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TAGGEDPA B S T R A C T

Open datasets serve as facilitators for researchers to conduct research with ground truth data. Generally,

datasets contain innovation and knowledge in the domains that could be transferred between homogeneous

datasets and have become feasible using machine learning models with the advent of transfer learning algo-

rithms. Research initiatives are drawn to the heterogeneous datasets if these could extract useful innovation

and knowledge across datasets of different domains. A breakthrough can be achieved without the restriction

requiring the similarities between datasets. A multiple incremental transfer learning is proposed to yield

optimal results in the target model. A multiple rounds multiple incremental transfer learning with a negative

transfer avoidance algorithm are proposed as a generic approach to transfer innovation and knowledge from

the source domain to the target domain. Incremental learning has played an important role in lowering the

risk of transferring unrelated information which reduces the performance of machine learning models. To

evaluate the effectiveness of the proposed algorithm, multidisciplinary studies are carried out in 5 disciplines

with 15 benchmark datasets. Each discipline comprises 3 datasets as studies with homogeneous datasets

whereas heterogeneous datasets are formed between disciplines. The results reveal that the proposed algo-

rithm enhances the average accuracy by 4.35% compared with existing works. Ablation studies are also con-

ducted to analyse the contributions of the individual techniques of the proposed algorithm, namely, the

multiple rounds strategy, incremental learning, and negative transfer avoidance algorithms. These techni-

ques enhance the average accuracy of the machine learning model by 3.44%, 0.849%, and 4.26%, respectively.

© 2023 The Authors. Published by Elsevier España, S.L.U. on behalf of Journal of Innovation & Knowledge. This

is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/) TaggedEnd
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TaggedH1Introduction TaggedEnd

TaggedPThe current big data era has driven technological advancements in

computational architecture, platforms, tools, and algorithms to bring

ground truth data into valuable information (carrying innovation and

knowledge). A recent research trend is to transfer innovation and

knowledge via transfer learning algorithm. It has demonstrated its

TaggedEndTaggedPeffectiveness in many smart city applications, such as bio-signal proc-

essing (Wan et al., 2021), cross-lingual transfer (Do et al., 2020),

demand response for the electricity grid (Peirelinck et al., 2022), sen-

timent analysis (Chan et al., 2022), and intelligent transportation (Li

et al., 2022). From the aspect of the machine learning model, the

trained model in the source domain helps to fine-tune of the hyper-

parameters in the target domain. Typically, one may recommend

employing transfer learning when the source and target domains are

identical or similar domains. These datasets can be considered to be

homogeneous datasets. However, in some disciplines, large-scale
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TaggedEndTaggedPhomogeneous datasets for robust deep learning may not be available

due to various issues such as privacy, rare cases, high cost, and time-

consuming. An emergent research initiative has thus been proposed

in recent years to investigate the feasibility and benefits of transfer

learning in heterogeneous datasets. The datasets are comprised of

data from different domains. For instance, similarities exist in the

problems of image recognition between different domains, such as

the image noise. Nevertheless, it is a major challenge when a large

level of dissimilarity is experienced between different domains. The

machine learning model is prone to be corrupted by dissimilarities,

which is a well-known issue of negative transfer (i.e., the perfor-

mance of the target model decreases after transfer learning). In par-

ticular, the smart city applications cover a wide variety of disciplines

in which one can find datasets with high similarities and datasets

with very different data modalities. Regarding the methodology of

the transfer learning algorithm, a generic approach is desired to

address the nature of infinitely many combinations between the

source and target domains. The algorithm does not need to converge

to the global optimal solution at the very beginning, as long as the

model performance improves when new data are available to update

the trained target model.TaggedEnd

TaggedPThe organization of this paper is structured as follows. The three

subsections of Section 1 comprise (i) a literature review on incremen-

tal learning, transfer learning, and hybrid incremental learning and

transfer learning algorithms; (ii) the limitations of the existing

works; and (iii) the research contributions of the proposed algorithm.

Section 2 presents a brief summary of the 15 benchmark datasets in

5 selected disciplines, along with the design and formulations of the

proposed algorithm. The performance evaluation of the proposed

TaggedEndTaggedPalgorithm, and comparison between the proposed algorithm and

existing works are conducted in Section 3. Ablation studies follow in

Section 4. Finally, the conclusion summarizes the major results and

contributions of our work and discusses several future research direc-

tions. TaggedEnd

TaggedH2Literature review TaggedEnd

TaggedPExisting works focus on standalone incremental learning, stand-

alone transfer learning, and hybrid incremental learning and transfer

learning algorithms. Readers who are interested in the overview of

the topics, are referred to the latest review articles on incremental

learning (Belouadah et al., 2021; Delange et al., 2022) and transfer

learning (Bashath et al., 2022; Pinto et al., 2022). TaggedEnd

TaggedPStandalone incremental learning TaggedEnd

TaggedPIncremental learning is generally featured with good adaptation

to new training data. The trained model is updated where necessary

to avoid duplicating features, thus enhancing the generalization. A

fuzzy three-way algorithm was proposed to progressively update the

machine learning model via incremental learning (Yuan et al., 2022).

The difference between the new object and the centre of the class

was used to determine if updating is necessary. The model was evalu-

ated using 10 datasets with 70% of the data as the initial training

phase where further update was proceeded with 3% of new training

data in each iteration. The enhancement of the average accuracy via

incremental learning was from 83.0% to 84.9%. The performance of

the model was compared with k-nearest neighbour, fuzzy k-nearest

neighbour, intuitionistic fuzzy k-nearest neighbour, and finite ele-

ment neural network, with percentage improvement by 8.15−9.17%.

Another study (Tabassum et al., 2021) presented a distributed net-

work architecture comprised of generative, bridge, and classifier net-

works for the network attack detection. A positive constraint-based

autoencoder was used for feature extraction to select relevant fea-

tures. The general idea was to combine features with high similarity

and minimize the residual of the objective function. Two datasets

with 60% of the training data initialized the model and further fine-

tuned the model with the rest of the data via the bridge network. The

average accuracies before and after applying transfer learning were

81.8% and 95.2%, respectively, with a 16.4% improvement. In Kim et

al. (2021), electrocardiogram-based authentication was achieved by a

support vector machine model. Initially, a 10-min segment of the

electrocardiogram signal was used to train the model which was

updated by five 10-min segments on five consecutive days (one each

per day). The feature space remained throughout the incremental

learning process with the update on the decision boundaries of the

SVM classifier. The performance evaluation reflected an accuracy

improvement from 61.3% to 87.6%. An unsupervised Fisher’s exact

test-based supervised random forest algorithm was proposed for

medical association rule discovery (S�anchez-de-Madariaga et al.,

2022). The feature extraction was enhanced by combining supervised

learning and unsupervised learning. Incremental learning was

applied and evaluated with a grid search of [5, 200] on the seed size.

An improvement of 0.61 to 0.80 was observed in the area under the

ROC curve. A separable and compact feature learning algorithm was

proposed in Li & Huang (2022) for vehicle detection. The novelty in

this work was to freeze the feature selector during incremental learn-

ing using decoupled learning for compact and separable features.

