
Original articles

Bone marrow-derived mesenchymal stem cell-conditioned medium

ameliorates diabetic foot ulcers in rats
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H I G H L I G H T S

� BMMSC-CM therapy on rats with DFUs enhanced the wound healing process.

� It accelerated wound closure and promoted cell proliferation and angiogenesis.

� It enhancd cell autophagy and reduced cell pyroptosis in ulcers.

A R T I C L E I N F O A B S T R A C T

Objectives: This study aimed to explore the effects of bone marrow-derived Mesenchymal Stem Cell-Conditioned

Medium (MSC-CM) treating diabetic foot ulcers in rats.

Methods: Models of T2DM rats were induced by a high-fat diet and intraperitoneal injection of STZ in SD rats.

Models of Diabetic Foot Ulcers (DFUs) were made by operation on hind limbs in diabetic rats. Rats were divided

into four groups (n = 6 for each group), i.e., Normal Control group (NC), Diabetes Control group (DM-C), MSC-

CM group and Mesenchymal Stem Cells group (MSCs). MSC-CM group was treated with an injection of condi-

tioned medium derived from preconditioned rats’ bone marrow MSCs around ulcers. MSCs group were treated

with an injection of rats’ bone marrow MSCs. The other two groups were treated with an injection of PBS. After

the treatment, wound closure, re-epithelialization (thickness of the stratum granulosums of the skin, by H&E

staining), cell proliferation (Ki67, by IHC), angiogenesis (CD31, by IFC), autophagy (LC3B, by IFC and WB; autoly-

sosome, by EM) and pyroptosis (IL-1β, NLRP3, Caspase-1, GSDMD and GSDMD-N, by WB) in ulcers were

evaluated.

Results: After the treatment wound area rate, IL-1β by ELISA, and IL-1β, Caspase-1, GSDMD and GSDMD-N by WB

of MSC-CM group were less than those of DM group. The thickness of the stratum granulosums of the skin, prolif-

eration index of Ki67, mean optic density of CD31 and LC3B by IFC, and LC3B by WB of MSC-CM group were

more than those of DM group. The present analysis demonstrated that the injection of MSC-CM into rats with

DFUs enhanced the wound-healing process by accelerating wound closure, promoting cell proliferation and

angiogenesis, enhancing cell autophagy, and reducing cell pyroptosis in ulcers.

Conclusions: Studies conducted indicate that MSC-CM administration could be a novel cell-free therapeutic

approach to treat DFUs accelerating the wound healing process and avoiding the risk of living cells therapy.
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Introduction

In 2021 there are 537 million people living with diabetes. It is pre-

dicted that by 2045, 700 million people will suffer from this disease

worldwide.1 The pooled estimate of the global prevalence of Diabetic

Foot Ulcers (DFUs) is approximately 3% in community-based cohorts

with a wide variation in rates of major amputation across the world.2,3

DFUs is one of the most severe chronic complications of diabetes with

high treatment costs, which can lead to amputation and death. One esti-

mate suggests that between one-third to one-fifth of patients with DM

will develop a chronic non-healing wound such as a Diabetic Foot Ucer

(DFU) in their lifetime, with an alarming recurrence rate (40% within
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one year and 65% within five years) and there is no reliable way to pre-

dict its occurrence.4,5 The lifetime incidence of foot ulcers in people

with diabetes can be as high as 19% to 34%.6 Therefore, a large propor-

tion of patients require amputation and expensive treatment, affecting

the quality of life of patients. With the DFU market alone estimated to

grow from US $7.03 billion in 2019 to US $11.05 billion in 2027, more

effective diagnostic and therapeutic strategies must be developed to

combat this debilitating disease.7,8

In recent years, stem cell therapy technology has developed rapidly.

Mesenchymal Stem Cells (MSCs) have a high self-renewal ability. It’s

convenient to be collected, and easy to be isolated and cultured for

transplantation. MSCs therapy can promote wound healing by reducing

inflammation, promoting angiogenesis and granulation tissue formation,

and accelerating epithelialization. But some limitation restricts the wide

application of MSCs therapy. The main therapeutic mechanism associ-

ated with MSCs administration is thought to be the paracrine secretion

of a broad spectrum of bioactive factors and extracellular vesicles, com-

monly referred to as MSC-Conditioned Medium (MSC-CM).9

Therefore, the authors performed this study of MSC-CM treating

DFUs in rats. The aims of this study were to determine the therapeutic

effect of BMMSC-CM treatment on DFUs in rats, and to investigate the

possible mechanism of the treatment.

