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A B S T R A C T

Intelligent manufacturing offers opportunities for green technology innovation at a low cost, helps eliminate

outdated equipment, and improves pollution efficiency, which is essential for environmental protection.

From the perspective of the industrial sector, based on the data of 269 Chinese cities, this study empirically

examines the impacts of intelligent manufacturing on ecological environment using the fixed effect model

and unconditional quantile model. The research results show that intelligent manufacturing can significantly

reduce the concentration of PM2.5 in the air and environmental pollution by optimizing resource allocation

during production and operation. The results of the external mechanism show that green technological inno-

vation plays a positive mediating role in the impact mechanism of intelligent manufacturing to improve air

quality. The marginal impact of intelligent manufacturing on environmental pollution is nonlinear, and the

main trend is the M-type distribution trend of increasing first, then decreasing, and then rising. In particular,

intelligent manufacturing has a greater welfare effect on the ecological environment at the lower quantiles.

The results provide a viable path for the government to actively plan a strategic layout to improve the eco-

logical environment and achieving the goal of high-quality economic development.
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Introduction

Since the reform and opening up, China’s economic development

has been driven by a strong comparative advantage and the full

release of the “demographic,” “institutional,” and “structural” divi-

dends. From 1978 to 2020, China’s average economic growth rate

reached 9.2%, making it the second-largest economy in the world

(Data from China Statistical Yearbook 2021). However, for years,

China’s rapid economic growth relied primarily on the extensive eco-

nomic development model of “high-energy consumption, low output,

and high pollution.” In accordance with the promotion system for

officials based on the GDP growth rate as the central assessment,

local government officials tend to attract investments in projects

with quick results and a significant increase in output. The primary

driving force of economic growth is, thus, an industrial economy

with high pollution and emissions. This crude economic development

model has severely affected China’s environment. Since 2012, most

Chinese cities have suffered from frequent and severe haze pollution.

The “Urban Outdoor Air Pollution Database 201800 shows that in

terms of the annual average PM2.5 concentration, 58 of the top 100

cities are in China. These cities have annual average PM2.5

concentrations greater than 62 mg/m3, far exceeding the WHO air

quality guidelines (annual average PM2.5 concentration <10 mg/m3).

The 2021 Bulletin on the State of China’s Ecological Environment

shows that of the 339 cities above the prefecture level in China in

2021, 218 (64.3%) met air quality standards; conversely, 121 (35.7%)

cities exceeded ambient air quality standard (GB 3095−2012) formu-

lated by Ministry of Ecology and Environment of the People’s

Republic of China, and a further 29.8% exceeded average PM2.5 con-

centrations. Regional heavy pollution weather processes continue to

occur periodically, with an average PM2.5 concentration of 30 micro-

grams per cubic meter, still above theWHO-recommended air quality

standards. Meanwhile, the concentrations of PM10, O3, SO2, NO2, and

CO were 54 mg/m3, 137 mg/m3, 9 mg/m3, 23 mg/m3, and 1.1 mg/m3,

respectively, which were still extremely severe.

Each country aims to develop good green economic policies to

improve social welfare and achieve sustainable economic growth and

development (Khan & Ozturk, 2020). The inefficient use of resources

increases environmental pollution (EP) and severe haze problems,

which are all negative results of rapid economic growth. The Rio+20

summit in 2012 laid the foundation for global green development,

gaining widespread support from the international community and

eventually becoming a mainstream economic development concept

(Amato et al., 2017). Owing to the pressure of increasingly scarce

resources and energy supply as well as the pressure of the carrying
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capacity of the ecological environment reaching its limit, the “green

industrial revolution” is quietly taking place, and countries are choos-

ing to shift from a “black development model” to a “green develop-

ment model.”

Digital transformation is the starting point for the manufactur-

ing industry to promote intelligent manufacturing (IM). Regarding

the realization path of IM, most studies are based on the perspec-

tives of the industrial Internet platform, cloud computing, big data

applications, and artificial intelligence and examine new technol-

ogy-enabled manufacturing or summarize the experience of IM

as realized through a particular technology (Lyu et al., 2019).

