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H I G H L I G H T S

� Acetate was able to exacerbate the production of TNF-α in microglia.

� Acetate administered as pre-treatment to LPS acts as an anti-inflammatory.

� Histone deacetylase decreased TNF-α production in Acetate- and LPS-treated cells.

� Depending on the time of administration, Acetate modulates microglia’s activation.

� Acetate may threaten neurodegenerative and neuropsychiatric diseases.

A R T I C L E I N F O A B S T R A C T

Introduction: Short-Chain Fatty Acids (SCFA) are products of intestinal microbial metabolism that can reach the

brain and alter microglia in health and disease contexts. However, data are conflicting on the effect of acetate, the

most abundant SCFA in the blood, in these cells.

Objective: The authors aimed to investigate acetate as a modulator of the inflammatory response in microglia stim-

ulated with LPS.

Method: The authors used an immortalized cell line, C8-B4, and primary cells for in vitro treatments with acetate

and LPS. Cell viability was analyzed by MTT, cytokine by RT-PCR, ELISA, and flow cytometry. The authors also

performed in vivo and in silico analyses to study the role of acetate and the TNF-α contribution to the development

of Experimental Autoimmune Encephalomyelitis (EAE).

Results: Acetate co-administered with LPS was able to exacerbate the production of pro-inflammatory cytokines at

gene and protein levels in cell lines and primary culture of microglia. However, the same effects were not observed

when acetate was administered alone or as pretreatment, prior to the LPS stimulus. Additionally, pharmacological

inhibition of histone deacetylase concomitantly with acetate and LPS led to decreased TNF-α production. In silico

analysis showed a crucial role of the TNF-α pathway in EAE development. Moreover, acetate administration in

vivo during the initial phase of EAE led to a better disease outcome and reduced TNF-α production.

Conclusion: Treatment with acetate was able to promote the production of TNF-α in a concomitant LPS stimulus of

microglia. However, the immune modulation of microglia by acetate pretreatment may be a component in the

generation of future therapies for neurodegenerative diseases.
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Introduction

Microglia are resident macrophages of the CNS, originating from

primitive macrophage progenitors from the yolk sac, which migrate and

then reside in the CNS. They spread rapidly through the brain and the

spinal cord, where they form a self-renewable population without the

need for myeloid recruitment during homeostasis.1-3 They are important

in scavenging the brain parenchyma for pathogens and damage-related

molecules through different receptors and are important in the synaptic

remodeling and phagocytosis of cellular debris. Microglia can also initi-

ate a neuroinflammatory response and recruit additional microglia as

well as other immune cells.2,4-8

In many neurodegenerative diseases, microglial activation represents

a key step to disease development such as Multiple Sclerosis, Alz-

heimer’s disease, Parkinson’s disease, and amyotrophic lateral sclerosis,

and microglia modulation seems to have an impact on the treatment in
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disease models.9-11 Several studies have shown that different products of

intestinal microbial metabolism can alter the profile of microglial activa-

tion in health and disease.12-14 Accordingly, Short-Chain Fatty Acids

(SCFA) are products derived from the fermentation of indigestible die-

tary fibers carried out by the intestinal microbiota and can interact with

immune cells, altering their function.15 Among them, acetate is the one

that stands out with higher serum concentration and it functions as the

substrate for acetyl coenzyme A synthesis and the regulation of gene

expression via acetylation of histone.16,17 Additionally, SCFA has immu-

nomodulatory, anti-proliferative and pro-apoptotic effects via activation

of G-protein coupled receptors.17-20 Alternatively, SCFAs can inhibit the

activity of Histones Deacetylases (HDACs) via epigenetic control.17 Ace-

tate also accentuates the DNA acetylation in the CNS through different

mechanisms that vary in a dose and time-dependent way.21 Specifically,

in microglia, the administration of acetate (in vitro and in vivo) prior to

an inflammatory stimulus was able to reduce the release of IL-1b, IL-6,

and TNF-α and increased histone acetylation.22-24

The result of this increased acetylation manifests itself through the

attenuation of inflammatory parameters as the expression of proinflam-

matory cytokines of innate immunity.22 The final effect of this chain of

events in vivo may be the preservation of neurons and a better clinical

evolution in situations of neuroinflammation, as previously observed.22

Additionally, the authors investigated the SCFA, acetate, as a modulator

of TNF-α and IL-6 in both LPS-activated primary and C8-B4 microglial

cells at different administration schemes. The cell viability and the

mechanism responsible for acetate modulation-either epigenetic or GRP

receptor-activation were also explored.