Methods

Animal models and groups

Experimental protocols and methods in the current study have been

approved by Institutional Animal Care and Use Committee (IACUC) of

China Medical University (IACUC Issue n° CMU2022711) and were per-

formed in accordance with the ARRIVE guidelines 2.0.10 Male Sprague

Dawley (SD) rats weighing 90−100g aged four weeks were obtained

from SPF (Beijing) Biotechnology Co.Ltd (SCXK2019-0010). All rats

were housed at 25 ± 1°C on a 12h light/dark cycle and fed ad libitum

for 1 week before study inception. Animals for diabetes models were

then fed with a high-fat diet (40% fat, 40% carbohydrate, and 20% pro-

tein) for 8 weeks, and diabetic rat models were generated through a sin-

gle intraperitoneal injection of streptozotocin (STZ, Sigma, USA) at

30 mg/kg body weight in sodium citrate buffer (pH4.2) after overnight

fasting for 15 hours. Blood Glucose (BG) concentration was measured

using a drop of tail capillary blood by a glucometer. Fasting Blood Glu-

cose (FBG) ≥ 8.3 mmoL/L after 3 days for 7 days, was indicative of the

successful establishment of the T2DM rat model.11,12

DFUs models were created by removing full-thickness skin of

3 × 7 mm from the right hind limb of the diabetic rats, then they were

randomly divided into three groups as follows: MSC-CM therapy group

(MSC-CM, n= 6), MSCs therapy group (MSCs, n = 6), and diabetes con-

trol group (DM-C, n = 6). Normal rats also received an operation for

ulcers in the same way and were set as the normal control group (NC,

n = 6).

Cell culture, MSC-CM therapy

Isolation, culture, and identification of MSCs: Bone marrow was col-

lected from both lateral femurs and tibias of one 4-week-old male SD rat

weighing 150g. A complete culture medium was prepared, consisting of

high glucose Dulbecco’s Modified Eagle’s Medium (DMEM) with 10%

Fetal Bovine Serum (FBS). Cut off the epiphysis at both ends of the

femurs and tibias from the joint of the rat with ophthalmic scissors to

expose the bone marrow cavity. Flushed the bone marrow out from one

end of the bone marrow cavity and then flushed the bone marrow out in

the opposite direction from the other end of the bone marrow cavity

with culture medium in a 1ml syringe repeatedly, until flushing fluid

from the bone marrow cavity became clear. Bone marrow cells were col-

lected by Ficoll-Hypaque density gradient centrifugation. These cells

were cultured at 37°C with 5% CO2 in a complete culture medium.

Nonadherent cells were removed, and a fresh medium was added after

48h of incubation. The medium was changed every 48h or 72h and fur-

ther propagated the adherent spindle-shaped cells for three passages.

BM-MSCs were harvested and identified by flow cytometry as CD73+

CD90+ CD105+ CD34− CD45− HLA-DR− for the expression of MSC

markers.13

Preparation of MSC-CM: When the confluency of MSCs in 3rd genera-

tion reached 80%‒90%, MSCs were cultured in L-DMEM without FBS

and penicpstreptomycin for 24h. Then the supernatant was collected,

and the dead cells were removed by centrifugation. The medium

obtained was concentrated for about 25 times by ultrafiltration, filtered

with 0.22 µmmicroporous membrane filter to remove bacteria. The con-

centrated conditioned media were frozen and stored in a refrigerator at

-80°C until use.

MSC-CM therapy: When the models were created, MSC-CM were

injected into four sites around the ulcer of each rat in MSC-CM group,

totally 100 µL for each rat. 106 of MSCs were injected into the ulcer of

each rat in MSCs group. DM-C group and NC group were injected with

the same amount of PBS in the same way.