This study holds that technology-enabled manufacturing is based

on the process of the collision and fusion between the new gener-

ation of information technology and modern manufacturing

technology. The goal is to realize networked collaborative

manufacturing, mass customization, and service-oriented transfor-

mation. IM emphasizes the value of the new generation of infor-

mation technology and recognizes the deep integration and

practical innovation of the new generation of digital intelligence

and cross-field technologies such as manufacturing. IM takes digi-

talization as its core and data drive/data flow as a foundation and

adopts intelligent means to address the bottlenecks in research

and development (R&D), production, and management. Because

the manufacturing workshop is at the center of manufacturing

enterprises and the foundation of enterprise survival, the direction

of development and the key technology of IM aim to realize the

digital production of the workshop, that is, the digital workshop.

Since the 21st century, with the development of science and tech-

nology, IM, and digital workshops, the global manufacturing industry

has been undergoing profound changes (Wang & Xu, 2022). Humans

are experiencing the process of “digitalization” from traditional to

digital social forms. Unlike the simple applications of general infor-

mation and communication technologies (ICTs), digitalization

includes all possibilities provided by general ICTs, from the use of

essential technologies (the application of computers or the Internet)

and modern technologies (the application of automation, cloud com-

puting, and big data) to the gradual applications (adopting business

models or production processes based on digital technology products

and services). Innovation is the primary driver of green development,

and technological progress is essential for weighing economic devel-

opment against environmental quality improvement (Hou et al.,

2021; Lee & Trimi, 2022). Environmental sustainability cannot be

achieved without a substantial technological impetus. Given the fur-

ther development of ICT, especially the modern Internet, digital tech-

nology is rapidly penetrating into all production processes and

boundaries. The economy and society are undergoing a comprehen-

sive transformation toward digitalization. Following rapid technolog-

ical innovation, IM has emerged as the symbol and leading force of

the fourth industrial revolution and set a direction for development

and become an inevitable choice of the global manufacturing indus-

try (Zhang & Ming, 2021).

IM clearly combines the advantages of advanced information and

manufacturing technologies and is a new model that optimizes the

manufacturing process, enhancing the design, production, manage-

ment, and integration of the entire product life cycle (Wang et al.,

2022). China is the world’s largest developing country and the most

populous, and its experience in environmental governance is gener-

ally representative. Data fromWorld Robotics 2021 Industrial Robots,

published by the International Federation of Robotics (IFR), suggest

that nearly 168,000 new industrial robots will have been installed in

China in 2020, accounting for 43.8% of the world’s total, with increas-

ing levels of automation and intelligence in the manufacturing sector.

It is crucial to examine the effects of IM on EP from the IM perspective

and identify the relevant mediating mechanisms and their heteroge-

neous effects in order to achieve environmental sustainability and

address global climate change.

Literature review

There are global concerns about environmental sustainability,

given the profound impact of environmental degradation on climate

and the subsequent effects of climate warming. Although the existing

literature has focused on the effects of technologies such as artificial

intelligence for monitoring and environmental management, only a

few studies have focused on the internal and external mechanisms

and heterogeneity of IM to reduce EP. The literature related to the

topic of this study can be grouped into three categories.

Relationship between IM and technological innovation

As a new factor of production, the wide application of digital tech-

nology offers more possibilities for enterprise innovation; in particu-

lar, the digital transformation of factories expands the technology

application scenarios. Through intelligent transformation, industrial

enterprises can link traditional innovation nodes (such as linking

consumer market demand), significantly reduce enterprises’ market

transaction costs, realize operations and technologies that are beyond

the reach of traditional innovation models, and improve innovation

R&D efficiency (Fadziso, 2018; Li et al., 2021; Shen et al., 2023). Sound

infrastructure construction has laid a solid material foundation for

the development of enterprises and for continuous breakthroughs

and innovation (Fan et al., 2023). Existing studies have disagreed on

the relationship between IM and technological innovation. Some

scholars hold a positive attitude, believing that IM can promote the

efficiency and quality of technological innovation through cost reduc-

tion and efficiency improvement as well as improvements in infor-

mation transmission efficiency. Zhang and Xuan (2020) argued that

IM will transform enterprise innovation behavior and encourage

enterprises to change from intensive innovation to innovation that

uses data science extensively. In intelligent transformation, factories

will use automation technology to replace low-skilled labor as much

as possible, helping enterprises reduce labor cost anxiety and thus

enhancing their willingness to innovate. Xue et al. (2019) posited

that IM offers a variety of channels for information exchange

between workers in the same enterprise and different enterprises

and even between cross-field technical employees, which helps break

communication barriers and reduce enterprise management costs.