Under the optimal regularization parameter settings, the accuracy

was improved from 78.1% to 80.2% in 10 iterations and to 80.7% in 20

iterations. TaggedEnd

TaggedPStandalone transfer learning TaggedEnd

TaggedPIn Alzubaidi et al. (2021), a deep convolutional neural network

was initially trained with 0.2 million unlabelled images of skin can-

cer. The model was transferred to a target domain with 33k labelled

List 1 Summary of the acronyms and symbols

Acronym/Symbol

C classifier

D discriminator

F extractor for features

FN false negative rate

FP false positive rate

LAdversarial standard loss function of the generative

adversarial network

LClassification loss function for the classification in

source and target samples

Ltotal loss function for the subtraction of the

entropy of the label distribution from the

entropy of the input

MITL-NTA multiple rounds multiple incremental

transfer learning and negative transfer

avoidance

MRI magnetic resonance imaging

N number of equal-size subsets

Q cluster for common feature

R cluster for domain specific feature

S association matrix

SVM support vector machine

T assignment matrix for sample cluster

TN true negative rate

TP true positive rate

Xsource feature matrix of the source domain

f’i
Sg

N

i¼1 feature map

fvig
N
i¼1 set of weights

λ hyperparameter controlling the loss

functions

wsen weighting factor for the sensitivity

wspe weighting factor for the specificity
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TaggedEndTaggedPimages of skin cancer. Varying filter sizes of parallel convolutional

layers were used for feature extraction of features with different

granularity to enhance the overall feature representation. Transfer

learning facilitated the accuracy improvement from 85.3% to 97.5%. A

hybrid convolutional neural network and bidirectional long short-

term memory were proposed to classify normal, viral pneumonia,

and COVID-19 candidates in Aslan et al. (2021). Automatic feature

extraction was achieved with a convolutional neural network. The

model was fine-tuned using a pre-trained AlexNet via transfer learn-

ing. It achieved an accuracy of 98.7%. Another work (Han et al., 2021)

implemented a multiclass domain discriminators to support adver-

sarial training network-based feature domain adaptation for machin-

ery fault detection. The optimization problems were to minimize the

domain loss and label loss. The model was enhanced using a 2-round

transfer learning, and the evaluation of four tasks showed an

improvement in accuracy from 82.2% to 85.3% to 92.7%. A fine-

grained recurrent neural network with transfer learning was pro-

posed in Hua et al. (2022) for the estimation of the energy consump-

tion of electric vehicles. The spatiotemporal features were iteratively

transferred to the target model. Transfer learning reduced the mean

square error, root-mean-square error, and mean average error from

4.89 £ 107 to 4.23 £ 107, from 6.99 £ 103 to 6.50 £ 103, and from

0.455 £ 103 to 0.365 £ 103, respectively. Transfer learning and adver-

sarial networks were used to identify cross-lingual offensive speech

(Shi et al., 2022). The unsupervised cross-lingual mapping facilitated

the sharing of the language invariant features between languages.

Four languages namely Greek, Turkish, Arabic, and Danish were con-

sidered for analysis. Ablation studies revealed the improvement of

accuracy from 0.874 to 0.878, from 0.874 to 0.881, from 0.918 to

0.926, and from 0.919 to 0.932, in the four languages, respectively. TaggedEnd

TaggedPHybrid incremental learning and transfer learning TaggedEnd

TaggedPA hybrid incremental learning and transfer learning algorithm,

also named the incremental transfer learning algorithm, has received

attention in recent years. It takes advantage of both incremental

learning and transfer learning. Li et al. (2021) built a non-adaptive

support vector machine (SVM) for electromyography-based recogni-

tion. It was initially built with 660 electromyography samples. It was

then incrementally transferred to three target models using the var-

iants of SVM, namely, TrAdaBoost-incremental SVM, TrAdaBoost

SVM, and incremental SVM, using 2640 samples. Three approaches,

namely, particle swarm optimization, sequential forward search, and

no feature selection, were employed for feature extraction. With the

aid of transfer learning, the incremental learning-based model

enhanced the accuracy from 75% to 94%, 88%, and 95% for the three

SVM algorithms. To recognize retinal pathologies, a pre-trained

ImageNet was transferred to a Bayesian deep learning-based model

(Hassan et al., 2021). The encoder of the ResNet utilized a fusion

TaggedEndTaggedPmechanism for residual features so that useful features could be

retained during the generation of latent vectors. Incremental learning

was introduced to further update the model with 6 benchmark data-

sets. The accuracy was enhanced from 96% to 98%. In Martin et al.

(2022), an evolution-aware model shifting algorithm was proposed

to build a prediction model for the Linus kernel size. It was based on

the pre-trained model using gradient boosting. The authors noted

that the incremental learning process will lead to continual deletion

of existing features and addition of new features in each round of

iteration. The analysis showed that approximately 95% of the features

remained in the feature space as top features in the evaluation of fea-

ture importance. Incremental learning was introduced to enhance

the model, with accuracy improvement from 92.7% to 94.2%. In Fran-

cisco et al. (2022), researchers employed incremental transfer learn-

ing to improve the convolutional neural network for designing a rule

checker. At most 10% of the weights could be updated to prevent the

target model from learning too much irrelevant information from the

source model, as negative transfer. The loss function dropped by

approximately 0.15 in most cases. A dual-branch aggregation net-

work with incremental transfer learning was proposed in Chen et al.

(2022) for fault gearbox detection. A major portion of the network

layers was frozen so that fine-tuning was performed in a small por-

tion of the network layers to avoid negative transfer. Various scenar-

ios showed that significant improvement was observed in the

accuracy, from 77.1%, 81.4%, and 95.9% to 99.89%. TaggedEnd

TaggedPComparisons between standalone incremental learning, standalone

transfer learning, and hybrid incremental learning and transfer learning TaggedEnd

TaggedPTable 1 compares the three approaches namely standalone incre-

mental learning, standalone transfer learning, and hybrid incremen-

tal learning and transfer learning, with a discussion of the technical

limitations. TaggedEnd

TaggedH2Limitations of existing works TaggedEnd

TaggedPThe abovementioned existing works show the recent research

trends in enhancing the performance of machine learning models

using incremental learning and transfer learning. Although it may

require additional computational power and training time for model

updates, it is acceptable given that high-performance computing

devices and platforms have become more affordable. There are some

research limitations of the existing works that require investigation:

TaggedEndTaggedP� Researchers have mainly focused on transfer learning with homo-

geneous datasets between the source and target domains. Limited

studies (Day & Khoshgoftaar, 2017) have analysed the impact of

transfer learning between heterogeneous datasets. TaggedEnd

TaggedEnd Table 1

Comparison between standalone incremental learning, standalone transfer learning, and hybrid incremental learning and transfer learning.

Technique Purpose of formulation Technical limitations

Standalone incremental learning It aims at continually updating the machine learning

model when more input data becomes available. One

can also take advantage of this approach for a large-

scale dataset where traditional approach requires huge

computational resources.

The portion of new data to be selected to update the

existing model requires customization and cannot

remain fixed.

Standalone transfer learning It aims at transferring knowledge from a pre-trained

model of an application (source domain) to a target

model of an application (target domain).

In principle, the source and target domains can be similar

or different, to some extents. Selecting appropriate

source domain is important to reduce the challenge of

negative transfer from the source domain to the target

domain.

Hybrid incremental learning and transfer learning It aims to gradually transfer knowledge from the source

domain to the target domain with the inclusion of new

data to reduce the impact of negative transfer and pro-

vide flexibility to update the trained target model.

The complexity of the algorithm is higher compared with

standalone incremental learning and standalone trans-

fer learning algorithms. It also introduces more hyper-

parameters by merging the algorithms.
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TaggedP� In transfer learning, migrating irrelevant information from the

source domain to the target domain may deteriorate the perfor-

mance of the target model. Thus, the design of transfer learning

should be reformulated. TaggedEnd

TaggedP� The impact of multiple incremental transfer learning in both

homogeneous and heterogeneous datasets on enhancing the per-

formance of the target model has not yet been confirmed. Some of

the existing works suggested that 2-round transfer learning may

help increase the performance of the target model. TaggedEnd

TaggedH2Research contributions of our work TaggedEnd

TaggedPA multiple rounds multiple incremental transfer learning and

negative transfer avoidance (MITL-NTA) algorithm is proposed as a

generic approach to transfer innovation and knowledge from the

source domain to the target domain. The key research contributions

are as follows:

TaggedEndTaggedP� A negative transfer avoidance algorithm is proposed to lower the

risk of transferring irrelevant information from the source domain

to the target domain, particularly between heterogeneous data-

sets. The objective functions of the domain, instance, and feature,

as a three-step approach, are optimally solved to reduce the

impact of negative transfer. Therefore, positive transfer and thus

the performance enhancement of the target model can be

ensured. TaggedEnd

TaggedP� An in-depth analysis and discussion on the multiple incremental

learning (multiple rounds strategy and incremental learning) are

presented. As a consequence, adding more source heterogeneous

datasets and model training via incremental learning can benefit

the performance enhancement of the target model and enhance

the ability of positive transfer. The complexity of the problem

with selecting relevant samples is lowered when incremental

learning is adopted, where a smaller dataset is introduced to

update the model in each iteration.TaggedEnd

TaggedP� A detailed multidisciplinary analysis of the proposed algorithm

was performed with 15 benchmark datasets across 5 disciplines

(lung cancer, breast cancer, daily activities, fruits, and handwrit-

ing) to create scenarios for analysis via homogenous (between

lung cancer and breast cancer) and heterogeneous datasets

(between cancer datasets and the other three datasets). This

reveals the ability and effectiveness of the proposed algorithm to

handle very different source and target domains. At the same

time, the restriction on the selection of the source dataset is

relaxed. The implication is to perform transfer learning with any

heterogeneous dataset when the performance of the target model

is not satisfactory with traditional transfer learning with homoge-

neous datasets and small-scale datasets; TaggedEnd

TaggedP� The proposed algorithm enhances the accuracy by 4.35% com-

pared with existing works. Ablation studies were also conducted

to analyse the contributions of the individual techniques: multiple

rounds strategy, incremental learning, and negative transfer

avoidance algorithms. They show that the proposed algorithm

enhances the average accuracy by 3.44%, 0.849%, and 4.26%,

respectively. TaggedEnd

TaggedH1Benchmark datasets and methodology TaggedEnd

TaggedPThe 15 benchmark datasets in 5 disciplines are briefly summa-

rized here. It is followed by the methodology of the proposed MITL-

NTA algorithm, which comprises the incremental transfer learning

algorithm, negative transfer avoidance algorithm, and strategy for

TaggedEndTaggedPmultiple rounds of incremental transfer learning with negative trans-

fer avoidance. TaggedEnd

TaggedH2Benchmark datasets TaggedEnd

TaggedPFive disciplines were considered: (i) lung cancer with computer-

ized tomography (CT) scans. Lung cancer is the leading cause of death

amongst all types of cancers and causes 1.8 million deaths each year

(Ferlay et al., 2020; Machacha et al., 2021); (ii) breast cancer with

magnetic resonance imaging (MRI) scans, which is the most common

type of cancer, and more than 2.26 million new cases are reported

each year (Ginsburg et al., 2020; Masud et al., 2021); (iii) daily activi-

ties with body sensing data, in which recognising human activities

provides various benefits in the understanding of health, physiologi-

cal, and psychological status, as well as personal identity; (iv) fruits

with images, in which the recognition of fruits is a well-known and

one of the earliest problems in deep learning applications in image

processing; and (v) handwriting with images, in which handwriting

or hand text recognition focuses on the interpretation of handwritten

inputs to computers. TaggedEnd

TaggedPIn each of the five disciplines, three benchmark datasets were

retrieved for performance evaluation and analysis of the proposed

MITL-NTA algorithm. The summary of the details of a total of 15

benchmark datasets including the discipline, the released year, the

number of Google Scholar citations (up to mid-June 2022), the size of

the dataset, and the number of samples, is shown in Table 2.TaggedEnd

TaggedH2Incremental transfer learning TaggedEnd

TaggedPIncremental transfer learning subdivides transfer learning into

multiple subproblems so that the extent of potential negative trans-

fer (arising from irrelevant training samples) can be reduced. The

conceptual diagram of the incremental transfer learning algorithm is

presented in Fig. 1. Solid lines relate to incremental learning whereas

dotted lines relate to transfer learning. The illustration is based on

two datasets (Dataset 1 from the source domain and Dataset 2 from

the target domain), which are divided into N equal-sized subsets. The

idea will be further extended in section 2.4. The value of N is closely

related to the computational complexity in each iteration (from 1 to

N), ability to learn new knowledge, and ability to mistake irrelevant

information (negative transfer), which require further analysis which

is presented in Section 3. Therefore, we have a source domain data-

set, namely, Dataset 1 = {Dataset 1.1, Dataset 1.2, . . ., Dataset 1.N} and

target domain dataset, namely, Dataset 2 = {Dataset 2.1, Dataset 2.2,

. . ., Dataset 2.N}. TaggedEnd

TaggedPHere are the key steps to summarize the incremental transfer

learning algorithm to build a target model (Model 2.N).

Step 1: Choose two datasets for which knowledge is transferred from

one domain to another. Name Dataset 1 for the source domain

and Dataset 2 for the target domain. TaggedEnd

Step 2: Divide Dataset 1 and Dataset 2 into N equal-sized subsets.

Step 3: Train Model 1.1 using the first subset of Dataset 1, namely,

Dataset 1.1.

Step 4: Train Model 2.1 using pre-trained Model 1.1 with knowledge

transfer (including the negative transfer avoidance algorithm)

and Dataset 2.1.

Step 5: Incrementally update Model 1.1 to Model 1.2 using Dataset

1.2 to obtain Model 1.2;.Step 6: Incrementally update Model 2.1

using Dataset 2.2 and pre-trained Model 1.2 with knowledge

transfer (including negative transfer avoidance algorithm) to

obtain Model 2.2. Step 7 Repeat Steps 5 and 6 until the last subsets

of Dataset 1 Dataset 1.N) and Dataset 2 (Dataset 2.N) are used to

obtain the final pre-trained model (Model 1.N) and final target

model (Model 2.N).
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TaggedPIt is worth noting that the design in Fig. 1 can be adjusted with

nonequal-size subsets (requiring an update to Step 2); for instance,

the future round of iteration may use a larger portion of the dataset

so that the intake subset can retain a certain ratio (or percentage)

compared with the total portion of the dataset being used in previous

iterations. In addition, an initiative is proposed to the design that can

be unrestrictedly applied to online incremental transfer learning

when the dataset is ever-growing. The update will be executed when

sufficient new data have gathered (fulfilling the predefined ratio).

The iteration may be terminated when the optimal result of the tar-

get model has been achieved or negative transfer is observed (with

the deterioration of the accuracy of the target model). TaggedEnd

TaggedH2Negative transfer avoidance algorithm TaggedEnd

TaggedPTrivially, Dataset 1 and Dataset 2 are not identical datasets, or else

they should be merged to train a single model. The degree of similar-

ity between the homogeneous datasets is much larger than that

TaggedEndTaggedPbetween the heterogeneous datasets. Even though identical applica-

tions are considered, the datasets may not be homogeneous given

the heterogeneity of sensors, devices, subjects (region-wise), etc. The

issue of negative transfer from the source domain to the target

domain becomes more severe in heterogeneous datasets. Negative

transfer can be easily observed when the performance of the target

model with transfer learning is less than that without transfer learn-

ing (Zhang et al., 2022). A negative transfer avoidance algorithm is

thus introduced to leverage the ability of the incremental transfer

learning algorithm to transfer relevant knowledge. The negative

transfer avoidance algorithm is an essential part of the knowledge

blocks in Fig. 1.TaggedEnd

TaggedPA number of feasible approaches exist to design a negative trans-

fer avoidance algorithm. Three major ideas have been proposed in

the literature: (i) redefining the objective functions such that the per-

formance of the model with transfer learning will always be better

than that without transfer learning (Li et al., 2019; Yoon & Li, 2018);

(ii) employing transitive transfer learning, also known as distant

TaggedEnd Table 2

Summary of details of benchmark datasets.