Results

Effect of acetate on cytokine production

To understand the role of the acetate in the microglia modulation,

the authors stimulated the C8-B4 microglial cells with acetate in the

presence or absence of LPS at 0.25 μg/mL and the authors measured the

TNF-α and IL-6 production within 48 hours (Fig. 1A and 1B). The TNF-α

production increases in a dose-dependent response, being the higher

dose of acetate, the higher TNF-α levels, but only in the presence of LPS

(Fig. 1A). On the other hand, the production of IL-6, a pro-inflamma-

tory-related cytokine,25 was significantly reduced no matter the dose of

acetate, when compared to LPS alone (Fig. 1B). In an attempt to under-

stand the cytokines kinetics production, the authors evaluated the gene

expression in C8-B4 cells treated with acetate in the presence or absence

of LPS for 6 hours. The authors observed that the inflammatory pattern

followed by acetate stimulus remains in accordance with the protein lev-

els of TNF-α and IL-6 (Fig. 1C and 1D), being the gene expression levels

of TNF-α higher in the acetate treatment when compared to LPS alone.

IL-6 acts in an opposite direction, with a reduction of its gene levels after

treatment with acetate (Fig. 1D).

The authors next investigated whether the observed production of

cytokines could be a response to cell death at different concentrations of

acetate. Cells were treated with growing concentrations of acetate

for 48 hours and cell viability was measured by the MTT (Fig. 2A). It is

observed that acetate, at 50 mM reduced cell viability/proliferation.

Moreover, concentrations of 12.5 and 25 mM showed no effects on cell

viability/proliferation. Based on these results, the authors decided to

use the 25 mM dose, the most effective in increasing the production of

TNF-α with no effect on cell viability/proliferation. Additionally, a time-

course production of TNF-α reveals a peak at 12 hours post-administra-

tion of acetate in the presence of LPS (Fig. 2B). Also, this production

decreases over time, but it is still significantly higher at 72 hours post-

administration when compared to the non-stimulated controls (Fig. 2B).

It is noteworthy to say that acetate, which ate 25 mM and control did

not increase TNF-α release (Fig. 2B).

Despite C8-B4 cells representing a good in vitro modeling strategy for

studying microglia biology,26 the authors argued whether they could

indeed mimic primary microglia isolated from mice. For that, the

authors isolated microglia from newborn mice’s brains and treated them

with growing concentrations of acetate in the presence of LPS for 24 h.

Through flow cytometry, the authors observed that acetate was able to

increase the amount of TNF-α in LPS-treated cells (Fig. 3), corroborating

the previous results with C8-B4 cells and, therefore, confirming that the

used cell lineage responds closely to primary microglia.

Different time-related protocol of acetate stimulus leads to the different

cytokines production profile

The authors have additionally tested the effect of acetate in a “pre-

treatment manner” in microglial cells. After 24 hours of pre-treatment,

Fig. 1. Effect of acetate on cytokine production. (A and B) Microglial C8-B4 cells

were treated for 48 hours with acetate in different concentrations (2.5; 12.5; 25

and 50 mM), with LPS (0.25 μg/mL) or in combination. The supernatant was col-

lected and concentrations of (A) TNF-α and (B) IL-6 were quantified via ELISA.

(C and D) Microglial C8-B4 cells were treated for 6 h with acetate (25 mM), with

LPS (0.25 μg/mL), or in combination, and the gene expression of (C) TNF-α and

(D) IL-6 were analyzed by RT-PCR. Experiments were performed five times in

triplicates. Data are presented as mean + SEM, *p < 0.05.

Fig. 2. Effect of acetate on microglial cell viability and on TNF-α time course

production. (A) Microglial C8-B4 cells were treated with acetate in different con-

centrations (2.5; 12.5; 25 and 50 mM) for 48 hours, and cell viability was ana-

lyzed by MTT assay. (B) Microglial C8-B4, untreated and treated with 25 mM

acetate, 0.25 μg/mL LPS, or both, were maintained for 72 hours and TNF-α con-

centrations were analyzed at several points. Experiments were performed five

times in triplicates. Data are presented as mean + SEM, *p < 0.05.
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cells were washed and submitted to LPS stimulation for additional

48 hours. Surprisingly, this stimulation scheme was able to induce a sig-

nificant reduction of TNF-α levels in relation to cells stimulated simulta-

neously with LPS and acetate (Fig. 4A). Although small, the pre-

treatment of acetate was able to induce a significant reduction in the

production of TNF-α in the group treated with LPS in comparison with

just the LPS treatment (Fig. 4A). This data demonstrates the role of ace-

tate as an anti-inflammatory modulator when administered previously

to the LPS stimulus (Fig. 4A). Acetate pre-treatment, in turn, also led to

reduced IL-6 production, consistent with the reduction observed in the

concomitant LPS and acetate stimulation (Fig. 4B).