However, with extensive research, some studies have shown that IM

has inconsistent effects on technological innovation. Lach (2002)

held that government support has a crowding-out effect on innova-

tion and that incentives will be distorted even in the era of intellec-

tual development. According to Li et al. (2023), the heterogeneous

threshold effect of the level of government support limits the impact

of IM on innovation quality. Limited government support has an

inhibitory effect on the quality of the innovation driven by IM to a

certain extent.

Impact of intelligent technology on EP

The development of modern advanced information technologies,

such as big data, artificial intelligence, the Internet of Things (IoT),

and edge computing, has encouraged a transformation from tradi-

tional manufacturing to IM. With the continuous development of

artificial intelligence technology, the emergence of a variety of new

robots and biological classification technology has brought hope for

environmental protection through science and technology (Cort�es

et al., 1999). IM is a type of technological innovation; however, its

business model and development trajectory differ from general tech-

nological progress, and its impact on the economy and society is

more profound than that of general technology.

Regarding the role of IM in the environmental field, studies have

mainly investigated the impact of intelligent technology on environ-

mental monitoring and governance. Zhang and Ji (2019)

Y. Shen and X. Zhang Journal of Innovation & Knowledge 8 (2023) 100384

2



hypothesized that intelligent technology can accurately monitor and

predict pollutants through data collection and analysis and establish

the corresponding energy consumption model for control, which

plays an essential role in addressing climate change and environmen-

tal deterioration. Chen et al. (2021) argued that the R&D demand

derived from robot technology and the substitution of low-skill labor

in China’s manufacturing industry will help reduce industrial exhaust

emissions and general industrial solid waste production. Sheng and

Bu (2022) found that enterprises use robot technology to reduce pol-

lution emissions mainly through artificial substitution, thereby

increasing the use of clean energy, adding terminal treatment equip-

ment, and enhancing sewage treatment capacity. Although the litera-

ture has examined how intelligent technologies affect the

environment, previous research mainly focused on a specific intelli-

gent technology or combinations thereof, such as digital twinning

and robotics. However, few studies have directly discussed the

impact of broader IM systems on the environment.

Technological innovation and EP

Technological innovation can promote industrial transformation

and upgrading and reduce energy intensity to reduce the intensity of

EP. First, innovation can increase a company’s value by improving the

quality and added value of its products and services (Kogan et al.,

2017; Hombert & Matray, 2018). At the macro level, technological

innovation is manifested in the optimization and upgrading of the

industrial structure and the transformation of the economy into an

intensive mode of production that has a high level of efficiency, high-

tech content, and a low level of energy consumption, thus improving

the ecological environment alongside economic development. Fur-

thermore, innovation results in rapid technological development and

increases total factor productivity and resource efficiency, thereby

acting as a substitute for energy factors and reducing energy con-

sumption under given output conditions. Furthermore, clean technol-

ogies, such as new-energy technologies, can contribute to the energy

transition, shifting the energy mix from traditional to renewable

energy sources and reducing the intensity of EP emissions (Cao &

You, 2010; Tu & Xiao, 2010; Yang et al., 2019). There is already some

evidence in the literature that technological innovation can reduce

EP. For example, Mughal et al. (2022) claimed that technological

innovation in individual countries, such as Bangladesh, has reduced

CO2 and, thus, improved environmental quality. However, few stud-

ies have directly focused on the relationship between IM and EP.