Dataset Discipline Released year Number of google scholar citations Size of the dataset Number of samples

NSCLC-Radiomics-Genomics (Aerts et al., 2014) Lung cancer 2014 3449 6.6 GB 13,482

SPIE-AAPM Lung CT Challenge (Armato III et al., 2015) Lung cancer 2015 52 12.1 GB 22,489

LungCT-Diagnosis (Grove et al., 2015) Lung cancer 2015 232 2.5 GB 4682

QIN-Breast (Li et al., 2015) Breast cancer 2015 126 11.3 GB 100,835

QIN Breast DCE-MRI (Huang et al., 2014) Breast cancer 2014 120 8.4 GB 76,328

Breast-MRI-NACT-Pilot (Newitt & Hylton, 2016) Breast cancer 2016 16 19.5 GB 99,314

Daily and Sports Activities Dataset (Altun & Barshan, 2010) Daily activities 2010 318 163 MB 9120

Activities of Daily Living Recognition Using Binary Sensors

Dataset (Ord�onez & Sanchis, 2013)

Daily activities 2013 266 75.9 MB 2747

Smartphone-Based Recognition of Human Activities and Pos-

tural Transitions Dataset (Reyes-Ortiz et al., 2016)

Daily activities 2016 546 1.2 GB 10,929

Fruits 360 (Mureşan & Oltean, 2017) Fruits 2017 270 1.38 GB 90,483

Fruit Image Data set (Marko, 2013) Fruits 2013 10 428 MB 971

Fruits-262 (Minuţ & Iftene, 2021) Fruits 2021 3 6.59 GB 225,640

THE MNIST DATABASE of handwritten digits (LeCun et al.,

1998)

Handwriting 1998 46,389 11.6 MB 70,000

GNHK: A Dataset for English Handwriting in the Wild (Lee et

al., 2021)

Handwriting 2021 1 963.2 MB 687

The Chars74K dataset (De Campos et al., 2009) Handwriting 2009 589 192.4 MB 74,107

TaggedEnd TaggedFigure

Fig. 1. Incremental transfer learning algorithm. TaggedEnd

5
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TaggedEndTaggedPtransfer learning (Niu et al., 2021; Ren et al., 2022); and (iii) enhanc-

ing the transferability of the source domain by considering data qual-

ity at various levels, such as the feature, instance, and domain levels

(Peng et al., 2020; Zuo et al., 2021).TaggedEnd

TaggedPThe first approach is not feasible with regard to the multiple

rounds of MITL-NTA in later stages because it heavily relies on

domain knowledge (too many domains to be considered) for

objective functions and high computational power. Next, transi-

tive transfer learning is less capable of negative transfer avoid-

ance. Thus, this paper considers the third approach in the design

of the MITL-NTA algorithm. In existing works, researchers have

considered the enhancement of transferability at one of the levels

(domain, instance, or feature) (Ahmed et al., 2021; Wang et al.,

2019). To achieve robust negative transfer avoidance, a three-

level transferability enhancement scheme based on multi-objec-

tive optimization using NSGA-III is proposed (Fig. 2). It will be

incorporated into the knowledge blocks of the incremental trans-

fer learning algorithm. TaggedEnd

TaggedPAt the domain level, the minimization problem is formulated as:

min
’
i
Sf g

N

i¼1
; vif gNi¼1

Ltotals:t: vi�0 8 i2 1;2; . . . ;Nf g and
X

N

i¼1

vi ¼ 1

ð1Þ

where f’iSg
N

i¼1 is the feature map, fvig
N
i¼1 is the set of weights, and

Ltotal is the loss function for the subtraction of the entropy of the label

distribution from the entropy of the input. Thus, the total loss func-

tion can be expressed as:

Ltotal ¼ H Yð Þ þ H Xð Þ ð2Þ

Ltotal ¼
X

i

P Yið Þi Yið Þ þ
X

j

P Xj

� �

i Xj

� �

ð3Þ

Ltotal ¼
X

i

P Yið Þ log2P Yið Þ þ
X

j

P Xj

� �

log2P Yj
� �

ð4Þ

with P(Yi) as the probability of the label Yi, i(Yi) as the self-information

of Yi, P(Xj) as the probability of input Xj, and i(Xj) as the self-informa-

tion of Xj.TaggedEnd

TaggedPAt the instance level, a generative adversarial network is consid-

ered with the objective function as follows:

argmin
F;C

argmax
F;D

LClassification F;Cð Þ � λLAdversarial F;Dð Þ ð5Þ

where F is the extractor for features, C is the classifier, D is the

discriminator, LClassification is the loss function for the classification in

source and target samples, LAdversarial is the standard loss function of

the generative adversarial network, and λ is the hyperparameter

TaggedEndTaggedPcontrolling the loss functions. LClassification and LAdversarial are defined

as:

Lclassification F;Cð Þ ¼ Exs ;ys » S log C F xsð Þð Þð Þ; ys½ �

þ Exl ;yl » TL log C F xlð Þð Þð Þ; yl½ � ð6Þ

LAdversarial F;Dð Þ ¼ ExS » PS Xð Þ log 1� D F xsð Þð Þð Þ½ �

þ Exu » PT Xð Þ log D F xuð Þð Þð Þ½ � ð7Þ

where xs and ys are the input and output of the source domain S,

respectively; xl and yl are the input and output of the labelled target

domain TL, and xu is the sample from the unlabelled target domain. TaggedEnd

TaggedPAt the feature level, a non-negative tri-factorization approach can

be used to formulate the objective function:

minQ ;R;S;T�0 kXsource � Q ;R½ �STT k ð8Þ

where Xsource is the feature matrix of the source domain, Q is the clus-

ter for common features, R is the cluster for domain specific features,

S is the association matrix, and T is the assignment matrix for the

sample cluster.TaggedEnd

TaggedH2Strategy for multiple rounds MITL-NTA algorithm TaggedEnd

TaggedPThe formulation of the MITL-NTA algorithm (Fig. 1) is between

two datasets. In practice, the target model may not achieve satisfac-

tory performance or a perfect result (for mission-critical applications)

after one time transfer learning process. Hence, an extension is made

toward a multiple rounds MITL-NTA algorithm with multiple data-

sets. TaggedEnd

TaggedPFig. 3 shares the workflow of the prioritization algorithm. To pri-

oritize the datasets to be transferred to the target model, domain

similarity estimation is performed between the available datasets.

The measures are based on a test performance-based approach: Simi-

lar datasets will be observed when the source model yields good per-

formance using the data from the target domain. Thus, the

performance of various potential source models with the target data-

set is ranked in descending order. The source model with the highest

similarity will serve as the first model to be transferred. Usually,

homogeneous datasets will share higher similarities and thus con-

tribute to transfer learning in earlier iterations compared with het-

erogeneous datasets. The higher the similarities between datasets,

the lower the extent of negative transfer from the source domain to

the target domain. In regard to the multiple rounds of the MITL-NTA

algorithm (Fig. 4), for each iteration, incremental transfer learning

between the source domain and target domain is performed (using

TaggedEnd TaggedFigure

Fig. 2. Three-level transferability enhancement scheme based on multi-objective optimization. TaggedEnd
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TaggedEndTaggedPthe workflow in Fig. 1). The iterations continue until all available

datasets have been used or the performance of the target model

starts to drop (usually when there is no similarity between the source

domain and the target domain). Taking 15 benchmark datasets as an

example, the maximum number of iterations (imax) turns out to be 14

to build a target model. TaggedEnd

TaggedH1Performance evaluation and comparison TaggedEnd

TaggedPSince the focus of this research is not on feature extraction and

classification algorithms, a convolutional neural network is employed

for automatic feature extraction and classification. For example, the

cancer-related target domain adopts the following CNN architecture:

the 1st layer is a 2D convolutional layer with kernel size 64; the 2nd

layer is a maximum pooling layer; the 3rd layer is a 2D convolutional

layer with kernel size 128; the 4th layer is a maximum pooling layer;

the 5th layer is a 2D convolutional layer with kernel size 256; the 6th

TaggedEndTaggedPlayer is a maximum pooling layer; the 7th layer is a fully connected

layer; and the 8th layer is the output layer. Notably, the convolutional

layers have a filter size and stride of 3 £ 3 and 1, respectively,

whereas the maximum pooling layers have a filter size and stride of

2 £ 2 and 2, respectively. With sufficient available labelled samples

in the 15 benchmark datasets, as a trade-off between the computa-

tion time and the evaluation of model overfitting, 2-fold cross-valida-

tion is chosen in the performance evaluation and analysis instead of

5-fold (Chen et al., 2021; Chui, 2022) or 10-fold cross-validation

(Almomani et al., 2022; Dwivedi et al., 2021). With regard to incre-

mental learning, the training was divided into 10 iterations. TaggedEnd

TaggedH2Performance evaluation of the multiple rounds MITL-NTA algorithmTaggedEnd

