
Bol Med Hosp Infant Mex. 2016;73(6):424---431

www.elsevier.es/bmhim

REVIEW ARTICLE

New perspectives on the computational

characterization of the kinetics of binding-unbinding

in drug design: implications for novel therapies

Liliana M. Moreno-Vargas a, Diego Prada-Graciab,∗

a Unidad de Investigación en Enfermedades Oncológicas, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
b Department of Pharmacological Sciences, Icahn Medical Institute Building, Icahn School of Medicine at Mount Sinai, New York,

NY, USA

Received 5 October 2016; accepted 5 November 2016

Available online 9 December 2016

KEYWORDS
Computer-Aided Drug
Design;
Molecular Dynamics
Simulation;
Binding kinetics;
Drug-target residence
time

Abstract The efficiency and the propensity of a drug to be bound to its target protein have

been inseparable concepts for decades now. The correlation between the pharmacological activ-

ity and the binding affinity has been the first rule to design and optimize a new drug rationally.

However, this argument does not prove to be infallible when the results of in vivo assays have

to be confronted. Only recently, we understand that other magnitudes as the kinetic rates of

binding and unbinding, or the mean residence time of the complex drug-protein, are equally rel-

evant to draw a more accurate model of the mechanism of action of a drug. It is in this scenario

where new computational techniques to simulate the all-atom dynamics of the biomolecular

system find its valuable place on the challenge of designing new molecules for more effective

and less toxic therapies.
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PALABRAS CLAVE
Diseño de fármacos
asistido por
ordenador;
Dinámica de
simulación
molecular;
Cinética de unión;
Tiempo de residencia
fármaco-diana

Nuevas perspectivas sobre la caracterización computacional de la cinética de

unión-desunión en el diseño de fármacos: implicaciones para terapias de vanguardia

Resumen La eficiencia de un fármaco se ha relacionado habitualmente con su constante de

afinidad, magnitud que puede ser medida experimentalmente in vitro y que cuantifica la propen-

sión mostrada por la molécula ligando para interaccionar con su proteína diana. Este modo de

entender el mecanismo de acción ha guiado durante años el desarrollo de nuevas moléculas con

potencial farmacológico. Sin embargo, dicho modelo o criterio no es infalible cuando se con-

fronta con los resultados de ensayos in vivo. Otras magnitudes, como las constantes cinéticas

de asociación o disociación o el tiempo de residencia del ligando acoplado a su proteína diana,
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demuestran  ser  igualmente  necesarias  para  comprender  y  predecir  la  capacidad  farmacológica

del compuesto  químico.  En  este  nuevo  escenario,  con  ayuda  de  las  técnicas  computacionales  de

simulación  molecular,  la  correcta  caracterización  del  proceso  dinámico  de unión  y  desunión  del

ligando y  receptor  resulta  imprescindible  para  poder  diseñar  racionalmente  nuevas  moléculas

que permitan  terapias  más eficaces  y  menos  tóxicas.

© 2016  Hospital  Infantil  de  México  Federico  Gómez.  Publicado  por  Masson  Doyma  México  S.A.

Este es  un  art́ıculo  Open  Access  bajo  la  licencia  CC  BY-NC-ND  (http://creativecommons.org/

licenses/by-nc-nd/4.0/).

1. Introduction

The  simplest  paradigm  of drug-protein  binding  has been
described  as  a two-state  kinetic  model  between  the unbound
state,  where  the ligand  molecule  (drug)  and  the  receptor
(target  protein)  are  two  independent  uncoupled  (non-
interacting)  bodies,  and  the  bound  state,  where  the receptor
hosts  the  ligand  interacting  each other  and behaving  as
a  unique  body:  a  molecular  complex.  This  description  has
proven  successful  modeling  in  silico  (using  computer  simu-
lations)  the  biochemical  processes  observed  in  vitro  (in  a
‘test  tube’  under  controlled  conditions),  where  the concen-
tration  of ligands  and  targets  are kept  constant,  and the
system  is  closed  and  thereby  in equilibrium.  Due  to the com-
plexity  of  the  titanic  challenge  of  designing  a  new  drug,
the  main  criterion  to  predict  a  priori  if  a  new  compound
shows  a  high  pharmacological  activity  has  been  the  charac-
terization  of  the interatomic  interactions  between  ligands
and  receptors  at the binding  site,  with  the aim  of discerning
whether  it  is more  likely  for the system  to  stay  associated
(bound)  or  dissociated  (unbound).  However,  this  paradigm
fails  most  of  the  time  when  the  result  of  in vivo  assays  has
to  be  rationalized.  The  following  example  illustrates  the
limit  of  these  prior  assumptions.  Maschera  et  al.1 investi-
gated  the  different  resistance  effects  conferred  by  some
HIV-protease  mutations  to the  AIDs  drug  saquinavir.  They
found  that  when  measuring  the IC50  (half  maximal  inhibitory
concentration)  in  vitro  experiments,  the resistance  of  the
mutant  virus  could  not  be  explained  attending  to  the  bind-
ing  affinity  of  the  drug  (more  affinity,  more  target  proteins
affected  by  the ligand)  but  to  the kinetic  rate  of  dissocia-
tion.  This  apparent  contradiction  with  the  classical  binding
kinetic  model  in equilibrium  was  the  only  evidence  used
by  Copeland  et al.  (2006)2 to  propose  the  need  to  give
more  credit  to  concepts  such as  the binding  and unbind-
ing  rates  or  the drug-protein  residence  time  in  our  way  of
understanding  the inhibitory  effect  of  a  drug.  At  present,
ten  years  later,  we  can  already  find on  the  market  the first
drug  rationally  designed  with  the residence  time  (dissocia-
tion  half-life  > 300  min)  in its  prescribing  information  label:3

