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OBJECTIVE: Because autonomic dysfunction has been found to lead to cardiometabolic disorders and because
studies have reported that simvastatin treatment has neuroprotective effects, the objective of the present study was
to investigate the effects of simvastatin treatment on cardiovascular and autonomic changes in fructose-fed female
rats.

METHODS: Female Wistar rats were divided into three groups: controls (n = 8), fructose (n= 8), and fructose+
simvastatin (n =8). Fructose overload was induced by supplementing the drinking water with fructose (100 mg/L,
18 wks). Simvastatin treatment (5 mg/kg/day for 2 wks) was performed by gavage. The arterial pressure was
recorded using a data acquisition system. Autonomic control was evaluated by pharmacological blockade.

RESULTS: Fructose overload induced an increase in the fasting blood glucose and triglyceride levels and insulin
resistance. The constant rate of glucose disappearance during the insulin intolerance test was reduced in the
fructose group (3.4¡0.32%/min) relative to that in the control group (4.4¡0.29%/min). Fructose+simvastatin rats
exhibited increased insulin sensitivity (5.4¡0.66%/min). The fructose and fructose+simvastatin groups demon-
strated an increase in the mean arterial pressure compared with controls rats (fructose: 124¡2 mmHg and
fructose+simvastatin: 126¡3 mmHg vs. controls: 112¡2 mmHg). The sympathetic effect was enhanced in the
fructose group (73¡7 bpm) compared with that in the control (48¡7 bpm) and fructose+simvastatin groups
(31¡8 bpm). The vagal effect was increased in fructose+simvastatin animals (84¡7 bpm) compared with that in
control (49¡9 bpm) and fructose animals (46¡5 bpm).

CONCLUSION: Simvastatin treatment improved insulin sensitivity and cardiac autonomic control in an experimental
model of metabolic syndrome in female rats. These effects were independent of the improvements in the classical
plasma lipid profile and of reductions in arterial pressure. These results support the hypothesis that statins reduce
the cardiometabolic risk in females with metabolic syndrome.
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INTRODUCTION

The consumption of high levels of fructose in humans and
animals causes insulin resistance, lipid abnormalities, obesity,
hypertension, and renal changes.1-5 The combination of these
metabolic and cardiovascular alterations observed in fructose-
fed subjects is collectively known as metabolic syndrome
(MS). To model the development of MS experimentally, long-
term fructose overload in rats has been used.1,2

Statins (or HMG-CoA reductase inhibitors) have been
shown to lower arterial pressure (AP) in borderline hyper-
tensive dyslipidemic humans. This favorable effect of statins
may be a result of both lipid-based mechanisms and non-
lipid-based mechanisms affecting endothelial vasoregulation
and the sympathovagal balance in the disease state.6

Experimental studies have shown that simvastatin improves
baroreflex sensitivity (BRS).7 Findings from several studies
have strongly suggested that simvastatin normalizes the
autonomic function in individuals with heart failure, inhibit-
ing the central mechanisms of angiotensin II and, conse-
quently, the superoxide production pathway.8 Moreover,
simvastatin may improve left ventricular function8 and
reduce vascular dysfunction in mice with dyslipidemia.9

Despite these positive results, the effects of statin therapy
on autonomic function have not been established to date,No potential conflict of interest was reported.
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particularly in females with MS. It is important to emphasize
that significant advances in the management of cardiovas-
cular disease and MS have been made in recent years.1,2,10,11

However, cardiovascular diseases remain the leading cause
of death among women in the most developed areas of the
world,12 exceeding the number of deaths in men and the
combined number of deaths due to the next seven causes in
women.10 Because autonomic dysfunction leads to cardio-
metabolic disorders11 and because statins have demonstrated
neuroprotective effects,12-15 we hypothesized that chronic
simvastatin administration in female rats submitted to long-
term fructose overload (18 weeks) would improve cardiac
autonomic control and reduce the cardiometabolic risk.
Therefore, the aim of the present study was to investigate
the effects of simvastatin on the metabolic, cardiovascular
and autonomic changes induced by fructose overload in
female rats.