TaggedPThe sensitivity, specificity, accuracy, and number of rounds of

MITL-NTA were recorded for all 15 target models. The results are

summarized in Table 3. The multiple rounds of the MITL-NTA algo-

rithm achieve significant enhancement in improving sensitivity, the

specificity, and accuracy of the target models. Details will be pre-

sented in the ablation studies in Section 4. The sensitivity, specificity,

precision, F-Score, and accuracy are defined as follows (Hammad et

al., 2021; Sedik et al., 2021):

Sensitivity ¼
TP

TP þ FN
ð9Þ

Specificity ¼
TN

TN þ FP
ð10Þ

Precision ¼
TP

TP þ FP
ð11Þ

F � Score ¼
TP

TP þ 0:5 FP þ FNð Þ
ð12Þ

Accuracy ¼ wsen Sensitivityð Þ þwspe Specificityð Þ ð13Þ

where TP is the true positive rate, FN is the false negative rate, TN is

the true negative rate, FP is the false positive rate, wsen is the weight-

ing factor for the sensitivity, and wspe is the weighting factor for the

specificity, of the model. TaggedEnd

TaggedPSeveral key observations are:

TaggedEndTaggedP� The data types of 12 datasets (except three datasets from daily

activities) are images where similarities exist regardless of the

domain because of the presence of image noise. Multiple rounds

of the MITL-NTA algorithm were feasible across heterogeneous

datasets in these datasets, which can be observed by the high

value in the number of rounds. TaggedEnd

TaggedP� The models with 6 datasets related to cancers received higher val-

ues in the number of rounds because cancer images share similar-

ities to a larger extent.TaggedEnd

TaggedP� Multiple rounds of the MITL-NTA algorithm were limited to the

models with 3 daily activities. This suggests that if the data types

between input samples are not similar, transfer learning becomes

less feasible. TaggedEnd

TaggedP� The descending order of the average number of rounds in five dis-

ciplines is lung cancer, breast cancer, fruits, handwriting, and daily

activities. TaggedEnd

TaggedPWith regard to the cost and computational complexity of the pro-

posed algorithm, the base of the classification model is a convolu-

tional neural network that has cost and computational complexity

comparable to existing works (Alencastre-Miranda et al., 2021; Roy

et al., 2020; Wang et al., 2020). Since a multiple rounds strategy is

adopted in the proposed algorithm, the overall cost and computa-

tional complexity are approximately equal to the sum of the

TaggedEnd TaggedFigure

Fig. 3. Prioritization algorithm using domain similarity estimation. TaggedEnd

TaggedEnd TaggedFigure

Fig. 4. Multiple rounds MITL-NTA algorithm. TaggedEnd
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TaggedEndTaggedPindividual multiple incremental transfer learning and negative trans-

fer avoidance algorithms. TaggedEnd

TaggedH2Performance comparison with existing works TaggedEnd

TaggedPThe accuracies of the proposed work and existing works for the

models with 15 benchmark datasets are summarized in Table 4. The

key observations are highlighted as follows:

TaggedEndTaggedP� The average accuracies in the five disciplines for our work, (Li et

al., 2021), (Hassan et al., 2021), and (Martin et al., Early Access),

are (98.1, 92, 93.5, 92.7)% for lung cancer, (98.5, 91.9, 94.2, 93.1)%

for breast cancer, (91.3, 88.1, 89.6, 88.9)% for daily activities, (97.4,

93.6, 95.1, 94.2)% for fruits, and (94.2, 89.9, 91.1, 90.5)% for hand-

writing; TaggedEnd

TaggedP� Compared with Li et al. (2021), Hassan et al. (2021), and Martin et

al. (Early Access), our work improves the average accuracy by

(6.63, 4.92, 5.83)% for lung cancer, (7.18, 4.56, 5.80)% for breast

cancer, (3.63, 1.90, 2.70)% for daily activities, (4.06, 2.42, 3.40)%

for fruits, and (4.78, 3.40, 4.09)% for handwriting. The major rea-

sons for the achievement by our work are the multiple rounds

TaggedEndTaggedPstrategy, incremental learning, and negative transfer avoidance

algorithms. This will be analysed in Section 4.TaggedEnd

TaggedH1Ablation studies TaggedEnd

TaggedPTo evaluate the effectiveness of the components of the proposed

multiple rounds MITL-NTA algorithm, ablation studies were con-

ducted on multiple rounds strategy, incremental learning, and nega-

tive transfer avoidance algorithms.TaggedEnd

TaggedH2Multiple rounds strategy TaggedEnd

TaggedPFig. 5 compares the accuracy of the MITL-NTA algorithm with and

without the multiple rounds strategy across all benchmark datasets.

To provide clear visualization, the names of the datasets were

renamed based on the concatenation of the discipline with _1, _2,

and _3, according to the order of introduction in the previous sec-

tions, Tables 2, and 3. The range of improvement in the five disci-

plines is 3.72−5.02% for lung cancer, 3.59−5.24% for breast cancer,

1.23−1.78% for daily activities, 3.14−4.44% for fruits, and 2.44−3.88%

for handwriting. The improvement of the average accuracy in the five

TaggedEnd Table 3

Results of the 15 target models using the multiple rounds MITL-NTA algorithm.

Target Dataset/Model Discipline Sensitivity (%) Specificity (%) Precision (%) F-Score (%) Accuracy (%) Number

of rounds

NSCLC-Radiomics-Genomics (Aerts et al., 2014) Lung cancer 98.3 97.9 98.1 98.2 98.2 8

SPIE-AAPM Lung CT Challenge (Armato III et al., 2015) Lung cancer 98.7 98.1 98.3 98.5 98.4 9

LungCT-Diagnosis (Grove et al., 2015) Lung cancer 98.0 97.4 97.6 97.8 97.7 7

QIN-Breast (Li et al., 2015) Breast cancer 99.0 99.2 99.0 99.0 99.1 8

QIN Breast DCE-MRI (Huang et al., 2014) Breast cancer 98.6 98.0 98.2 98.4 98.4 8

Breast-MRI-NACT-Pilot (Newitt & Hylton, 2016) Breast cancer 98.4 97.7 97.9 98.2 98.0 7

Daily and Sports Activities Dataset (Altun & Barshan, 2010) Daily activities 91.3 92.0 91.5 91.4 91.5 2

Activities of Daily Living Recognition Using Binary Sensors Dataset

(Ord�onez & Sanchis, 2013)

Daily activities 90.6 90.1 90.2 90.4 90.3 2

Smartphone-Based Recognition of Human Activities and Postural

Transitions Dataset (Reyes-Ortiz et al., 2016)

Daily activities 92.4 91.6 91.8 92.1 92.1 2

Fruits 360 (Mureşan & Oltean, 2017) Fruits 98.8 98.1 98.3 98.6 98.4 5

Fruit Image Dataset (Marko, 2013) Fruits 95.3 94.6 94.8 95.1 94.9 4

Fruits-262 (Minuţ & Iftene, 2021) Fruits 99.0 98.5 98.7 98.8 98.8 6

THE MNIST DATABASE of handwritten digits (LeCun et al., 1998) Handwriting 94.3 93.4 93.6 94.0 93.8 4

GNHK: A Dataset for English Handwriting in the Wild (Lee et al., 2021) Handwriting 92.5 91.8 92.1 92.3 92.2 3

The Chars74K dataset (De Campos et al., 2009) Handwriting 96.8 96.0 96.3 96.5 96.5 4

TaggedEnd Table 4

Accuracies of the proposed work and existing works using different benchmark datasets.