Mechanism of acetate immunomodulation

The effect of acetate in microglia immunomodulation can be mediated

via either the epigenetic control, Acting on Histone Acetyl Transferase

(HAT) and Histone Deacetylase (HDAC),15 or via the activation of G pro-

tein-coupled receptors (GPR41 and GPR43). In order to evaluate the

participation of these two mechanisms in the TNF-α, the production the

authors used Trichostatin A (TSA), an inhibitor of HDAC,27 and Pertussis

Toxin (PTX), an SCFA receptors’ (GPR41 and GPR43) blockers.28 The

authors observed that treatment with 1 ng/mL TSA was able to increase

the LPS-induced TNF-α secretion (Fig. 4C). Moreover, the TSA treatment

led to a decrease in the TNFa production in comparisonwith the LPS+Ace-

tate treated group indicating that both acetate and TSA may compete for

histone acetylation. On the other hand, PTX presented no significant effect

on TNF-α production in acetate- and LPS-stimulated cells (Fig. 4C). Cell

behavior followed by TSA or PTX stimuli onto TNFα secretion, suggests

that acetate can be epigeneticallymediated, i.e., by inhibition of HDACs.

Effect of acetate the development of EAE

In order to investigate the anti-inflammatory effects of acetate in a

pre-treatment manner in vivo, the authors proceeded to the Experimental

Autoimmune Encephalomyelitis (EAE), mice were treated with vehicle

or acetate (400 mg/kg) for 8 days (−1 to day 7). The treatment with ace-

tate or vehicle was finished before the appearance of the first’s symp-

toms, commonly present after the 7 to 10th-day post-immunization,

characteristic of the induction phase of the disease, thus being a result

comparable to the pre-treatment in vitro. The development of the disease

was delayed in the group treated with acetate compared to the vehicle

group (control) as shown in Fig. 5A. The authors observed the same pro-

file of the in vitro findings, where the acetate acts in an anti-inflamma-

tory way when administered before the inflammatory stimulus.

Additionally, acetate-treated mice had milder clinical EAE scores in the

comparison with control mice (Fig. 5A). The authors further evaluated

the TNF-α production from both animals. Similarly, as seen in the in vitro

data, cells isolated from acetate-treated animals subjected to EAE show

less expression of TNF-α, demonstrating that the treatment is capable of

inducing long-term anti-inflammatory effects, even after the cells were

removed from the organisms (Fig. 5B).

In silico analysis of spinal cords of EAE mice

Trying to understand the relevance of TNF-α and its activation path-

way, the authors performed in silico analysis from public microarray

data of the spinal cord of animals submitted to EAE and their healthy

controls (Fig. 6) (GSE60847). A schematic view of the TNF-α contribu-

tion to the EAE development was generated (Fig. 6a). The differential

expression analysis showed an increase in the expression of genes

related to the TNF-α pathway in EAE animals, including TNF, TNF recep-

tors, adaptor proteins, caspases, MAPK, and NF-kb (Fig. 6b). This shows

the important role of TNF-α in the pathology of EAE and inflammation.

In addition, pathway enrichment analysis based on the 500 up-regulated

genes in the Gene Ontology (molecular function) shows that activity

related to TNF-α and its receptors was important in the spinal cord of

mice with EAE (Fig. 6c).

Altogether, TNF-α presents an essential role in the generation of neu-

roinflammation and the immune modulation of microglia by acetate

Fig. 3. Production of TNF-α in primary microglia. Primary microglial cells were

treated with acetate (25 mM), with LPS (0.25 μg/mL) alone or in combination of

both for 24 hours and the percentage of cells expressing TNF-α were analyzed.

In A, representative dot plots. In B, the quantification. Experiments were per-

formed five times in triplicates. Data are presented as mean + SEM, *p < 0.05.