Tykerb® (lapatinib),  a  new anticancer  drug approved  in 2007
for  patients  with  metastatic  HER2  positive  breast  cancer.
Other  examples  of  new  molecules  designed  or  optimized
taking  into  account  the kinetic  rates  are now  frequently
reported  in  the literature.  Some  of them  already  are  in clin-
ical  trials.4 However,  far  from  making  an  exhaustive  and
systematic  collection  of  cases  in which  there  are no  correla-
tions  between  the binding  affinity  and  the pharmacological

efficiency  observed  in  vivo  assays, this  review  was  written
in  an effort  to  introduce  a  non-specialized  community  to
some  of  the novel  concepts  in the forefront  of  the  field  of
rational  drug  design  and  optimization  and, at the  same  time,
describing  the  state  of  the  art.  In  the following  sections,  the
reader  with  no  specific  background  in this  field  will  find  keys
to  understanding  the  relevance  of  these  concepts  to  be
able  to  anticipate  some  of  the  characteristics  of  the future
new  drugs.

2. Limit  of  the  classical paradigm  of binding
thermodynamics

There  is  a  consensus  among  scientists  devoted  to  the ratio-
nal  design,  discovery,  and  optimization  of  new  drugs  on
asserting  that the  most relevant  feature  of a  molecule
explaining  its  pharmacological  activity  is  the binding  affinity
for  the target  protein.  This  binding  affinity  can  be defined
as  the  propensity  of  ligand  and target  to  be found  asso-
ciated  in  comparison  with  the tendency  to  be unbound
behaving  as  two  non-interacting  elements.  This  way,  a
ligand  with  low  affinity  will  be rarely  found  coupled  to  the
target,  while  those  chemical  compounds  with  high  affin-
ity  will  find  the  bound  state  energetically  more  favorable
than  being  ‘unbound’.  The  binding  affinity  is  a  macroscopic
magnitude  accounting  for  the interactions  (electrostatic,
polar,  steric,  hydrogen  bonds)  between  atoms  from  two
molecules.  These  interactions  can  be measured  in a lab-
oratory  with  experiments  such  as the Isothermal  Titration
Calorimetry  (ITC)----the  ‘golden  standard’  for  the  quanti-
tative  characterization  of the  interaction  between  ligand
and  receptor5---7----pull-down  experiments,  ELISA,  equilibrium
dialysis  or  spectroscopic  assays.8---10 This  concept  has  not
been  the  only  guiding  principle  to  describe  the effect  of
a  drug.  Any  biological  function  occurred  in any  living  being
is  described  at  its  lowest  level  of detail  by  atomic  interac-
tions  between  molecules.  These  molecules  can  be proteins,
peptides,  nucleic  acids,  lipids,  ions  or  waters,  among  other
organic  molecules.  The  ability  to  interact  specifically  with
them,  under  certain  conditions,  triggers  and  regulates  every
physiological  process.  It  is  then  reasonable  to  think  for  every
researcher  with  basic  knowledge  of  chemistry  and  biology
that  the  higher  is  the binding  affinity  of a ligand  molecule
interacting  with  an enzyme,  ion  channel,  receptor  or  any
other  macromolecular  target,11 the stronger  is  the effect  of
its  mechanism  of  action.  Thus,  optimizing  the interactions
between  ligand and  receptor  at atomic  scale  with  a more
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favorable  electrostatic  interaction,  adding  a new  hydrogen
bond,  or  reducing  the steric  effects  should entail  a  higher
pharmacological  efficiency.  Unfortunately,  although  this can
be  a  good  starting  point in  the process  of  rationally  design-
ing  a  chemical  compound  with  pharmacological  properties,
when  the  molecule  is tested  in  an in vivo  assay,  many  times
the binding  affinity  fails  as  a good  pre-indicator  of  the  activ-
ity  observed.