MATERIAL AND METHODS

Experiments were performed using 24 female Wistar rats
(70 days old, approximately 50 g) that were obtained from
the Animal Shelter of Sao Judas Tadeu University in Sao
Paulo, Brazil. The rats received standard laboratory chow
(Nuvital, Colombo, Brazil) and water ad libitum. The
animals were housed in individual cages in a tempera-
ture-controlled room (22 C̊) with a 12-h dark-light cycle. All
rats were treated similarly in terms of daily manipulation.
All surgical procedures and protocols were in accordance
with the Ethical Care Guidelines for Experimental Animals
and the International Animal Care and Use Committee and
were approved by the Sao Judas Tadeu University Ethical
Committee (protocol number 058/2007). Three experimen-
tal groups were used in this study: control (C; n = 8),
fructose (F; n = 8), and fructose+simvastatin (FS, n = 8).
Fructose overload was induced via dilution of D-fructose
in the drinking water (100 g/L) for 18 weeks. At 16 weeks,
the presence of fructose-induced metabolic and cardiovas-
cular dysfunctions16 was analyzed. Simvastatin (5 mg/kg/
day) treatment was performed by gavage for the last two
weeks of fructose overload.

After 18 weeks of fructose overload, the blood glucose and
triglyceride concentrations were measured using a Roche
device (Accutrend GCT, Roche, Sao Paulo, Brazil) after four
hours of fasting at the end of the protocol. For the insulin
tolerance test (ITT), the rats were fasted for two hours and
then anesthetized with thiopental (40 mg/kg body weight,
ip). A drop of bloodwas collected from the tail to measure the
blood glucose concentration using the Accucheck system
(Roche, Sao Paulo, Brazil) before and 4, 8, 12, and 16 minutes
after insulin injection (0.75 U/kg). The constant rate of
decrease of the blood glucose concentration (Kitt) was
calculated using the 0.693/t1/2 formula. The t1/2 for blood
glucose was calculated from the slope of the least squares
analysis of the blood glucose concentrations during the linear
phase of decline.16,17

After metabolic measurements, two catheters filled with
0.06 ml of saline were implanted in anesthetized rats
(ketamine 80 mg/kg+xylazine 12 mg/kg) into the carotid
artery and jugular vein (PE-10) for direct measurements
of the AP and for drug administration, respectively. One
day after the catheter placement, the rats were conscious
and allowed to move freely during the experiments.
The arterial cannula was connected to a strain-gauge

transducer (Blood Pressure XDCR, Kent� Scientific,
Litchfield, CT, USA), and AP signals were recorded over
a 30-min period by a microcomputer equipped with an
analog-to-digital converter board (CODAS, 2-kHz sam-
pling frequency, Dataq Instruments, Inc., Akron, OH,
USA). The recorded data were analyzed on a beat-to-beat
basis to quantify the changes in the mean AP (MAP) and
the heart rate (HR).16,18

The vagal and sympathetic effects were studied by
injecting methylatropine (3 mg/kg IV, Sigma-Aldrich, St.
Louis, MO, USA) and propranolol (4 mg/kg IV, Sigma-
Aldrich) in a volume of 0.1 ml/100 g of body weight. The
resting HR was recorded while the rats were in their cages
in an unrestrained state. Methylatropine was injected
immediately after the recording. Because the HR response
to these drugs reaches its peak within 10 to 15 minutes, this
time interval was allowed to elapse before the HR
measurement was taken. On the next day, the sequence of
the injections was inverted, and propranolol was injected
before methylatropine.16 The sympathetic effect was deter-
mined by calculating the difference between the basal HR
and the lowest HR after the administration of propranolol.
The vagal effect was obtained based on the difference
between the maximum HR after methylatropine injection
and the basal HR.
The data were expressed as the means¡SEM and were

compared using one-way analysis of variance (ANOVA)
or repeated one-way ANOVA followed by the Student
Newman-Keuls test. The significance level was set at
p,0.05.