Accuracy (%)

Target Dataset/Model Discipline Proposed work (Li et al., 2021) (Hassan et al., 2021) (Martin et al.,

Early Access)

NSCLC-Radiomics-Genomics (Aerts et al., 2014) Lung cancer 98.2 92.4 93.7 93.0

SPIE-AAPM Lung CT Challenge (Armato III et al., 2015) Lung cancer 98.4 92.1 93.9 92.6

LungCT-Diagnosis (Grove et al., 2015) Lung cancer 97.7 91.5 92.9 92.4

QIN-Breast (Li et al., 2015) Breast cancer 99.1 92.6 94.8 93.7

QIN Breast DCE-MRI (Huang et al., 2014) Breast cancer 98.4 92.0 94.4 93.2

Breast-MRI-NACT-Pilot (Newitt & Hylton, 2016) Breast cancer 98.0 91.2 93.3 92.5

Daily and Sports Activities Dataset (Altun & Barshan, 2010) Daily activities 91.5 88.1 89.6 88.9

Activities of Daily Living Recognition Using Binary Sensors Dataset

(Ord�onez & Sanchis, 2013)

Daily activities 90.3 87.3 88.7 88.2

Smartphone-Based Recognition of Human Activities and Postural

Transitions Dataset (Reyes-Ortiz et al., 2016)

Daily activities 92.1 88.8 90.4 89.5

Fruits 360 (Mureşan & Oltean, 2017) Fruits 98.4 94.4 95.9 95.0

Fruit Image Dataset (Marko, 2013) Fruits 94.9 91.6 92.8 92.1

Fruits-262 (Minuţ & Iftene, 2021) Fruits 98.8 94.9 96.5 95.4

THE MNIST DATABASE of handwritten digits (LeCun et al., 1998) Handwriting 93.8 89.7 90.7 90.1

GNHK: A Dataset for English Handwriting in the Wild (Lee et al., 2021) Handwriting 92.2 88.0 89.3 88.8

The Chars74K dataset (De Campos et al., 2009) Handwriting 96.5 92.0 93.3 92.6

TaggedEndK.T. Chui, V. Arya, S.S. Band et al. Journal of Innovation & Knowledge 8 (2023) 100313
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TaggedEndTaggedPdisciplines by the proposed algorithm is 4.29% for lung cancer, 4.53%

for breast cancer, 1.48% for daily activities, 3.80% for fruits, and 3.07%

for handwriting. The deviations of enhancement in different disci-

plines are due to the nature of the similarities between the source

and target domains. The more similar the domains are, the better the

transferability to the target model is. The results suggest that the

multiple rounds strategy can facilitate the transfer of innovation and

knowledge to the target model based on multiple datasets. TaggedEnd

TaggedH2Incremental learning TaggedEnd

TaggedPFig. 6 compares the accuracy of the multiple rounds MITL-NTA

algorithm with the multiple rounds MTL-NTA algorithm. The algo-

rithm without incremental learning is equivalent to a one-step train-

ing of the target model without the division of datasets into subsets.

The range of improvement in the five disciplines is 0.511−0.826% for

lung cancer, 0.716−1.14% for breast cancer, 0.876−0.894% for daily

activities, 0.509−1.02% for fruits, and 0.731−0.875% for handwriting.

The improvement of the average accuracy in the five disciplines by

TaggedEndTaggedPthe proposed algorithm is 0.719% for lung cancer, 1.06% for breast

cancer, 0.884% for daily activities, 0.794% for fruits, and 0.786% for

handwriting. The results suggest that incrementally fine-tuning the

model can enhance its performance due to the decrease in the level

of negative transfer. It is worth noting that the negative transfer

avoidance algorithm also contributes to the decrease in the impact of

negative transfer. TaggedEnd

TaggedH2Negative transfer avoidance TaggedEnd

TaggedPFig. 7 compares the accuracy of the multiple rounds MITL-NTA

algorithm with the multiple rounds MITL algorithm. The range of

improvement in the five disciplines is 5.05−6.15% for lung cancer,

4.48−5.92% for breast cancer, 1.69−2.12% for daily activities, 4.02

−4.99% for fruits, and 3.76−4.57% for handwriting. The improvement

of the average accuracy in the five disciplines by the proposed algo-

rithm is 5.45% for lung cancer, 5.16% for breast cancer, 1.93% for daily

activities, 4.62% for fruits, and 4.13% for handwriting. These results

confirm the effectiveness of the negative transfer avoidance

TaggedEnd TaggedFigure

Fig. 5. Performance comparison between the MITL-NTA algorithm with and without the multiple rounds strategy.TaggedEnd

TaggedEnd TaggedFigure

Fig. 6. Performance comparison between multiple rounds of the MITL-NTA algorithm and multiple rounds of the MTL-NTA algorithm. TaggedEnd

TaggedEnd TaggedFigure

Fig. 7. Performance comparison between multiple rounds of the MITL-NTA algorithm and multiple rounds of the MITL algorithm. TaggedEnd
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TaggedEndTaggedPalgorithm which minimizes the transfer of irrelevant innovation and

knowledge from the source domain to the target domain. Particu-

larly, it is observed that the number of rounds is reduced when the

negative transfer avoidance algorithm is omitted, which hits the

stopping criterion of the iterations of the algorithm. Compared with

incremental learning, the negative transfer avoidance algorithm

plays a more significant role in the reduction of negative transfer

(from 2 times up to 5 times improvement). TaggedEnd

TaggedH1Conclusion and future research directions TaggedEnd

TaggedPIn the current data explosion era, the availability of large-scale

datasets contains valuable innovation and knowledge that could be

utilized to build more accurate machine learning models for smart

city applications. To share innovation and knowledge, transfer learn-

ing has served as a solid foundation to bridge both homogeneous and

heterogeneous datasets. In this paper, the goal has been to leverage

the performance of the target model by incorporating three novel

ideas, namely, multiple rounds strategy, incremental transfer learn-

ing, and negative transfer avoidance. An in-depth performance evalu-

ation and analysis was carried out on the proposed algorithm using

15 benchmark datasets in 5 disciplines including lung cancer, breast

cancer, daily activities, fruits, and handwriting. Performance compar-

ison between the proposed algorithm and existing works showed an

average accuracy improvement of 4.35%. Ablation studies reveal that

the proposed algorithm improves the average accuracy by 3.44%,

0.849%, and 4.26% compared with methodology without multiple

rounds strategy, incremental learning, and negative transfer avoid-

ance algorithms, respectively. The research implications are a break-

through for the positive transfer of knowledge from the

heterogeneous source domain to the target domain. Particularly, the

research applications become very useful in regard to small-scale

datasets and for those applications that may not have similar data-

sets. Transfer learning is usually accuracy-orientated to leverage the

target model performance. Researchers may select a wide range of

pre-trained models, such as AlexNet, GoogleNet, ResNet, VGG-16,

and EfficientNet, from well-known datasets. Then, prioritization is

carried out on the source domains for multiple rounds of incremental

transfer learning. The target model not only receives knowledge from

relevant source samples but also reduces the severity of overfitting of

the model, thereby enhancing model performance. For image-related

datasets, one may enhance the quality of the image before model

implementation (Liu et al., 2022; Yu et al., Early Access). Several

future research directions are recommended, including (i) reducing

the number of rounds of transfer learning with the aid of the inclu-

sion of a larger pool of source datasets; (ii) creating intermediate

domains as bridges between the source and target domains to

increase the similarities between domains; and (iii) generating addi-

tional training data from relevant samples via a data generation algo-

rithm. TaggedEnd

TaggedH1References TaggedEnd

TaggedPAerts, H. J., Velazquez, E. R., Leijenaar, R. T., Parmar, C., Grossmann, P.,