To  understand  why ligands  showing  a similar  binding
affinity  in  silico  or  in  vitro  assays  can  have  a  different  phar-
macological  activity,  we  have  to  begin  with  what  is known
in  statistical  physics  as  the  first-order  kinetic  model of  a
two-state  closed  dynamical  system.  This  simple  model,  used
to  characterize  and  predict  the  behavior  of  many  physical
processes  and chemical  reactions  since  a century  now  can
be  described  as  follows.  A system  is  composed  of  N  parti-
cles,  where  each  particle  can be  either  in the state  A or
B.  The  system  is  dynamical,  meaning  that  any  particle  can
change  its  state  from  A to  B at  any moment  with  a fixed
probability  represented  here  as  PAB, and from B to  A  with  a
probability  PBA. Additionally,  the  system  is  closed,  meaning
that  the  number  of  particles  in  A  (nA(t)) plus  the number  of
particles  in  B (nB(t))  is  constantly  equal  to  N  (the  total  num-
ber  of  particles  never  changes).  It is  known,  mathematically
derived,  that  given  any  initial population  of  A  and B after  a
transient  period,  the system  relaxes  to  its stationary  equi-
librium,  where  the number  of  particles  in each  state  will  not
longer  vary  in  the time  remaining  constant  to  their  values  NA

and  NB. This  final  amount  of particles  in each  state  can  be
previously  deduced  satisfying  the following  two  equations:

NA + NB = N (1)

NA ×  PAB =  NB ×  PBA (2)

This  final  stationary  situation  does  not  mean  that  any  par-
ticles  are  changing  their  state.  There  are transitions  indeed,
but  the  average  number  of  particles  per  unit  time  mov-
ing  from  A  to  B is  equally  balanced  by  the same  average
number  of (other)  particles  moving  from  B to  A. This  is  the
meaning  of Eq.  2, known  as  the equation  of  detailed  balance
condition  (valid  in equilibrium).

Now,  once  the generic  model  has been  introduced  to
the  reader  in a rigorous  manner,  the analogy  with  the
drug-protein  association  process emerges  immediately.  In
an  imaginary  a vessel  in a laboratory,  molecular  ligands,
and  target  proteins  freely  move  in  an aqueous medium.
After  a  certain  initial  period,  a constant  concentration  of
dissociated  molecules,  Cd,  and a  constant  concentration
of  associated  complexes  (ligand  + receptor),  Ca, stabilizes
the  equilibrium  state  of  the  system.  At  last,  the binding
affinity  can be  formally  defined  and  measured  as  the rate
Ca/Cd.  Then,  the higher  is  the affinity,  the  higher  is  the
propensity  of  a ligand  and  receptor  to  be  bound.  Consistently
with  the  standard  notation  used to  describe  a  chemical  reac-
tion,  the  general  Eq.  2  can be  re-written  as

Cd × Kon =  Ca × Koff , (3)

where  Kon and  Koff play the role  of  transition  probabilities
between  the  states,  usually  named  as  binding  and  unbinding
kinetic  rates  (or  association  and  dissociation  rates).

Nevertheless,  why this  description  fails,  and  molecular
ligands  with  similar  binding  affinity  have  a different  effect

in  vivo? Why  is not the binding  affinity  the  only  parameter
to  work  with  when  the efficiency  of  a drug  has  to be  pre-
dicted?  The  answer  is  simple.  Unfortunately  for the  chemical
medicine  but  luckily  for us,  biological  processes  do not fit  in
the  model.  We  are not closed  systems,  and  life  is  constantly
out of  equilibrium.  That  is  the  reason  why a drug should  not
rationally  be optimized  attending  only  to  the  propensity  to
be  bound  to  the target  protein.

3. Relevance of  the  binding  kinetics and
residence  time of the drug-protein complex

Assuming  we  could  accurately  calculate  the physical  atomic
properties  of a molecular  ligand  to  check  its  complementar-
ity  with  the physical  atomic  properties  of  the binding  site
in the  target  protein,  and  also  assuming  we  could  repeat
this  operation  at a reasonable  short  period  to  be able  to
screen  millions  of  possible  molecules  finding  the candidate
with  the highest  binding  affinity,  these actions  do  not  guar-
antee  a successful  pharmacological  effect  prediction.  This
condition  would  be  enough  to  reproduce  the  result  of  in  vitro