RESULTS

The body weight was not different between the studied
groups at the beginning (C: 48¡6 g, F: 43¡5 g, and FS:
45¡1 g, p.0.05) and at the end of the protocol (C:
285¡10 g, F: 294¡9 g, and FS: 288¡8 g, p.0.05).
The fasting glucose levels were increased in F (92¡2 mg/

dL) and FS (93¡2 mg/dL) rats compared with that in C rats
(82¡2 mg/dL, p,0.05). The blood triglyceride concentra-
tion was also higher in the F and FS groups (142¡12 and
187¡22 mg/dL, respectively) compared with that in the C
group (101¡5 mg/dL, p,0.05). The constant rate of the
plasma glucose disappearance (Kitt) was reduced in the F
group (3.4¡0.32%/min) compared with that in the C group
(4.4¡0.29%/min, p,0.05) during ITT, which is indicative of
the insulin-resistant state in the fructose-fed rats. The
simvastatin treatment increased the Kitt (FS: 5.4¡0.66%/
min, p,0.05) in F rats.

The F group exhibited increases in the systolic, diastolic,
and mean arterial pressures (p,0.05). Simvastatin treatment
did not change the AP in the F rats (p.0.05) (Table 1). The
resting HR showed similar values among groups (p.0.05)
(Table 1).
The cardiac vagal effect was similar between the C

(49¡9 bpm) and F groups (46¡5 bpm, p.0.05). Simvastatin
treatment increased the vagal effect in fructose-overloaded
animals (FS: 84¡7 bpm) compared with that in C and F
animals (p,0.05) (Figure 1A). The sympathetic effect was
enhanced in the F group (73¡7 bpm) compared with that in
the C group (48¡7 bpm, p,0.05). This effect was normal-
ized by simvastatin treatment (FS: 31¡8 bpm, p,0.05)
(Figure 1B).
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DISCUSSION

The aim of this study was to determine the effects of
simvastatin treatment on the metabolic, cardiovascular, and
autonomic modulation in an experimental model of MS that
was induced by long-term fructose overload (18 weeks) in
female rats. Although simvastatin treatment did not change
the blood metabolic parameters or the AP, this pharmaco-
logic approach improved insulin resistance, reduced the
exacerbated cardiac sympathetic effect and increased the
vagal effect to the heart. Additionally, our findings in
female rats corroborated previous data that have been
obtained in male animals submitted to fructose overload;
these male rats exhibited enhanced blood glucose and
triglyceride levels, insulin resistance, increased AP and
sympathetic activation.
We should emphasize that the protocol used in our

research differed from those of previous studies. Because
fructose overload was performed in animals starting from
their 70th day of life through their adult phase, we could
simulate the fructose consumption of Western diets over
the entire lifespan. Previous investigations have covered
a shorter time-span and gathered data from the acute
(2-24 h) or mid-term (1-9 weeks) phases of fructose

administration.2-5,16,19-22 The rationale behind our design
choice lies in the fact that metabolic and cardiovascular
disorders take years to manifest as clinical alterations due
to the stepwise compensatory behaviors, physiological
adaptations, and new equilibrium levels.
The fructose drinking model in rats resembles a state of

early insulin resistance in humans, which is associated
with mild hypertension.16,23 Previous studies have demon-
strated that increased body weight is not common in male
rat or in fructose-rich chow-fed mouse models. However,
fructose-rich chow-fed mouse models can develop hyper-
triglyceridemia, increased blood glucose concentrations,
glucose intolerance or insulin resistance and hyperinsuli-
nemia.3,5,16,19-21 In our study, the fructose-overloaded
female rats displayed increased blood glucose and trigly-
ceride concentrations and insulin resistance. However, the
body weight remained unaltered. Although simvastatin
treatment did not alter the fasting blood glucose and
triglyceride levels in our study, it increased Kitt in
fructose-fed rats. These results indicate that simvastatin
treatment reduces insulin resistance in fructose-over-
loaded rats.
Most studies investigating the effects of high fructose

consumption on the basal AP in male or female rats have
used tail-cuff plethysmography, which is an indirect
measurement of AP that can only measure systolic AP.19-22