Fig. 4. Acetate pre-treatment leads to reduced TNF-α produc-

tion. (A and B) Microglial C8-B4 cells, untreated, treated with

acetate (25 mM), with LPS (0.25 μg/mL), in combination, or

acetate administered as a pre-treatment 24 h before LPS and

washed (wash), were maintained for 48 h and (A) TNF-α and

(B) IL-6 concentrations were analyzed in the supernatant. In C,

C8-B4 cells were treated with acetate (25 mM), Trichostatin

(TSA − 1 ng/mL), Pertussis toxin (PTX ‒ 100 ng/mL), LPS

(0.25 μg/mL), or in combination with LPS and acetate. Experi-

ments were performed five times in triplicates. Data are pre-

sented as mean + SEM, *p < 0.05.
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may be a component in the generation of future therapies for neurode-

generative diseases, as long as the time for starting the treatment is

taken into account.

Discussion

Microglia continually monitor the tissue parenchyma for pathologi-

cal alterations, under steady-state, and play important roles in the regu-

lation of CNS synaptic pruning. In the occurrence of an inflammatory

insult, microglia, and CNS-infiltrating macrophages not only constitute

the first line of defense against pathogens by regulating components of

innate immunity, but they also regulate the adaptive immune responses.

Dysregulation of the microglial development and function impacts both

health and disease status.2,7,29,30

It is known that peripheral and systemic changes are capable of alter-

ing the pathophysiology of the CNS, including products derived from

the gut microbiota.31 Specifically, microglia seem to need signals

derived from the microbiota for maturation and adequate function.32

SCFAs mediate the function of immune cells, both intestinal and sys-

temic, and even in brain cells since they can cross the blood-brain bar-

rier, and changes in SCFA concentrations appear to be related to CNS

pathologies.31 In the present study, the authors show that acetate affects

the release of TNF-α in a dose and time-dependent way. However, ace-

tate alone was not able to induce this proinflammatory cytokine, which

suggests the participation of acetate in exacerbating the response against

Fig. 5. Effect of Acetate in the development of EAE. (Upper

part) Schematic representation of the EAE experimental design.

(A) C57Bl6 control and acetate treated (40 mg/kg − from

day −1 to day 8) animals were immunized with MOG35−55 and

monitored daily for 25 days to evaluate the clinical evolution

of EAE. In B, animals were euthanized at day 10 post immuni-

zation and the percentage of TNF-α+ cells were evaluated in

splenocytes. Cells were treated (black bars) or not (white bars)

with PMA (Phorbol myristate acetate) and ionomycin

for 24 hours. Experiments were performed twice. N = 5 per

experiment. Data are presented as mean + SEM, *p < 0.05.

Fig. 6. In silico analysis of spinal cords of EAE mice. (A) Scheme of TNF-α pathway activation. Genes upregulated in the dataset are shown in red. (B) The differential

expression of genes related to the scheme seen in A. (C) Pathway analysis of the dataset where the Gene Ontology Molecular Function is shown.
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LPS. It is noteworthy to say that the C8-B4 cell line, analyzed in the pres-

ent study, has been obtained from a newborn’s brain, and it is already

known that microglial heterogeneity changes throughout the lifespan

and brain area.32

Additionally, it is still unclear how SCFAs participate in the immune

modulation since conflicting results have been recorded in the literature.