experiments  in  the laboratory  where  the  system  is  closed
and  in  equilibrium.  However,  the mere  consideration  of  the
binding  affinity  is  not  enough  to  foresee  the  effect  of the
ligand in an open  system.  To  illustrate  this  fact  and  its
implications,  we  have  the following  less  academic  and  more
mundane  example:  the  sleeping  time  of a cat.  Since  it  was
adopted  months  ago,  the  cat  spends  2/3  of  the  time  sleep-
ing.  This  fact is  extremely  unpleasant  for  the owner  since  it
only  allows  the owner  to  enjoy  its company  during  8 h  per
day,  i.e.  the cat  spends  twice as  much  time  sleeping  than
awake.  Therefore,  if the reader  was  to  visit,  the probability
to  get  to  meet  the cat  asleep  is  higher  (twice)  than  awake.
However,  does it mean  the  reader  will not  have  the  opportu-
nity  to  play  with  the cat  during  the  visiting  time?  We  do  not
have enough  information  to  answer this question.  The  reader
does  not  know  if the  cat  sleeps  16  uninterrupted  hours,  or
quite  the opposite,  he  sleeps  20  minutes  to  be active  during
10  minutes  between  nap  and  nap. His  total  sleeping  time  per
day  is  the  same,  but  the  chances  for  the visitor to  play  with
the  cat  are different  in both  scenarios.  This  happens  because
the system  (house  with  cat  and  visitor)  is  an  open  system.
The  number  of elements  is  variable  given  that  the  presence
of  the visitor  is not constant  and  the  period  of  interaction
is  limited.  A different  situation  would  be locking  the  door
once  the reader  is  in the house,  making  a closed  system.
After  a  transient  period,  enough  to  observe  the cat  several
times  awake  and  asleep,  the visitor  would  enjoy  his com-
pany  1/3  of  the  time  no  matter  how  long  his naps  are.  At
that  moment,  we  could  say that  the system  is  closed  and  the
equilibrium  was  reached.  This  fictional  example  addresses
the  implications  of  having  an  open  system,  giving  an impor-
tant hint  of  understanding  why  drugs with  a  similar  binding
affinity  (cats with  similar  probability  to  be awake) do  not
elicit  the  same  pharmacological  effects:  the frequency  or
probability  of  changing  between  states.

Back  to  the behavior  of  the ligand  and receptor  system,
the binding  affinity  previously  described  as  the  rate  Ca/Cd

does not  offer  any  information  about  the time  length  of
uninterrupted  association  of  both  molecules  (lifetime  or  res-
idence  time),  quantitatively  defined  as  the inverse  of the
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dissociation  rate  constant  (1/Koff). However,  the  detailed
balance  equation  of  a  closed  system  (Eq.  2)  allows  us  to  find
another  definition  of  binding  affinity  depending  only  on  the
kinetic  rate  constants:  Ca/Cd  is  the  same  rate  as  Kon/Koff.
Thus,  different  ligands  can  bind  a  receptor  with  the  same
propensity  but with  different  binding  and unbinding  char-
acteristic  times.  For  example,  three  inhibitors  can  have the
same  association-dissociation  propensity  interacting  with  an
enzyme,  e.g.  1:1,  but  different  kinetic  constants.  The  first
inhibitor  makes  60  times  the transition  bound↔unbound  per
hour,  which  implies  1  min  lifetime  of  the enzyme  inhibited
on  average.  The  second  inhibitor  transits  between  the two
states  not  so easily,  four  times  per  hour  (inhibition  life-
time  of 15 min);  and  for  the third  inhibitor-enzyme  system,
the  association-dissociation  process is  a rare  event  observed
two  times  per  week  (inhibition  lifetime  3.5 days).  This
different  dynamical  behavior  might  not  be  relevant  when
the  inhibition  is  studied  in  vitro  (in  a closed  system),  but  the
implications  for  living  beings  treated  with  these drugs  can
be  crucial.

4. Pharmacological implications

The  absorption,  distribution,  metabolism,  and  excretion  of  a
drug  is  a  process  complex  enough  to presume  that  the phar-
macological  activity  of  a  chemical  compound  will  be  entirely
determined  by  the binding  affinity  measured  in equilibrium
at  the  bench  of  a  laboratory.  All  those  steps  require  spe-
cific  attributes  for  a  molecule  to  perform  as  a  drug  with
the  appropriate  bioavailability,  the adequate  activity  and
efficiency,  and without  toxic  side  effects.

The  drug,  since  the very  moment  of  its  administra-
tion  until  it  is  introduced  into  the  bloodstream  for  its
distribution,  has  to  move through  several  membranes  and
physiological  barriers.  To  facilitate  the  motion  through  these
barriers,  the  physicochemical  properties,  such as  the  size  of
the  molecule,  permeability,  solubility,  lipophilicity  or  the
ionization  constant,  have  to  be  properly  combined  in addi-
tion  to  those  chemical  motifs  providing  with  the atomic
interactions  relevant  for  the selectivity  and  affinity  of  the
ligand  with  the  target  protein.12,13 A drug with  low solubility
will  result  in a  low  artificial  activity  measured  both  in vitro

and  in  vivo. The  compound  precipitates  in  the  aqueous  sol-
vent  decreasing  the  concentration  of  molecules  with  the
ability  to interact  with  the  target  protein.  In  order  to  coun-
teract  this  effect,  the  dose  can be  increased  overlooking  the
corresponding  potential  toxic  drug-drug  interaction.  A drug
with  low  permeability  will  have  a similar  effect.  This  time
the  activity  measured  in vitro  will  be  higher  than  in  vivo

because  of  its  problems  to  cross  the  cellular  membranes.
It  is clear  now  that if  any  of  these  attributes  do not  behave
optimally,  the  number  of  survival  molecules  reaching  its  tar-
get  will  be  too  low.  For  that  reason,  optimizing  the  effect
of  every  molecule  interacting  with  its target  it  is  of  great
importance.  Moreover,  as  it is  described  below,  the  Kon and
Koff kinetic  rates  can be  a  power  tool  for  this mission.4