Most research has explored the logical relationship between ICT and

carbon emissions. Some scholars believe that ICT not only helps resi-

dents form a green and low-carbon lifestyle but also promotes the

green IM of enterprises, realizing the dual improvement of produc-

tion efficiency and carbon efficiency and gradually becoming a non-

negligible force for energy conservation and emission reduction (Lyu

& Liu, 2021).

In summary, considerable research has focused on digitalization

and EP, providing a valuable reference for this study to discuss the

logical relationship between IM and smog pollution. However, only a

few studies have analyzed how industrial intelligence has a multi-

plier effect on optimizing resource allocation. The contributions of

this study are mainly as follows: first, from the perspective of reduc-

ing pollution control costs, improving resource use efficiency, and

eliminating outdated machinery and equipment, this study focuses

on how IM can reduce environmental pollutants and enrich the liter-

ature related to the intelligent transformation of industry. Second,

combined with the panel data of the IFR and Chinese cities, the

improvement effect of IM on air quality was verified from the per-

spective of industrial robots. Third, this study uses an unconditional

quantile model to validate the nonlinear relationship between smart

manufacturing and EP. Unlike other research (Santarius et al., 2020;

Khan & Wu, 2022; Zhang et al., 2022; Zhao et al., 2022a; Bendig et al.,

2023), when we evaluate the impact of IM on EP, we introduce the

channel mechanism of green technology innovation and use the

unconditional quantile regression model to test the nonlinear rela-

tionship between the two. Because using digital technologies such as

the IoT, robotics, and cloud computing requires substantial electricity,

the impact of smart manufacturing on EP is not linear (Jin & Xu,

2022). Therefore, examining the mechanism and nonlinear relation-

ship of IM affecting EP may have more policy implications.

Theory and research hypotheses

Direct effect of IM on reducing EP

Assume that the representative firm produces only one good with

output Y. Its production function is of the Cobb−Douglas form with

constant returns to scale, and the factors of production contain three

types of labor, capital, and energy. The form of the production func-

tion can be expressed as

YðtÞ ¼ AðtÞ � FðK; L; EÞ ¼ AðtÞ � LðtÞa � KðtÞb � EðtÞf ð1Þ

where LðtÞ, KðtÞ, and EðtÞ denote the labor, capital, and energy inputs

of the representative firm at time t, respectively. a,b, and f denote

the contribution of each input factor to output, and aþ bþ f ¼ 1. Aðt

Þ denotes total factor productivity, which usually refers to technologi-

cal progress, managerial innovation, and knowledge accumulation

that increase the production efficiency. In general, the production of

final products by companies is often accompanied by “bad” environ-

mental output. It is assumed that each output unit ξ produces a unit

of pollutant B. The Weak Disposability of Outputs Axiom shows that

companies incur a cost to reduce their pollutant emissions. If a com-

pany reduces its pollutant emissions, it will have to spend a certain

amount of money on production, resulting in a proportional reduc-

tion in the production of “good” output. Assume that the factor input

used to treat the pollutant as a proportion of the total output is u
(u 2 ½0;1�). The output YðtÞ of Eq. (1) can then be considered a poten-

tial output, and the actual output function, net of pollution control

costs, takes the following form:

YðtÞreal ¼ 1� uð Þ � Y tð Þ½ � � A tð Þ � K tð Þa � L tð Þb � E tð Þf ð2Þ

Assume that pollutant emissions B from representative firms are a

function of output YðtÞ and abatement intensity r (Stokey, 1998). Fol-

lowing Aghion et al. (2017), this study introduces an EP factor, the

intensity of emission reduction, into the production function. Subse-

quently, the following functional expression exists:

B ¼ Y tð Þ � ξ � r uð Þ ð3Þ

Assume that the abatement intensity r is a function of

rðuÞ ¼ A�1 � ð1� uÞ1=& , where ξ is the pollution control efficiency

and ξ 2 ð0;1Þ. The intensity of emission reductions is a decreasing

function of technological progress and the intensity of pollution con-

trol inputs. The following expression can be obtained by combining

Eqs. (2) and (3):

Y tð Þr ¼ A� Bð Þ& � Y tð Þ½ �1�&

¼ A� Bð Þ& � A tð Þ � K tð Þa � L tð Þb � E tð Þf
h i1�&

ð4Þ

There are three main factors governing whether the production

sector treats pollutants: the size of the enterprise, the cost of treating

pollution, and the efficiency of treating pollution. Generally, regula-

tors and producers focus on the first two factors while neglecting the

most important factor of efficiency. The existing literature has recog-

nized the positive role played by technological advances in improving

the efficiency of EP control (Anderson, 2001; Acemoglu et al., 2012).