Butyrate, for example, one of the most studied SCFAs, has shown a pro-

inflammatory and anti-inflammatory capacity in different diseases

of the SNC.31,33,34 The same has been observed for other SCFA, as

results show their role in the development of neurodegenerative

diseases,31,34,35 while other studies demonstrate their participation in

the worsening of the neuroinflammatory condition.33,36,37 Some studies

have shown the ability of acetate to activate immune cells.38-41 Despite

some reports pointing to SCFAs as exerting suppressive effects on the

activation of immune cells,15,18,20,42 the present data demonstrate

increased TNF-α production, at the protein and gene transcription levels,

upon acetate stimulation on LPS-treated cells. Such discrepancy could be

attributed to different cell lines used in the different studies. Moreover,

it is also demonstrated in the literature that acetate leads to the produc-

tion of Reactive Oxygen Species (ROS) in neutrophils38 and macro-

phages,39 which ultimately leads to the production of TNF-α,

perpetuating the inflammatory state.43

Bearing in mind that microglia activation is related to several neuro-

pathologies, including Alzheimer’s Disease and Multiple Sclerosis (MS),

and that TNF-α production is present as an activation trigger, the authors

decided to investigate whether acetate is capable of inducing long-last-

ing effects, even before an inflammatory insult. The levels of TNF-α

have been reported to be severely high in the gray matter of EAE and

MS brains, pointing to TNF-α as a primary neurotoxic molecule in EAE,

as confirmed by the present in-silico analysis. It has been shown stronger

pro-inflammatory responses of immune cells and their associated cyto-

kines, chemokines, and receptors in males vs. female,44 which can repre-

sent a caveat in the present study. Additionally, up-regulation of TNF-α

is followed by increased Th17 immune response and an exacerbated

EAE-related disease. Surprisingly, when acetate was administered before

LPS, instead of concurrently, the inflammatory effect of acetate was not

observed, reflected by diminished levels of TNF-α. This data indicates

that acetate affects microglia immediately, suggesting a rapid interac-

tion with receptors or even a mediation through epigenetic modifica-

tion. The data on GPR blockade and HDAC inhibition indicate that TNF-

α production by microglia is due to histone acetylation, ultimately sup-

porting gene transcription thorough upon cellular activation with LPS.

Interestingly, the authors observed that acetate acts in antagonistic ways

depending on the time of administration. In concomitant treatment with

LPS, the authors observed an increase in TNF-α, however, both in vitro

and in vivo data demonstrate that acetate acts in an anti-inflammatory

way as pre-treatment. Here the authors clarify the inconsistencies in the

literature and prove that acetate, depending on the time of administra-

tion, can act in antagonistic ways in the cellular inflammatory profile.

Altogether, the present study’s data demonstrate that acetate can

promote chromatin accessibility, histone acetylation, and TNF-α produc-

tion in LPS-stimulated microglia. The use of acetate was explored in the

context of tumors, in which it was demonstrated that acetate enhances

IFN-g gene transcription43 in addition to presenting effects on T-cell

effector function after prolonged glucose restriction.45 The authors

believe that a better understanding of the role of SCFA and its immune

modulation may be an important component in the generation of future

therapies for neurodegenerative diseases. Depending on the time of

administration, acetate can modulate the activation of microglia.

Material and methods

Cell culture and treatment

The murine microglial cell line C8-B4 (ATTC) was cultured in Dul-

becco’s Modified Eagle Medium: Nutrient Mixture F-12 (Gibco™)

supplemented with 10% fetal bovine serum (Sigma-Aldrich), 100 U/mL

penicillin and 100 μg/mL streptomycin (Life Technologies), at 37 °C

in 5% CO2. Acetate solution was prepared using acetic acid glacial (Lab-

synth™). For use, it was diluted to 1 Molar stock solution, pH = 7.4.

Used concentrations were 2.5; 12.5; 25; and 50 mM, according to

the figure. Primary mixed glial cells were cultured as described previ-

ously.46-48 Briefly, they were prepared from the brains of 0−2-day-old

mice, C57Bl/6 J. Whole brains were dissected into the complete

medium. Meninges were removed and cells dissociated by trituration

prior to seeding at 5 × 10^5 cells/mL onto 175-cm² tissue culture flasks.

The culture medium was changed weekly until the culture reached con-

fluency (14−20 days).

Microglial cells were harvested from 175 cm2
flasks of mixed glial

cultures by shaking at 245 r.p.m. for 2 h. Cells were collected by centri-

fugation and seeded at 5 × 10^5 cells/mL. After 1-hour of incubation

at 37 °C, non-adherent or weakly adherent cells were removed by gentle

shaking and washed out. Cells were further cultured in DMEM supple-

mented with 10% FBS for 1 day.

The reagents, LPS from Salmonella enterica (L5886) are used at a

concentration of 0.25 μg/mL, Trichostatin A (T8552) at 1 ng/mL, and

Pertussis toxin (P7208) at 100 ng/mL, all were purchased from Sigma-

Aldrich.

EAE model

Experimental protocols were reviewed and approved by the Institu-

tional Animal Care and Use Committee (CEUA number 34, 100/12) in

compliance with the Ethical Principles in Animal Research of the Brazil-

ian College of Animal Experimentation. Mice were housed on a 12/12 h

light/dark cycle with free access to chow and water in the Animal Facili-

ties of the Department of Immunology, ICB, University of Sao Paulo.

Within 2 days of life, the brain was extracted from animals of both sexes

for the isolation and mixed culture of glial cells.