However,  these  four  steps  of  the  pharmacokinetic  process
have  not  been  mentioned  only to  illustrate  the  numerous  and
different  conundrums  a scientist  has  to face  to  rationally
design  and  optimize  a  drug.  They  justify  something  more
relevant:  drugs  enter  into  the  organism  to  be  ultimately

excreted.  As  a result,  the concentration  of  drug  molecules
into  the  tissues  is  not homogeneously  distributed  and  do vary
in  time.  The  possibility  of  a  target  protein  to  find a  ligand
molecule  to  host  is  not  always  the same.  In  a hypothetical
case,  the enzyme  mentioned  in  the previous  section  could
belong  to  a  tissue  or  region  of the cellular  space  visited  at
this  moment  by  the arrival  of  drug  molecules,  which  will bind
to  the protein  inhibiting  its activity.  During  this period  and
only  in this  region,  the amount  of  enzymes  associated  with
the  inhibitors  is  well  defined  by  the  binding  affinity.  How-
ever,  as  soon  as  the drugs  start  to  be excreted  decreasing
the  concentration  of  available  ligands,  or  the enzyme  aban-
dons  the encounter  zone, the  pharmacological  activity  will
depend  on  the Koff rate.  At  this  moment,  the  third inhibitor
described  in the  previous  section,  the one  with  the  longest
residence  time,  proves  to  be the most efficient.  In  this  case,
a  low  dissociation  rate, Koff,  can  keep  a sustained  pharmaco-
logical  activity  during  a longer  period.  If  the drug  has  been
optimized  to  reach  a low  Koff,  it might be  the case  that  the
lifetime  of the drug-target  complex  could  be larger  than  the
time  the body  takes  clearing  the drug.14,15 In  this  situation,
the  time  between  doses  could  be increased  significantly,
reducing  the possibility  of  intoxication  by  overdose  in  long
treatments,  and  reducing  the  side  effects  of  the treatment
due  to  unwanted  interactions  between  the drug and  other
off-target  proteins.

It  is  worth  mentioning  that,  although  it is  not  a closed
system  and will  never  reach equilibrium,  the  binding  affin-
ity  still  plays  an essential  role.  The dissociation  constant
Koff has  brought  much  attention  recently  given  the  promising
results  for the  quality  of  future  treatments.4,16---19 However,
this  rate  is only  one  of  the ingredients  of  the  model.  Drugs
with  the same  residence  time  could  have  different  in vivo

activities  due  to  different  Kon rates.  No general  rules  apply
for  all  cases;  it  is  the  interplay  between  all transition  rates
in  the binding-unbinding  kinetic  model  what  describes  the
effect  of the drug on  the  receptor.  Furthermore,  this  model,
characterized  by  only  two  states  (associated  or  dissociated
complex), is  an over-simplistic  image  of  a real  process  where
the  argument  of  two  bodies  interacting  in two-state  pro-
cesses  as  if they  were  two  rigid  bodies  with  the same  shape,
geometry  and  accessible  area  to  the solvent,  is  no  longer
valid.  Thanks  to  in silico  molecular  simulations,  we  have
learned  that  local  physical  changes  as  amino  acid side-
chain  rotations,  geometrical  changes  and motions  involving
larger  regions,  the participation  of  few  water  molecules
or  ions,  or  even  a  second  different  drug also  interacting
with  the receptor,  enrich  the binding-unbinding  model  with
numerous  intermediate  states  and  kinetic  rates between  the
fully  dissociated  complex  and the  most  stable  bound  pose.
Moreover,  this  complex  landscape,  far  from  being  a  disad-
vantage,  can  be the source  of  new  treatments  involving
a  lot  of  different  mechanisms  and  effects.  The  possibility
to  modulate  the  effect  of  a drug with  a  second  differ-
ent  chemical  compound  interacting  with  the  target  protein
through  a  different  binding  site  is  being  explored  with  the
discovery  of the allosteric  modulators.20---23 The  possibility
to  design  different  chemical  compounds  acting  over  the
same  region  of  the target  protein  in  a  different  way,  and
thereby  triggering  different  responses  as  if they were  tog-
gling  a  switch,  is  already  explored  and  described  in the
literature  as  signaling  biased  drug  design.24,25 Finally,  the
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impact  of  protein-protein  interactions  and  the  oligomeriza-
tion  of  receptors  in  the cell  membrane  remain  unclear  but
could  open  new  horizons  to  be  explored  in the  challenge  of
rational  design  and  optimize  a  drug.26,27