The relationship between the digital transformation propensity of

representative enterprises and the overall level of IM at the society

Y. Shen and X. Zhang Journal of Innovation & Knowledge 8 (2023) 100384

3



level is assumed to be D ¼ $DM, where $D >0 represents the digital

propensity of representative enterprises and M is the overall level of

development of intelligent industrial manufacturing. The intelligent

transformation of industrial firms impacts the total factor productiv-

ity (TFP); thus, the form of Eq. (1) can be rewritten as follows:

YðtÞ ¼ AðtÞ � FðK; L; EÞ ¼ A0 tð Þ þ D tð Þ½ � � LðtÞa � KðtÞb � EðtÞf ð5Þ

In Eq. (5), A0ðtÞ represents TFP before the digital transformation of

representative enterprises; $A >0 represents the expansion factor of

the digital transformation of representative enterprises to TFP. As

seen from Eqs. (4) and (5), the stronger the enterprise is in digital

transformation, the higher the pollution control efficiency will be.

Given that digital transformation is also a function of IM, improving

the intellectual level of industrial enterprises across society will help

improve pollution control efficiency.

Generally, as neutral technological progress, IM technology can

naturally take on the characteristics of permeability, coordination,

and substitution of digital technology and penetrate various fields of

social life. On the one hand, according to Moore’s Law, chip-based,

digital, and information-based products will be continuously

updated, and the prices of related products will drop rapidly with the

change in and popularity of technology. Intelligent technology will

help manufacturers phase out high-energy and low-efficiency pro-

duction equipment, thus reducing energy consumption and pollutant

emissions. With the expansion of users’ scale, the cost of hardware

input in intelligent infrastructure construction will decrease marginal

cost and increase marginal income, producing apparent economies of

scale and thus improving TFP. On the other hand, the use of IM tech-

nology to develop green technologies, such as energy conservation

and emission reduction, flexible manufacturing, and bio-manufactur-

ing, and the transformation of production technologies, processes,

and circulation processes with high-energy consumption and high

pollution can effectively shorten the development cycle of technolo-

gies and products; promote the coordinated development of indus-

tries in a more flexible, economical, and effective manner; enhance

the market consistency of new technologies or products; reduce the

energy consumption ratio of resources in each link of the industrial

chain; and achieve pollution reduction. Data and digital solutions

that carry out IM using its underlying logic can play an essential

role in supporting the creation of a circular economy. Intelligent

technology helps improve product design, shorten the design and

manufacturing period, promote product reuse, and realize waste

management. IM is likely to overturn the current linear acquisition,

manufacturing, and processing model; reduce resource consumption;

and even support the dematerialization of the entire economy. These

possibilities can be demonstrated by the role of industrial intelligence

in improving information sharing and business models (Hedberg &,
�Sipka,2021). Therefore, this study proposes two research hypotheses.

Hypothesis 1 (H1): Industrial IM can promote the digital transfor-

mation of enterprises, limit their pollution discharge behavior,

improve pollution control efficiency, and reduce EP.

Hypothesis 2 (H2): IM reduces EP by improving TFP.

Heterogeneity effect of IM on reducing EP

The conclusion drawn from the numerical model indicates that

the rate of popularization of artificial intelligence technology in China

is still relatively low at this stage, and the improvement effect of

intelligent technology on EP will not be fully apparent until 2035.