Carvalho, S., et al. (2014). Decoding tumour phenotype by noninvasive imaging

using a quantitative radiomics approach. Nature Communications, 5(1), 1–9.
doi:10.1038/ncomms5006. TaggedEnd

TaggedPAhmed, S. M., Raychaudhuri, D. S., Paul, S., Oymak, S., & Roy-Chowdhury, A. K. (2021).
Unsupervised multi-source domain adaptation without access to source data. In

Proceedings of the IEEE/CVF conference on computer vision and pattern recognition

(pp. 10103−10112). doi:10.48550/arXiv.2104.01845. TaggedEnd
TaggedPAlencastre-Miranda, M., Johnson, R. M., & Krebs, H. I. (2021). Convolutional neural net-

works and transfer learning for quality inspection of different sugarcane varieties.
IEEE Transactions on Industrial Informatics, 17(2), 787–794. doi:10.1109/

TII.2020.2992229.TaggedEnd
TaggedPAlmomani, A., Alauthman, M., Shatnawi, M. T., Alweshah, M., Alrosan, A.,

Alomoush, W., et al. (2022). Phishing website detection with semantic features

based on machine learning classifiers: A comparative study. International Journal

TaggedEndTaggedPon Semantic Web and Information Systems (IJSWIS), 18(1), 1–24. doi:10.4018/IJS-

WIS.297032. TaggedEnd
TaggedPAltun, K., & Barshan, B. (2010). Human activity recognition using inertial/magnetic sen-

sor units. In Proceedings of the international workshop on human behavior under-
standing (pp. 38−51). Springer. doi:10.1007/978-3-642-14715-9_5. TaggedEnd

TaggedPAlzubaidi, L., Al-Amidie, M., Al-Asadi, A., Humaidi, A. J., Al-Shamma, O.,

Fadhel, M. A., et al. (2021). Novel transfer learning approach for medical imaging
with limited labelled data. Cancers, 13, 1590. doi:10.3390/cancers13071590. TaggedEnd

TaggedPArmato, S. G., III, Hadjiiski, L., Tourassi, G. D., Drukker, K., Giger, M. L., Li, F., et al. (2015).
LUNGx challenge for computerized lung nodule classification: Reflections and les-

sons learned. Journal of Medical Imaging, 2,(2) 020103. doi:10.1117/1.

JMI.2.2.020103. TaggedEnd
TaggedPAslan, M. F., Unlersen, M. F., Sabanci, K., & Durdu, A. (2021). CNN-based transfer learn-

ing−BiLSTM network: A novel approach for COVID-19 infection detection. Applied
Soft Computing, 98, 106912. doi:10.1016/j.asoc.2020.106912. TaggedEnd

TaggedPBashath, S., Perera, N., Tripathi, S., Manjang, K., Dehmer, M., & Streib, F. E. (2022). A
data-centric review of deep transfer learning with applications to text data. Infor-

mation Sciences, 585, 498–528. doi:10.1016/j.ins.2021.11.061. TaggedEnd

TaggedPBelouadah, E., Popescu, A., & Kanellos, I. (2021). A comprehensive study of class incre-
mental learning algorithms for visual tasks. Neural Networks, 135, 38–54. TaggedEnd

TaggedPChan, J. Y. L., Bea, K. T., Leow, S. M. H., Phoong, S. W., & Cheng, W. K. (2022). State of the
art: A review of sentiment analysis based on sequential transfer learning. Artificial

Intelligence Review, 1–32. doi:10.1016/j.neunet.2020.12.003.TaggedEnd

TaggedPChen, B., Shen, C., Wang, D., Kong, L., Chen, L., & Zhu, Z. (2022). A lifelong learning
method for gearbox diagnosis with incremental fault types. IEEE Transactions on

Instrumentation and Measurement, 71, 3514010. doi:10.1109/TIM.2022.3177138.TaggedEnd
TaggedPChen, S., Xu, H., Xu, D., Ji, W., Li, S., Yang, M., et al. (2021). Evaluating validation strate-

gies on the performance of soil property prediction from regional to continental
spectral data. Geoderma, 400, 115159. doi:10.1016/j.geoderma.2021.115159. TaggedEnd

TaggedPChui, K. T. (2022). Driver stress recognition for smart transportation: Applying multiob-

jective genetic algorithm for improving fuzzy c-means clustering with reduced
time and model complexity. Sustainable Computing: Informatics and Systems, 35,

100668. doi:10.1016/j.suscom.2022.100668. TaggedEnd
TaggedPDay, O., & Khoshgoftaar, T. M. (2017). A survey on heterogeneous transfer learning.

Journal of Big Data, 4(1), 1–42. doi:10.1186/s40537-017-0089-0.TaggedEnd

TaggedPDe Campos, T. E., Babu, B. R., & Varma, M. (2009). Character recognition in natural
images. VISAPP, 7(2), 273–280. TaggedEnd

TaggedPDelange, M., Aljundi, R., Masana, M., Parisot, S., Jia, X., Leonardis, A., et al. (2022). A con-
tinual learning survey: Defying forgetting in classification tasks. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 44(7), 3366–3385. doi:10.1109/
TPAMI.2021.3057446. TaggedEnd

TaggedPDo, P., Phan, T., Le, H., & Gupta, B. B. (2020). Building a knowledge graph by using cross-

lingual transfer method and distributed MinIE algorithm on apache spark. Neural
Computing and Applications, 1–17. doi:10.1007/s00521-020-05495-1. TaggedEnd

TaggedPDwivedi, R. K., Kumar, R., & Buyya, R. (2021). Gaussian distribution-based machine
learning scheme for anomaly detection in healthcare sensor cloud. International

Journal of Cloud Applications and Computing (IJCAC), 11(1), 52–72. doi:10.4018/

IJCAC.2021010103. TaggedEnd
TaggedPFerlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Pi~neros, M., et al. (2020). Global can-

cer observatory: Cancer today. Lyon: International Agency for Research on Cancer. TaggedEnd
TaggedPFrancisco, L., Davis, W. R., & Franzon, P. (2022). A Deep transfer learning design rule

checker with synthetic training. IEEE Design & Test. doi:10.1109/

MDAT.2022.3162786. TaggedEnd
TaggedPGinsburg, O., Yip, C. H., Brooks, A., Cabanes, A., Caleffi, M.,

Dunstan Yataco, J. A., et al. (2020). Breast cancer early detection: A phased
approach to implementation. Cancer, 126, 2379–2393. doi:10.1002/cncr.32887.TaggedEnd

TaggedPGrove, O., Berglund, A. E., Schabath, M. B., Aerts, H. J., Dekker, A., Wang, H., et al. (2015).
Quantitative computed tomographic descriptors associate tumor shape complexity

and intratumor heterogeneity with prognosis in lung adenocarcinoma. PloS One,

10,(3) e0118261. doi:10.1371/journal.pone.0118261. TaggedEnd
TaggedPHammad, M., Alkinani, M. H., Gupta, B. B., El-Latif, A., & Ahmed, A. (2021). Myocardial

infarction detection based on deep neural network on imbalanced data. Multime-
dia Systems, 1–13. doi:10.1007/s00530-020-00728-8. TaggedEnd

TaggedPHan, T., Liu, C., Wu, R., & Jiang, D. (2021). Deep transfer learning with limited data for

machinery fault diagnosis. Applied Soft Computing, 103, 107150. doi:10.1016/j.
asoc.2021.107150.TaggedEnd

TaggedPHassan, T., Hassan, B., Akram, M. U., Hashmi, S., Taguri, A. H., &Werghi, N. (2021). Incre-
mental cross-domain adaptation for robust retinopathy screening via Bayesian

deep learning. IEEE Transactions on Instrumentation and Measurement, 70, 1–14.
doi:10.1109/TIM.2021.3122172. TaggedEnd