5. New computational  approaches,  new
scenarios

The  recent  advances  in  the pharmacological  sciences  are
the  result  of a new  multi-disciplinary  way  of working  where
physics,  chemistry,  mathematics  and computer  science  meet
biology.  The  scientific  background  and  technical  experience
of  experimentalists  testing  and validating  hypothesis  in  vitro

and  in  vivo  are  combined  today  in hospitals,  research  insti-
tutes,  and  universities  with  a  third vertex  completing  a
virtuous  triangle:  the availability  of  in silico  methods.  These
three  different  approaches  are mutually  reinforced  when
the  value  and  limitations  of  each of  them  are  recognized:
in  silico  methods  depend  on theoretical  models,  but  help
to  generate  a new  scientific  hypothesis,  new scenarios  at a
low  cost  to  predict  and  explain  the performance  of  in  vivo

and  in  vitro  experiments.  In vitro  assays  validate  the theo-
retical  models,  and  characterize  the behavior  of  the  system
under  controlled  conditions  to  predict  in vivo  results.  On  the
other  hand,  in vivo  assays  are the  last  experimental  battle-
field,  where  the  success  of the  scientific  hypothesis  has  to
be  proven  given  at  the  same  time  invaluable  feedback  to
correct  the  prediction  machinery  generating  new  theories
and  computational  tools.

Since  1950s,  theoretical  models  of  interatomic  interac-
tions  have  being  developed  based  on  classical  and  quantum
physics  to  describe  the thermodynamics  and  kinetics  of
molecular  systems.  Those  molecular  models  based  on  clas-
sical  mechanics  represent  each  atom  as  the smallest
indivisible  entity,  coarse-graining  electrons,  neutrons  and
protons,  and  the  effect  they  can cause  in their  interaction
with  other  atoms  at the  temperature  and time  scales  of
interest.  Covalent  bonds,  electrostatic  and  Van  der  Waals
interactions,  pi-stacking,  and hydrogen-bonds  or  disulfide
bridges  are  described  as  ad  hoc  parametrized  harmonic,
torsion  and  dihedral  potentials,  and short-  and  long-range
Coulomb  and  Lennard-Jones  potentials.  These  interactions,
together  with the precise  knowledge  of  the  topology  and
chemical  composition  of  a  molecule  (atom  types,  rela-
tive  position  in space  and  covalent  bonds)  are  already
enough  information  to  predict  some  simple  physicochemi-
cal  attributes  of the molecule.  This  set  of  parameters  to
quantitatively  model  the interatomic  interactions  is  known
as  ‘classical  force-field.’  At  the  present  day,  there  are  var-
ious  force  fields  of public domain,  constantly  tested  and
improved,  to  mimic  the intra-  and  intermolecular  inter-
actions  of all kind  of  organic  molecules  such  as  peptides,
proteins,  nucleic  acids,  lipids,  ions  or  water  molecules.28

The  right  selection  of  parameters,  sometimes  tuned  or
adapted,  depends  on  the  physics  of  the  particular  sys-
tem  to  be  simulated.  At  this point,  we have a  toolbox  to
build  static  virtual  molecules  whose  interactions  have  to
be  necessarily  evaluated  computationally.  A  small  portion
of  membrane----made  of  lipids  of  different  nature  and
molecules  of  cholesterol,  with  an  embedded  protein  as  an
opioid  receptor  or  an ionic  channel,  solvated  with  water

molecules  and  ions----add  up  to  ∼50,000  atoms.  Assuming
that  every  atom  interacts  with  any  other  atom  of  the  sys-
tem  using  long-range  forces,  the  number  of  equations  to be
solved  is  out  of  the  human  capability  making  use  of  a  piece
of  paper  and a  pen.  Already  this  rigid  and static  descrip-
tion  provides  with  useful  information  about  the system,
but  there  are  statistical  physics  methods  to  stochastically
integrate  the equations  of  motion  of  every  atom,  including
in  the model  the  conditions  of temperature  and  pressure.
These  theoretical  frameworks  from  physics  science  trans-
lated  into  code  lines  in a  computer  allow  us to  reproduce
the  time  evolution  of the  biomolecular  system.  At  this point,
we  have  what  is  known  as  the  all-atom  Molecular  Dynamics