According to Feng et al. (2018), enterprises only need methods to

improve production efficiency and scale through intelligence. How-

ever, overall, the impact of a low level of intelligence on green devel-

opment is negligible. With the continuous progress of automation

technology, the social installation of artificial intelligence applica-

tions has accumulated a certain amount of inventory. The related

infrastructure, high-skilled labor, and complementary technology are

also gaining perfection. Therefore, Zhao et al. (2022b) claimed that

intelligent technology cannot only realize revolutionary green tech-

nology innovation (GTI) but also change the energy consumption

structure of fossil fuels, expand the use of clean energy, establish new

products and technological systems, and reset the technological tra-

jectory of the entire industry. From the perspective of time evolution,

the impact of artificial intelligence technology, including IM systems,

on the environment is nonlinear. In the past few decades, Internet

information technology, including IoT and the cloud network of mar-

ginal computing, has also faced the dilemma of marginal diminishing

effect. Therefore, this study posits that the impact of industrial IM on

EP is affected by the popularity of automation and the diminishing

marginal effect of technology. Hence, the role of Im in mitigating EP

is not monotonous and linear.. Therefore, the following hypothesis is

obtained.

Hypothesis 3 (H3): The effect of industrial IM on reducing EP is

nonlinear.

Intermediary mechanism of GTI

China’s natural resource reserves have been described as “being

rich in coal, poor in oil, and less in gas,” with the pollution from coal

combustion being the most serious of all resources. Therefore, to

improve China’s environmental quality, we must improve the effi-

ciency of factor utilization and R&D of environmentally friendly tech-

nologies. Green technologies can facilitate the development of new

manufacturing processes and products that are less harmful to eco-

systems and the natural environment (Khan et al., 2021). Green tech-

nology aims to absorb all kinds of advanced and novel technologies

and improve existing technologies and products to reduce energy

consumption, prevent pollution, and save natural resources. Green

technology also includes the adoption/reorganization of the manage-

ment strategies of enterprises, namely, in terms of the environment,

energy, quality management, green supply chains, and green market-

ing, to minimize harmful impacts on the environment (Xie et al.,

2022). IM is a kind of internal technological innovation. Simulta-

neously, digital and digital knowledge and information are critical

factors in the production of new industrial modes. This implies that

IM and technological innovation do not have a simple one-way inclu-

sion relationship but the mutual influence and promotion of a two-

way interactive relationship (Li & Zhou, 2021).

In constructing an enterprise’s green production mode, asset spe-

cialization reduces the possibility that fixed assets can be used for

other purposes without losing production value. Traditional indus-

tries find it difficult to obtain funds for green production technology

and innovation; consequently, EP can be severe (Vita et al., 2011).

The integration of new-generation information technology and

advanced manufacturing technology accelerates the process of net-

working, digitization, and intelligence in the manufacturing industry

and offers possible solutions for the real manufacturing economy to

reduce operating costs and improve GTI. Intelligent knowledge

makes information and technology more modular and mobile, reduc-

ing asset specificity in traditional business activities, promoting the

value arrangement of green creation, and reducing smog pollution

(Murphree & Anderson, 2018; Banalieva & Dhanaraj, 2019). On the

one hand, by adopting a “machine substitution human” strategy,

enterprises can replace human labor with automated and intelligent

production methods and increase the numerical control rate of key

production processes, reducing the rate of defective products and the

risk of human errors. In addition, IM systems enabled by big data and

artificial intelligence technologies can independently optimize pro-

duction processes and reduce energy consumption in the production

process. Concurrently, enterprise production can rely on an advanced

information management system. During production, intelligent

technology first collects and analyzes information obtained from a
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large amount of production process data and then provides the opti-

mal decision solution. This process reduces the costs of material man-

agement and collaboration between departments. At the individual

enterprise level, with the support of the essential attributes of dema-

terialization and virtualization, industrial intelligence technology can

realize the effective allocation of energy across society by reducing

information asymmetry and can integrate deeply with production

and energy utilization technologies, effectively promoting intelligent

changes in enterprise production processes and realizing the “light-

ness” of enterprise production methods (Lange et al., 2020). On the

other hand, driven by the new generation of information technology,

IM systems can break the “data silo effect” between enterprises and

coordinate R&D activities up and down the enterprise industry chain.