Increased fructose consumption leads to increases in the AP
in male20,21 and female rats16 and in male mice during the
dark period.5 Farah et al.5 have demonstrated an increase in
the low-frequency component of systolic AP in fructose-
overloaded (eight weeks) male mice. These results show
that increased AP is associated with sympathetic modula-
tion in the circulation that is limited to the dark (active)
period. In the present study, we observed an increase in the
AP and in the sympathetic effect in the heart in fructose-fed
female rats after 18 weeks of fructose consumption. The AP
change in fructose-fed animals is mediated by activation of
the sympathetic nervous system,5,24 impairment of the
cardiac parasympathetic tonus16 and of endothelium-
dependent relaxation25 and dysfunction in the angioten-
sin-renin system.5

Our results show that the simvastatin treatment nor-
malizes the cardiac sympathetic effect and insulin resis-
tance. In addition, simvastatin treatment increased the
cardiac vagal effect in fructose-fed female rats. However,
simvastatin treatment did not change the basal AP or the
blood triglyceride level. These results suggest that these
statin-induced improvements might result from a pleio-
tropic effect that is independent of the drug’s classical
effect on lipids. Pliquett et al.26 have also demonstrated
improvements in the BRS in rabbits with heart failure after
statin treatment without changes in the total plasma or
high-density cholesterol levels. Additionally, if decreased
AP was observed in the present study in simvastatin-
treated fructose-fed rats, the autonomic improvement
observed in these animals may be attributed, at least in
part, to this change. Previous studies have reported lower
APs in borderline hypertensive dyslipidemic humans who
were treated with statins and have attributed this
favorable alteration to both lipid-based mechanisms and
non-lipid-based mechanisms affecting endothelial vasor-
egulation and the sympathovagal balance in the disease
state.6

Table 1 - Evaluation of cardiovascular function of the
control (C), fructose (F), and fructose+simvastatin (FS)
groups.

PARAMETERS C F FS

SAP, mmHg 127¡3 140¡3* 143¡4*

DAP, mmHg 96¡2 106¡2* 111¡4*

MAP, mmHg 112¡2 124¡2* 126¡3*

HR, bpm 354¡9 380¡20 328¡9

Values are the mean ¡ SEM. SAP: systolic arterial pressure; DAP: diastolic

arterial pressure; MAP: mean arterial pressure; and HR: heart rate.

*p,0.05 vs. the control group.

Figure 1 - A) The sympathetic effect and B) the vagal effect in the
control (C), fructose (F), and fructose+simvastatin (FS) groups.
*p,0.05 vs. the C group; #p,0.05 vs. the F group.
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Based on these findings, we hypothesize that the role of
simvastatin in the autonomic nervous system is vast and
includes enhancing NO synthesis in the endothelium27,28

and reducing angiotensin II–induced injury, AT1 receptor
expression,29,30 and ETA receptor expression.31 These
functions indicate a potential role for statins in regulating
sympathetic and vagal outflow in the central nervous
system and improving the afferent or efferent arms of the
cardiovascular autonomic reflexes. These autonomic pleio-
tropic effects of statins may account for patient outcomes
and require further characterization.

CONCLUSION

The results of the present study demonstrate that fructose
overload in female rats induces increases in the AP and the
cardiac sympathetic response, which are associated with
insulin resistance. These findings reinforce the role of
autonomic dysfunction in the development of early cardi-
ometabolic disorders that are induced by a high fructose
diet in female rats. Importantly, we demonstrated that a
short-term simvastatin treatment may improve insulin
sensitivity and cardiac autonomic control in an experimen-
tal model of MS in female rats. These effects were
independent of improvements in the classical plasma lipid
profile and of reductions in the AP, reinforcing the
hypothesis that statins reduce the cardiometabolic risk in
females with MS. However, additional studies are needed to
confirm the pleiotropic effects of long-term statin treatment
on autonomic dysfunction and on the outcome of women
with MS.
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