Measurement of body weight, wound area and blood glucose level

Digital photographs of wounds were taken on days 0, 3, 7, 10, and

14. Body weight and fasting blood glucose level were determined at day

0, 7 and 14. The wound area was measured using Image-pro Plus 6.0

analysis software (IPP, Media Cybernetics, Inc.) by tracing the wound

margin. The wound area rate was calculated as follows: Wound area

(%) = ([area of actual wound] / [area of original wound]) × 100.

Histological assessment: At day 14 after therapy, the SD rats were

killed and the wound samples (including 2 mm of the surrounding skin

of the ulcers) were harvested for histological analysis.

H&E staining: The sections of the wound tissue were stained with

Hematoxylin and Eosin (H&E) and the thickness of the stratum granulo-

sums of the skin was measured by Caseviewer Software 2.4 (3DHISTECH

Ltd) to detect the hyperblastosis of tissue formation.

ELISA (enzyme-linked immunosorbent assay): The levels of inflam-

matory factors Interleukin-1β (IL-1β) in ulcers were detected by ELISA

kit (Product # abs104566; Absin).

Immunohistochemistry (IHC) and Immunofluorescence Colony (IFC)

Staining: The anti-Ki67 antibody (1:300; Product # A16919; ABclonal)

IHC, anti-CD31 antibody (1:300; Product # ab182981; ABcam) and the

anti-LC3B antibody (1:200; Product # ABS82; Sigma-Aldrich) IFC were

performed. Ki67 in ulcers was detected by immunohistochemistry and

Proliferation Index (PI) was calculated. PI was calculated as follows:

PI = Number of proliferative cells / (Number of proliferative

cells + Number of normal cells). CD31 and LC3B were detected by

immunofluorescence. IPP software was used to count positively stained

cells in immunofluorescence sections, and the Integrated Optical Density

(IOD) of positive staining for CD31 or LC3B was calculated and ana-

lyzed. Mean Optical Density (MOD) was calculated (MOD = IOD SUM/

area) and compared.

Electron microscopy: The ulcer tissue samples were obtained from

each group (three samples per group) and cut into small cubes

(1 × 1 × 1 mm3). Samples were rinsed with Phosphate Buffered Saline

(PBS), fixated in 2.5% glutaraldehyde and dehydrated, and sectioned

with an ultrathin microtome (Leica, Witzla, Germany), stained with sat-

urated uranyl acetate. Autophagosomes were observed by transmission

electron microscope (TEM, H-7650, Hitachi, Osaka, Japan).

Western blot analysis: Total protein was extracted from samples of

the wound by Total Protein Extraction Kit (Beyotime Institute of Bio-

technology, Shanghai, China) at day 14 posttreatment. Equal amounts

of total protein were separated on 10% SDS-PAGE and transferred to

nitrocellulose membranes. Membranes were incubated overnight at 4°C

with monoclonal antibodies against IL-1β (Product # A1112; Abclonal),

LC3B(Product # 14600-1-AP; Proteintech), NLRP3 (Product # A5652;

Abclonal), Caspase-1 (Product # A0964; Abclonal), GSDMD (Product #
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66387-1-Ig; Proteintech), GSDMD-N (Product # ab215203, Abcam) and

GAPDH (Product # 10494-1-AP; Proteintech) (all 1:1000). Then, the

membranes were incubated with HRP-conjugated anti-rabbit (1:5000;

Product # S0001; Affinity).

Statistical analysis

Data are shown as means ± Standard Deviation (SD). Before analysis,

the data were tested for normality of distribution using the Kolmogorov-

Smirnov test. For normally distributed data, differences between groups

were analyzed using the Least-Significant Difference test (LSD) and

repeated measurement analysis. A value of p < 0.05 was considered sig-

nificant. SPSS 22.0 (IBM) was used for statistical analyses.

Results

Identification of BM-MSCs characteristics

Isolated cells were plastic-adherent in culture and displayed a typical

fibroblast morphology. Flow cytometry analysis showed that the BM-

MSCs slightly expressed hematopoietic CD markers CD34 (0.04%),

CD45 (0.11%) and HLA-DR (0.22%), and completely expressed mesen-

chymal CD markers CD73, CD90, and CD105 (100%), indicating that

the cultured cells possessed the MSCs characteristics (Fig. 1).

