EcoRm> to either the systemic anti-inflammatory ettect o or a
) §E3ESt-0C%E reduced inflammatory response resulting from the halted
A TFEIFZaEazis visceral I/R injury after the IPC. Both mechanisms are likely

1551



Ischemic preconditioning in aortic surgery
Erling Jr N et al.

CLINICS 2013;68(12):1548-1554

pm Villous height um Crypt depth
400 250
i t
* ok 1- -l-
J_ —_— 200 gl .
300 "
B
2 R854
‘-1'_1*0— 150+ £ t:-?g-ﬁ:
g [+
200 tiﬁz:* bt
Ko RaEe
¥ 100— £aesds
5 St
o o
e
100— Rl e
hecaesct 50— e
Rakeeesd et
td"r‘r 25
- R " Raze
()} T ¥ T
Control IR LIPC RIPC Sham IR LIPC RIPC
pm Total mucosal thickness Villous height-crypt depth ratio
600 _|_ + 2.5 +
e ¥k
500 ji ol
t:rH" 2.0 I -I-
400— Hri-ﬁ R, Lt %k
e 1.5 o
* t-e”*+ S 08
3007 s . o
nl—-ﬂ 1.0 -i._zjo—
200 5
e 2
L ot it
+-|'_+ =] -] :”"'"o—
100+ o "
L3
Kasehenet Sehenss
= R i
0 | [EEEh 0.0 | 4"|Hr : | ]
Control IR LIPC RIPC Control IR LIPC RIPC

Figure 2 - Histomorphometric analysis of the small bowel demonstrating villous height (A), crypt depth (B), total mucosal thickness (C),
and villous height-crypt depth ratio (D) in the control, ischemia and reperfusion (IR), local ischemic preconditioning (LIPC), and remote
ischemic preconditioning (RIPC) groups. Data are expressed as the mean + SE for 7 animals per group. (*) p<0.001: IR vs. control, (**)

p<0.05: LIPC and RIPC vs. control, () p<0.001: LIPC and RIPC vs.

causes and could take place simultaneously, although the
definite protection mechanism of IPC is complex and still
subject to debate (17,33), particularly with regard to a
remote stimulus (34).

The first published clinical application of remote IPC in
humans was in children undergoing cardiac surgery (35).
Protection was achieved using four 5-minute cycles of
lower limb ischemia using a blood pressure cuff. Using the
same principle of cuff inflation, but with three 5-minute
cycles of upper arm ischemia, remote IPC was tested in
adult patients undergoing coronary artery bypass surgery.
The primary outcome employed to assess myocardial injury
was the “total area under the curve” troponin-T concentra-
tion during the 72-h postoperative period, and this value
was significantly reduced by 43% in preconditioned

IR.
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subjects (36). The RIPC method also has a myocardial
protective effect when used in percutaneous coronary
intervention either for elective procedures (37) or for the
management of acute ST-elevation myocardial infarctions
(38).

In the field of aortic surgery, the first clinical investigation
of RIPC was in open aneurysm repair. The authors applied
two 10-minute cycles of ischemia by sequentially clamping
the right and left common iliac arteries. Remote IPC reduces
the incidence of myocardial injury, myocardial infarction,
and renal impairment (14). Further studies showed that
urinary biomarkers of renal injury are reduced with the
RIPC method applied, which utilizes an inflatable tourni-
quet placed around the thigh, even during less invasive
endovascular aneurysm repairs (39).



CLINICS 2013;68(12):1548-1554

Ischemic preconditioning in aortic surgery
Erling Jr N et al.

S0um

3

Figure 3 - Representative photomicrographs of the small bowel (HE, x100) from the control (A), IR (B), LIPC (C), and RIPC (D) groups.
Normal small intestine architecture is shown in the control group (A). The IR group (B) demonstrates a marked loss of villus height,
while the LIPC (C) and RIPC (D) groups have less intense findings.

Our experimental protocol has some limitations. We used
healthy rats, without the blood loss and fluid shifts that
typically characterize aortic surgery in adults. Typically,
cardiovascular, pulmonary, and renal dysfunction is present
in these patients and contributes substantially to the high
rate of observed complications. However, this well-standar-
dized protocol allowed us to control the duration of
ischemia and equally apply the method to all experimental
groups. Another advantage of this animal model was the
direct histopathological evaluation of mucosal injury,
instead of using the substitutive outcomes that are usually
used in human subjects.

In conclusion, this study demonstrates that IPC signifi-
cantly reduces intestinal I/R injury in a clinically relevant
model of supraceliac aortic clamping. The preconditioning
stimulus is protective when applied locally or at remote
sites. The low cost and simplicity of some forms of RIPC
along with the favorable results of this practice highlight the
need for further clinical and experimental studies to further
elucidate the proper role of this promising strategy in aortic
surgery.
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