TaggedPHua, Y., Sevegnani, M., Yi, D., Birnie, A., & Mcaslan, S. (2022). Fine-grained RNN with

transfer learning for energy consumption estimation on EVs. IEEE Transactions on
Industrial Informatics, 18, 8182–8190. doi:10.1109/TII.2022.3143155. TaggedEnd

TaggedPHuang, W., Li, X., Chen, Y., Li, X., Chang, M. C., Oborski, M. J., et al. (2014). Variations of
dynamic contrast-enhanced magnetic resonance imaging in evaluation of breast

cancer therapy response: A multicenter data analysis challenge. Translational

Oncology, 7(1), 153–166. doi:10.1593/tlo.13838. TaggedEnd
TaggedPKim, J., Yang, G., Kim, J., Lee, S., Kim, K. K., & Park, C. (2021). Efficiently updating ECG-

based biometric authentication based on incremental learning. Sensors, 21(5),
1568. doi:10.3390/s21051568. TaggedEnd

TaggedPLeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11), 2278–2324. doi:10.1109/

5.726791. TaggedEnd

TaggedPLee, A. W., Chung, J., & Lee, M. (2021). GNHK: A dataset for english handwriting in the
wild. In Proceedings of the international conference on document analysis and rec-

ognition (pp. 399−412). Springer. doi:10.1007/978-3-030-86337-1_27.TaggedEnd

TaggedEndK.T. Chui, V. Arya, S.S. Band et al. Journal of Innovation & Knowledge 8 (2023) 100313

10

http://dx.doi.org/10.1038/ncomms5006
http://dx.doi.org/10.48550/arXiv.2104.01845
http://dx.doi.org/10.1109/TII.2020.2992229
http://dx.doi.org/10.1109/TII.2020.2992229
http://dx.doi.org/10.4018/IJSWIS.297032
http://dx.doi.org/10.4018/IJSWIS.297032
http://dx.doi.org/10.1007/978-3-642-14715-9_5
http://dx.doi.org/10.3390/cancers13071590
http://dx.doi.org/10.1117/1.JMI.2.2.020103
http://dx.doi.org/10.1117/1.JMI.2.2.020103
http://dx.doi.org/10.1016/j.asoc.2020.106912
http://dx.doi.org/10.1016/j.ins.2021.11.061
http://refhub.elsevier.com/S2444-569X(23)00009-4/sbref0010
http://refhub.elsevier.com/S2444-569X(23)00009-4/sbref0010
http://dx.doi.org/10.1016/j.neunet.2020.12.003
http://dx.doi.org/10.1109/TIM.2022.3177138
http://dx.doi.org/10.1016/j.geoderma.2021.115159
http://dx.doi.org/10.1016/j.suscom.2022.100668
http://dx.doi.org/10.1186/s40537-017-0089-0
http://refhub.elsevier.com/S2444-569X(23)00009-4/sbref0016
http://refhub.elsevier.com/S2444-569X(23)00009-4/sbref0016
http://dx.doi.org/10.1109/TPAMI.2021.3057446
http://dx.doi.org/10.1109/TPAMI.2021.3057446
http://dx.doi.org/10.1007/s00521-020-05495-1
http://dx.doi.org/10.4018/IJCAC.2021010103
http://dx.doi.org/10.4018/IJCAC.2021010103
http://refhub.elsevier.com/S2444-569X(23)00009-4/sbref0020
http://refhub.elsevier.com/S2444-569X(23)00009-4/sbref0020
http://refhub.elsevier.com/S2444-569X(23)00009-4/sbref0020
http://dx.doi.org/10.1109/MDAT.2022.3162786
http://dx.doi.org/10.1109/MDAT.2022.3162786
http://dx.doi.org/10.1002/cncr.32887
http://dx.doi.org/10.1371/journal.pone.0118261
http://dx.doi.org/10.1007/s00530-020-00728-8
http://dx.doi.org/10.1016/j.asoc.2021.107150
http://dx.doi.org/10.1016/j.asoc.2021.107150
http://dx.doi.org/10.1109/TIM.2021.3122172
http://dx.doi.org/10.1109/TII.2022.3143155
http://dx.doi.org/10.1593/tlo.13838
http://dx.doi.org/10.3390/s21051568
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1007/978-3-030-86337-1_27


TaggedPLi, X., Abramson, R. G., Arlinghaus, L. R., Kang, H., Chakravarthy, A. B.,

Abramson, V. G., et al. (2015). Multiparametric magnetic resonance imaging for
predicting pathological response after the first cycle of neoadjuvant chemotherapy

in breast cancer. Investigative Radiology, 50(4), 195–204. doi:10.1097/
RLI.0000000000000100. TaggedEnd

TaggedPLi, Y. F., Guo, L. Z., & Zhou, Z. H. (2019). Towards safe weakly supervised learning. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 43(1), 334–346.
doi:10.1109/TPAMI.2019.2922396.TaggedEnd

TaggedPLi, D. W., & Huang, H. (2022). Few-shot class-incremental learning via compact and
separable features for fine-grained vehicle recognition. IEEE Transactions on Intelli-

gent Transportation Systems, 23(11), 21418–21429. doi:10.1109/

TITS.2022.3174662. TaggedEnd
TaggedPLi, X., Wei, J., & Jiao, H. (2022). Real-time tracking algorithm for aerial vehicles using

improved convolutional neural network and transfer learning. IEEE Transactions on
Intelligent Transportation Systems, 23(3), 2296–2305. doi:10.1109/

TITS.2021.3072872. TaggedEnd
TaggedPLi, Q., Zhang, A., Li, Z., & Wu, Y. (2021). Improvement of EMG pattern recognition model

performance in repeated uses by combining feature selection and incremental

transfer learning. Frontiers in Neurorobotics, 15, 87. doi:10.3389/fnbot.2021.69917.TaggedEnd
TaggedPLiu, R. W., Guo, Y., Lu, Y., Chui, K. T., & Gupta, B. B. (2022). Deep network-enabled haze

visibility enhancement for visual iot-driven intelligent transportation systems.
IEEE Transactions on Industrial Informatics. doi:10.1109/TII.2022.3170594. TaggedEnd

TaggedPNiu, S., Liu, M., Liu, Y., Wang, J., & Song, H. (2021). Distant domain transfer learning for

medical imaging. IEEE Journal of Biomedical and Health Informatics, 25(10), 3784–
3793. doi:10.1109/JBHI.2021.3051470.TaggedEnd

TaggedPMachacha, L., & Bhattacharya, P. (2021). Cancer classification from DNA microarray
using genetic algorithms and case-based reasoning. International Journal of Soft-

ware Science and Computational Intelligence (IJSSCI), 13(1), 17–37. doi:10.4018/
IJSSCI.2021010102. TaggedEnd

TaggedPMarko, �S. (2013). Automatic fruit recognition using computer vision.Mentor: Matej Kri-

stan), Fakulteta za racunalni�stvo in informatiko, Univerza v Ljubljani. TaggedEnd
TaggedPMartin, H., Acher, M., Lesoil, L., Jezequel, J. M., Khelladi, D. E., & Pereira, J. A. (2022).

Transfer learning across variants and versions: The case of linux kernel size. IEEE
Transactions on Software Engineering, 48(11), 4274–4290. doi:10.1109/

TSE.2021.3116768.TaggedEnd

TaggedPMasud, M., Hossain, M. S., Alhumyani, H., Alshamrani, S. S., Cheikhrouhou, O.,
Ibrahim, S., et al. (2021). Pre-trained convolutional neural networks for breast can-

cer detection using ultrasound images. ACM Transactions on Internet Technology
(TOIT), 21(4), 1–17. doi:10.1145/3418355.TaggedEnd

TaggedPMinuţ, M. D., & Iftene, A. (2021). Creating a dataset and models based on convolutional
neural networks to improve fruit classification. In Proceedings of the 23rd interna-

tional symposium on symbolic and numeric algorithms for scientific computing (SYN-

ASC) (pp. 155−162). IEEE. doi:10.1109/SYNASC54541.2021.00035. TaggedEnd
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