Measurement of body weight, wound area, and blood glucose levels

The body weight of DFUs was higher than that of NC group. There

were no differences in body weight among DM-C, MSC-CM, and MSCs

groups (Table 1)

Both MSC-CM and MSCs therapy enhanced wound healing. Wounds

of MSC-CM and MSCs groups exhibited accelerated wound closure com-

pared with wounds of DM-C group on day 3, day 7 and day 10 (p <

0.05). There were no significant differences in the wound area between

MSC-CM and MSCs groups (Fig. 2 A‒B; Table 2).

Fasting blood glucose levels of DM-C, MSC-CM, and MSCs group was

higher than that of NC group. There were no significant differences in

blood glucose levels among DM-C, MSC-CM, and MSCs groups (Fig. 2C;

Table 3).

Histological assessment

H&E staining: The thickness of the stratum granulosums of the skin

in MSC-CM or MSCs group was thicker than that in DM-C group (p <

0.05). There were no significant differences in the thickness of the stra-

tum granulosums between MSC-CM and MSCs groups (Fig. 3 A‒F,

Table 4).

ELISA: IL-1β level in ulcers of MSC-CM or MSCs group was lower

than that of DM-C group (p < 0.05). There were no significant differen-

ces in IL-1β levels of ulcers between MSC-CM and MSCs groups (Fig. 3J,

Table 4).

IHC and IFC: PI from ki67 in ulcers of MSC-CM or MSCs group was

more than that of DM group (p < 0.05). There were no significant differ-

ences with PI in ulcers between MSC-CM and MSCs groups (Fig. 3 B and

G). MOD from CD31 in ulcers of MSC-CM or MSCs group was higher

than that of DM group (p < 0.05). There were no significant differences

with CD31 in ulcers between MSC-CM and MSCs groups (Fig. 3 C and

H). MOD from LC3B in ulcers of MSC-CM or MSCs group was higher

than that of DM group (p < 0.05). There were no significant differences

with LC3B in ulcers between MSC-CM and MSCs groups (Fig. 3 D and I,

Table 4).

Electron microscopy: Treatment with MSC-CM or MSCs induced the

appearance of autophagosomes in the cells. Autophagosomes could

hardly be found in DM-C group (Fig. 3E).

Western blot analysis: The relative expressions of protein of NLRP3,

GSDMD, GSDMD-N, proCaspase-1 and pro-IL-1β in MSC-CM or MSCs

group decreased obviously compared with those in DM-C group. The

expressions of NLRP3, proCaspase-1 and pro-IL-1β in MSC-CM group

Fig. 1. Characterization of rat BM-MSCs. Cell surface markers of MSCs were assessed using flow cytometry. MSCs expressed CD73, CD90 and CD105, but not CD34,

CD45 or HLA-DR.

Table 1

Body weight of the rats before and after therapy.

Group 0 d (g) 7 d (g) 14 d (g)

NC 352±29a 381±36a 391±42a

DM-C 401±25 407±27 416±24

MSC-CM 403±19 411±22 420±23

MSCs 398±26 406±23 414±18

a p < 0.05 compared with the other three groups.
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were less than those in MSCs group. The relative expressions of protein

of LC3B in MSC-CM group were higher than those in MSCs or DM-C

group (Fig. 4).

Discussion

Stem cell therapy for the treatment of DFUs has been a topic of much

interest recently. Murine models of diabetes have found that stem cells

derived from umbilical, adipose, smooth muscle, and bone marrow or

in combination therapies with MSCs accelerated wound healing.14-18

BM-MSCs transplantation is a therapeutic way for DFUs, and intramus-

cular transplantation has been proven to have the probably best effi-

cacy.19 However, currently, there are some limitations that hinder the

widespread use of MSCs, such as spontaneous changes in properties and

behavior, formation of malignant tumors, transmission of infectious

diseases20,21 and so on.

Recent studies have shown that engrafted MSCs do not survive for

the long term, suggesting that the benefits of MSC therapy might be

attributable to their secreted factors. The function of mesenchymal stem

cells to secrete protective factors was first discovered by Gnecchi et al.22

Fig. 2. Wound area and fasting blood glucose levels. (A) Effect on DFUs in rats after treatment (2 mm). (B) Wound area rate. At day 3, 7 and 10, wound area rate of

DM-C group was higher than those of the other three groups. (*p < 0.05). (C) Blood glucose levels. There were no significant differences in fasting blood glucose levels

among DM-C, MSC-CM and MSCs group.