Simulation,29---31 and the result  is  the  three-dimensional  posi-
tion,  velocity  vector,  and  energy  potential  of  every  atom at
every  time  step,  usually  in the range  of  2  to  5 femtoseconds
(10−15 s).  Depending  on the molecular  system,  the  time  sim-
ulated  and the data  required  for  the  analysis,  the size  of  this
information  can  extend  from  megabytes  to  terabytes  in the
hard-drive.  Hence,  using  this technology  we  can observe  the
behavior  of  the  molecular  models  in time  as  if we  were  using
a microscope32,33 with  a precise  resolution  able  to  distinguish
significant  variations  of interatomic  distances  in  the order
of  ∼0.1  Angstroms  (10−11 m).  However,  how  useful  is  an all-
atom  molecular  dynamics  simulation  to  describe  a biological
process?  The  answer  depends  on  two  factors:  the time  scale
and  size  of  the  biomolecular  system  we  want  to  study,  and
the power  of our  computational  facilities.  The  mean  life-
time  of  a hydrogen  bond  between  water  molecules  in bulk  is
around  ∼3 ps  (103 integration  steps).34 The  rotation  of the
side-chain  of an amino  acid  takes  in the order  of  ∼10 ns (106

steps). Furthermore,  the  conformational  changes  involving  a
large  number  of  atoms  or  secondary  structures  are  observed
in  the  order  of  ∼100-1000  ns (108 steps),  and  a small pro-
tein  folding  or  an ion channel  gating  is  around  ∼10-100  �s
(1010 steps).33 This  former  number  of  steps  required  to  inte-
grate  few  microseconds  looks  astronomical.  Nevertheless,
today  it  is  affordable  with  the big  and  powerful  supercom-
puters,  like  ANTON,  the fastest  supercomputer  dedicated  to
the  simulation  of  biological  systems  with  512 nodes  working
in parallel  to  achieve  ∼17  �s  of simulation  per  day for  a sys-
tem  with  23 ×  103 atoms.35 However,  with  the computational
resources  found  in  a  well-equipped  standard  laboratory  as
it  could  be a 36  cores  CPU or  the last  consumer  GPU  (GTX
1080),  the  times  achieved are 78  ns/day  and  418  ns/day,
respectively.36 These  numbers  may  seem  disappointing  for
the  non-specialist  general  reader,  particularly  when  the
need  of simulating  the rates of association  and  dissocia-
tion  of a drug-protein  complex  has  been discussed  here,  and
these time  scales required  to  observe  these  events  range
from  seconds  to  hours  (5  hours  in the  case  of  the  anticancer
drug lapatinib).3 However,  working  with  these computa-
tional  tools  does  not only  consist  of  performing  brute-force
molecular  dynamics  simulations.  The  scientific  community
in  this field  works  hard  combining  creativity  with  a  deep
knowledge  of  thermodynamics,  statistical  physics,  compu-
tational  biophysics,  and  big  data  analysis  to  overcome  these
limitations  with  new  theories  and  computational  techniques
predicting  the seemingly  unreachable  observations.  Finally,
to  illustrate  this  fact,  some  of the novel  computational
approaches  that  are currently  being  developed  and  tested  to
compute  the binding  affinity  and the  kinetic  rates  are briefly
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described  here  for  the sake  of  offering  a complete  view  of
the  current  state  of  this matter.

6. Binding affinity: free  energy perturbation
methods

Once  the  target  protein  has  been  identified,  and  some struc-
tural  or  physicochemical  information  of  the binding  site  is
available  (the  3D  structure  of the  receptor  or  a pharma-
cophore),  one  of  the first  steps  of  a  computational  drug
design  campaign  is  the screening  of  a large set  of dif-
ferent  chemical  compounds,  looking for  candidates  with
a  suitable  binding  affinity.  This  task  can  be  computation-
ally  very  expensive  given  that  the  first  set  of  candidates
is  usually  set up  with  ∼105-106 chemical  compounds.  An
exhaustive  analysis  with  all-atom  force  fields  and  flexible
ligand  and  receptor  seem  a very  demanding  task  for  a  first
pre-selection.  Instead,  a coarse-grained  screening  is  per-
formed  searching  for  the  set  of  compounds  best  matching
the  physical  attributes  required  to  optimize  the interatomic
interactions.  Notice  that,  at this point,  no  quantitative  pre-
diction  was  made  based the  binding  affinity  of the  complex,
there  is  no  propensity  for  the  ligand  to  be  unbound  cal-
culated.  Sometimes  a rough  estimation  based  on  simple
solvation  models  is  included  as  one  of  the  attributes  to
be  fulfilled,  but  usually  considering  the molecules  ligand
and  receptor  as  a  two  rigid  bodies in a  vacuum.  The  pro-
cess  briefly  described  is  called  High  Throughput  Virtual