Female C57BL/6 (8‒12 weeks old) were immunized subcutaneously

with MOG35−55 (150 μg) emulsified in CFA, with 500 μg of M. tuberculo-

sis Des, H37Ra (Becton & Dickinson ‒ BD). They also received 2 doses of

Bordetella pertussis toxin (200 ng) intraperitoneally, at 0 and 48 h after

immunization. The animals were observed daily, and the scores were

given as stated: 0-No disease, 1-Limp tail, 2-Weak/partially paralyzed

hind legs, 3-Completely paralyzed hind legs, 4-Complete hind, and par-

tial front leg paralysis, 5-Complete paralysis/death. The animals were

followed for 25 days post-immunization for the disease progression, for

the cytokine production, splenocytes, and the whole brain were isolated

on the 10th-day post-immunization, and the intracellular staining was

performed.

Cells viability by mtt assay

The MTT (Thiazolyl Blue Tetrazolium Bromide) assay was carried

out to determine the optimum concentration of acetate. Cells were

seeded at 1.5 × 10^4 per well in a 96 well plate and, after 24 hours, the

complete medium was replaced with a medium without FBS. 5 mg/mL

of MTT was added to each well and incubated for 2 hours at 37 °C in 5%

CO2, protected from light. The MTT reagent was removed and 100 μL of

DMSO was added. The optical density was read at 570 nm with the Ver-

samax Tunable Microplate Reader, Molecular Devices (Sunnyvale, Cali-

fornia).

Quantitative PCR

Total RNA from cells was extracted with Trizol® (Invitrogen, Carls-

bad, CA). cDNA (2 μg of total RNA) was synthesized with Moloney

Murine Leukemia Virus Reverse Transcriptase (Promega, Madison, WI,

USA). The real-time PCR assay was carried out using 3 μL of cDNA as

the template and 5 μL of Power SYBR Green PCR Master Mix (Thermo

Fisher Scientific, Waltham, MA, USA). Primers used in this study are as
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followed, HPRT: 5′-CTCATGGACTGATTATGGACAGGA-3′ (F),

5′GCAGGTCAGCAAAGAACTTATAGCC-3′ (R); TNF-α: 5′-CATCTTCT-

CAAAATTCGAGTGACAA-3′ (F) 5′-TGGGAGTAGACAAGGTACAACCC-3′

(R); IL6: 5′-CCGGAGAGGAGACTTCACAG-3′ (F) 5′-ACAGTGCAT-

CATCGCTGTTC-3′ (R).

Determination of cytokines by ELISA

TNF-α and IL-6 levels in the culture supernatants were measured

using commercial sandwich ELISA kits (R&D Systems, Minneapolis, MN,

USA) according to manufacturers’ instructions. Absorbance was mea-

sured at 450 nm, and the results are presented in ρg/mL.

Flow cytometry

After the stimulus with LPS and acetate for 24 h, the microglial cells

proceeded to flow cytometry. Cells were incubated for CD11b (pacific

blue, BioLegend-San Diego, Ca, USA. cat: 101,224) with a concentration

of 1: 100 for 30 minutes. For the analysis of the intracellular TNF-α pro-

duction, the monoclonal anti-TNF-α antibody was used (BD Diag-

nostics®, Franklin Lakes, USA ‒ cat: 554,420). The acquisition and

analysis of the samples were performed in a FACS-calibur flow cytome-

ter (Becton & Dickinson, Mountain View, CA), using the CellQuest soft-

ware (Apple).

In silico analysis

The authors analyzed the expression of genes related to the TNF-α

pathway through GEO2R (https://www.ncbi.nlm.nih.gov/geo/geo2r/)

in a public dataset (GSE60847) and compared the differential expression

of spinal cord genes between EAE and sham animals, the authors use

only differentially expressed genes with adjusted p < 0.05. The 500 up-

regulated genes were submitted to pathway enrichment using Enrichr

(https://maayanlab.cloud/Enrichr/) and GO (https://geneontology.

org).

Statistics

Experiments were performed in triplicate and three independent

tests were performed for each assay. The data were described in terms of

the mean and S.E.M. unless specified in the figure legend. Differences

between groups were compared using ANOVA (with Tukey’s post-test)

and Student’s t-test. A 95% significance level was used, and differences

were regarded as p < 0.05. Statistical analyses were performed using

GraphPad PRISM 6.01 (La Jolla, CA, USA). No masking and no blinding

were used during group allocation.
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