Table 2

Wound area of the rats before and after therapy.

Group 0 d (%) 3 d (%) 7 d (%) 10 d (%) 14 d (%)

NC 100 51±4 31±5 18±4 4±1

DM-C 100 70±6a 58±6a 32±5a 15±4a

MSC-CM 100 55±6 38±7 22±4 8±3

MSCs 100 54±5 34±6 21±5 7±2

a p < 0.05 compared with the other three groups.

Table 3

FBG of the rats before and after therapy.

Group 0 d (mmoL/L) 7 d (mmoL/L) 14 d (mmoL/L)

NC 4.88±0.55a 5.12±0.46a 5.07±0.62a

DM-C 10.43±2.75 11.47±2.33 10.84±2.54

MSC-CM 11.32±2.88 10.57±2.34 9.97±2.18

MSCs 10.68±2.23 10.12±2.59 9.65±2.37

a p < 0.05 compared with the other three groups.
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At present, many studies have confirmed that the paracrine effect is the

main mechanism of MSCs therapy.23-26 CM represents a fully regener-

ated milieu and the vesicular component of the cell-derived secretome.

A growing body of literature recently has drawn attention to the pleth-

ora of bioactive factors produced by MSCs, including growth factors,

cytokines, microRNAs, exosomes, and proteasomes, which may play

important roles in the regulation of many physiological processes. The

use of CM may have considerable potential advantages over living cells

in terms of manufacturing, handling, storage, product shelf life, and

their potential as ready-to-use biotherapeutics.27,28 It has been

demonstrated that MSC-CM is sufficient to improve multiple pathophysi-

ological biomarkers significantly and to be effective in the transplanta-

tion of the corresponding MSCs in many different animal models.

BMMSC-CM has been used to treat many diseases such as spinal cord

injury, cerebrovascular disease, lung injury, and so on.29-31

Pyroptosis is the process of inflammatory cell death. There are two

major pathways for pyroptosis: canonical and noncanonical pyroptosis.

In the canonical pyroptosis pathway, activated Caspase-1 cleans GSDMD

protein, and the cleaved GSDMD produces an independent domain frag-

ment as the N-terminal. GSDMD-N binds to the cell membrane, forms

pores, and the cytoplasmic membrane is destroyed, resulting in pyropto-

sis and inducing inflammatory cell death.32 At the same time, activated

caspase-1 cleaves the precursor of IL-1β to form active IL-1β, which is

released to the outside of the cell through the pores and causes an

inflammatory response. In vivo autophagy is a protective response that

inhibits intracellular signaling and regulates the activation of inflamma-

somes by removing dysfunctional mitochondria.33 Impaired autophagy

can activate NLRP3 inflammasome to trigger canonical pyroptosis34,35

and expand the inflammatory effect. Studies have suggested that pyrop-

tosis is associated with the onset of diabetes and its complications.36,37

So reducing pyroptosis may have therapeutic effects on diabetic compli-

cations.

Some studies conducted about MSC-CM treating skin wounds. One

study showed that the concentrated hypoxia-preconditioned adipose

mesenchymal stem cell-conditioned medium could accelerate the skin

wound healing in a rat full-thickness skin defect model, however, this

study did not involve the mechanism of the treatment.38 A study in vitro

showed that BMMSC-CM of rats could improve the proliferation and

migration of keratinocytes in a diabetes-like microenvironment by

decreasing High Glucose (HG) and/or Lipopolysaccharide (LPS) induced

Reactive Oxygen Species (ROS) overproduction and reversing the down-

regulation of phosphorylation of MEK 1/2 and Erk 1/2.39 A recent study

showed that adipose-derived stem cell CM could accelerate wound heal-

ing and hair growth in SD rats with burn wounds on the dorsal, but this

study also did not reveal the mechanism of the treatment.40 In the pres-

ent study, HE and Ki67 staining suggested that the treatment of MSC-

CM promoted the proliferation of skin tissue, CD31 staining suggested

that the treatment promoted the proliferation of blood vessels and

increased the local blood supply. Electron microscopy showed that the

treatment promoted cell autophagy. Autophagy was enhanced by pro-

moting the expression of LC3B. The inflammatory state was improved

by reducing the levels of NLRP3 and IL-1β. Caspase-1 was inhibited, and

the expression of GSDMD-N was reduced, thereby cell pyroptosis was

inhibited. The curative efficacy of MSC-CM therapy was similar to that

of MSCs.