Screening,  and  it has been  extensively  used  with  success-
ful  results  in  designing  new  drugs.37,38 At  present,  a new
computational  approach  is  being  tested  by  computational
laboratories  and  pharmaceutical  companies  to  screen  chem-
ical  compounds,  calculating  the relative  free  energy  of
binding  (magnitude  proportional  to  the  binding  affinity),
including  the flexibility  of the molecules  in addition  to
every  possible  effect  present  in the all-atoms  simulation  box
(ions  and  water  interactions,  and conformational  changes
among  others).  The  computational  framework  called  Free
Energy  Perturbation  methods,39---43 is  based  on  theoretical
concepts  developed  and  applied  by  physicists  to  differ-
ent  dynamical  systems  since  years.  Only  recently,  the
different  relative  propensities  have  been  adopted  to  com-
putationally  evaluate  a  set  of  ligands  to  be  bound  to  the
target  protein.  Taking  advantage  of  the virtual  character
of  the  computational  molecular  model,  given  two  differ-
ent  chemical  compounds,  X and  Y,  the all-atom  dynamics
of  X  is simulated  transforming  little  by  little  their  set  of
parameters  in  those  defining  the  compound  Y,  whereas
the  difference  in relatively  free  energy  is  integrated  along
this  path.  The  strategy  of  a  virtual  transformation  of  the
ligands  along  the all-atoms  dynamics,  named  alchemical

transformation,41 allows  both  ligands  and  target  protein  to
move  freely  and  adjust  their  atoms  to  the  most  favorable
configuration  at  any  moment.  Thus,  prominent  pharmaceu-
tical  companies  as  Bayer  Pharma  AG  or  GlaxoSmithKline
Pharmaceuticals  Ltd.  are already  exploring  this  approach.
Bayer  started  the  first  round  of  tests  to validate  the
usability  of  this  technique  on  2015,44 and Glaxo  followed
simultaneously  the  same  steps.45 The  approach,  although
at  this  moment  is  used  only experimentally,  it is  provid-
ing  accurate  quantitative  results  to  predict  the  relative

binding  affinity.  To  evaluate  absolute  binding  affinities,  new
computational  techniques  as  YANK,46 an approach  to  per-
form  alchemical  transformations  between  the  drug-protein
associated  and  dissociated,  are  under  current  in develop-
ment.

7. Binding-unbinding kinetics route map

Regarding  the characterization  of  the binding-unbinding
process  of a  ligand,  several  techniques  have  to  predict
the  thermodynamics  of  the process,  and sometimes  the
kinetics:  accelerated  dynamics,  metadynamics,  umbrella
sampling,  replica  exchange  methods,  and  an extensive  list
of  enhanced  molecular  dynamics  approaches.47---50 However,
those  methodologies  based  on  Markov State  Models,51,52

Multi  Ensemble  Markov  State  Models,53 and  Adaptive
Sampling54---56 deserve  special  attention.  The  strategy,  well
grounded,  relies on  measuring  local  transition  probabili-
ties  sampling  the conformational  space  with  multiple  short
trajectories.  Three  recent  works  must  be highlighted  to
understand  the power  of  this  promising  approach.  The  first
one,  by  Pande  et  al.,  reported  the  use  of  this  strategy
using  the  Google’s  cloud  computing  platform  to  simu-
late  during  2.15  min  the interaction  between  the protein
�2-adrenergic  receptor  in  the  presence  of  two  different
ligands.57 The  second  work  is  the  binding-unbinding  com-
plex  route  map,  involving  different  intermediate  metastable
states  of  the serine  protease  trypsin  and  its inhibitor  benza-
midine,  reconstructed  by De Fabritiis  et  al.58 Finally,  the
third  work  by  Noé  et  al. is  the computational  prediction
of  the  kinetic unbinding  rate  Koff of  the same  system,  by
means  of combining  multiple  short  unbiased  trajectories
with  umbrella  sampling  simulations.53 All  these  computa-
tional  works  describe  the binding-unbinding  process  as  a
map  of multiple  metastable  intermediate  states  driving  the
system  along  different  transitions  with  different  kinetic
rates  from  the dissociate  complex  state  to  the most  stable
bound  state.

To conclude,  the binding  and unbinding  process  of a drug
interacting  with  its  target  protein  cannot  be  accurately
described  with  a  traditional  two  states  kinetic  model.  The
assumptions  made  for a  closed  system  in equilibrium  are  no
longer  valid  in a context  where  the  concentration  of lig-
ands  available  to  be  captured  and host  by  a receptor  is  not
constant  in time  and  space.  Thus,  the binding  affinity  does
not  always  correlate  well  with  the pharmacological  activ-
ity  observed  in vivo. Other  ingredients,  as  the  kinetic  rates
or  the associated  residence  time,  have  to  be considered  by
the  drug  design  community  if new  compounds  have  to  be
developed  and optimized  with  a more  precise  mechanism
of  action  and less  toxic  effects.  It is  in  this  scenario  where
the  last  computational  advances  assist  us,  working side  by
side  with  experimentalists,  to  understand  and  characterize
a  more  complex  and rich  interaction  mechanism  between
both  molecules  drug  and  protein.
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