MSC-CM therapy, namely the use of cell-free therapy, has consider-

able advantages over cell-based applications. MSC-CM therapy resolves

several safety concerns that may be associated with living cell transplan-

tation including tumorigenicity, embolism, immune compatibility, and

spread of infections. MSC-CM can be stored for long periods of time

without losing much product potency.41,42 MSC-CM therapy does not

require invasive cell collection procedures, and it is more economical,

Fig. 3. Histological assessment of the skin of ulcer specimens from rats at day 14

after therapy. (A) H&E-stained sections (50 µm). (B) IHC of Ki67 in the skin of

ulcer specimens (50 µm). (C) IFC of CD31 in the skin of ulcer specimens (500

µm). (D) IFC of LC3B in the skin of ulcer specimens (500 µm). (E) TEM of the

skin of ulcer specimens (2 µm). Autophagosomes (arrow) could be seen in MSC-

CM and MSCs group but could hardly be found in DM-C group. (F) The thickness

of the stratum granulosums of the skin. The thickness of the stratum granulo-

sums of the skin in MSC-CM or MSCs group was thicker than that in DM-C group

(*p < 0.05). (G) PI from ki67 in ulcers. PI of MSC-CM or MSCs group was more

than that of DM group (*p < 0.05). (H) MOD from CD31 in ulcers. MOD from

CD31 of MSC-CM or MSCs group was higher than that of DM group (*p < 0.05).

(I) MOD from LC3B in ulcers. MOD from LC3B of MSC-CM or MSCs group was

higher than that of DM group (*p < 0.05). (J) IL-1β levels in ulcers. IL-1β level

in ulcers of MSC-CM or MSCs group was lower than that of DM-C group (*p <

0.05).

Table 4

Histology parameters of wound at day 14.

Group Thickness of

stratum

granulosums

(µm)

PI (%) CD31 LC3B IL-1β

(pg/mL)

NC 22.5±3.4 5.4±1.2 0.11±0.04 0.08±0.02 17.1±2.5

DM-C 15.4±3.8a 1.5±0.3a 0.02±0.01a 0.01±0.002a 34.3±5.8a

MSC-CM 20.9±3.2 3.1±0.6 0.05±0.02 0.05±0.01 22.7±2.8

MSCs 20.4±3.5 2.8±0.5 0.04±0.01 0.04±0.01 21.3±2.5

a p < 0.05 compared with the other three groups.
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practical, and suitable for clinical applications.43 MSC-CM can be used in

specific laboratory conditions, and produced in large quantities to pro-

vide controlled bioactive factors.

Factors secreted by different MSCs may be different, such as Adipose-

Derived Stem Cells-CM (ADSC-CM) expresses Vascular Endothelial

Growth Factor (VEGF), Nerve Growth Factor (NGF), Stem Cell Factor

(SCF), and Hepatocyte Growth Factor (HGF), while human Umbilical

Cord Perivascular Cell-CM (hUCPVC-CM) expressed no SCF or HGF.44,45

There were also differences between the composition of ADSC-CM and

BMMSC-CM.46 In the present study, the authorsdid not detect the com-

ponents of the MSC-CM. In order to standardize the production of CM

from each MSC type, further studies on culture conditions, culture dura-

tion, culture medium, and supplements, and the criteria for the composi-

tion of MSC-CM are required.

Conclusion

BMMSC-CM is effective in the treatment of DFUs in type 2 diabetic

rats. BMMSC-CM can promote the healing of DFUs by inhibiting inflam-

mation, enhancing autophagy, and reducing pyroptosis. These findings

highlight a potential therapeutic method of BMMSC-CM for the treat-

ment of DFUs, avoiding the risk of living cell therapy.
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