By improving technology spillover and knowledge diffusion through

open innovation activities, enterprises can reduce the cost and cycle

time required to develop green technologies (Peng & Tao, 2020; Ning

et al., 2023).

Finally, introducing digital technologies, such as blockchain and

big data analytics, can enhance the government’s ability to monitor

corporate pollution emissions. Digital technologies and e-govern-

ment systems provide advanced resources and tools for government

regulation through improved efficiency and transparency, limiting

companies’ responsive, strategic, and low-quality innovations while

increasing the disclosure of corporate social responsibility informa-

tion. A typical example is an IM system that advances the construc-

tion of smart cities by applying innovative factors such as various

sensors, intelligent remote-control devices, and monitoring equip-

ment to manage urban production. Industrial intelligence technology

entails the intelligent transformation of enterprise pollution manage-

ment modes and technical means and a real-time dynamic collection

of closely related air, water, soil, and other environmental informa-

tion regarding enterprise pollution. Given the pressure of environ-

mental protection, green innovation is essential for enterprises to

gain a competitive advantage (Song & Yu, 2018). As the public gains

environmental awareness and information become increasingly

transparent, industry standards and customer demands will increase

in line with changing consumer needs, forcing companies to increase

their demand for efficient, clean, and high-quality technologies.

Therefore, developing green technologies using IM systems to

improve energy efficiency and reduce EP is imperative for the green

transformation of companies. Therefore, the following hypothesis is

proposed.

Hypothesis 4 (H4): IM can promote the development of green

technology in enterprises, which changes the original technology

mix and, in turn, improves the efficiency of pollution control and

reduces EP.

Research design and data sources

Variables and definition

Environmental pollution. Compared with other haze pollutant

components, PM2.5 is more typical because it covers a wide area, is

not easily dispersed, is highly reactive, and carries toxic and harmful

substances (Agarwal et al., 2019). Research has shown that air pollu-

tion has become a significant trigger for diabetes, with about one-

fifth of the global burden of type 2 diabetes being attributable to

PM2.5 pollution, and that the burden of diabetes attributable to PM2.5

is exceptionally high in Africa, South Asia, and East Asia (Burkart

et al., 2022). Long-term exposure to severe PM2.5 will have severe

adverse effects on the nervous system, cognitive function, and mental

health of humans, particularly exacerbating the incidence of neuro-

degenerative diseases and depression (Fonken et al., 2011; Wei et al.,

2017; Ventriglio et al., 2020). From 2013, particulate matter with a

diameter of less than 2.5 mm, the main constituent of haze, has been

the primary air pollutant in China (Zeng et al., 2019; Lin et al., 2022).

Therefore, this study select PM2.5 as an index to measure air

pollution.

Because China has been late in monitoring haze pollution, with

monitoring data for PM2.5 in some key cities not available until late

2012. Given, and given the relatively small amount of statistical data

available, this study uses data published by the Atmospheric Compo-

sition Analysis Group at Dalhousie University. These data combine

NASA’s satellite-derived aerosol optical depth with chemical trans-

port models and actual ground-based detection stations to obtain

interannual mean PM2.5 data with an accuracy of 0.01° £ 0.01° for

Europe, North America, and China. This study used Arcgis 10.6 soft-

ware to combine the raw data with vector layers of Chinese prefec-

ture-level cities to obtain the annual average PM2.5 values for each

city in China from 2006 to 2020. Surface source data from satellites

have a more comprehensive coverage and higher spatial resolution

and better reflect the overall state of air pollution than point source

data.

Intelligent manufacturing. At this stage, technological progress

is no longer focused mainly on enhancing the effects of human labor

but presents itself as a substitute for human labor. This study uses

the density of industrial robot installations to measure the level of

IM. Since 2006, the IFR has provided more detailed figures on the

number of industrial robots installed by industry, but it continues to

publish data at the national level. Acemoglu and Restrepo (2017)

used a general equilibrium model to examine the impact of robotics

on regional labor markets in the United States and constructed a

measure of “robot penetration” at the regional level based on the

model’s findings, similar to the “Batiuk instrument” (Bartik, 1991;

Goldsmith-Pinkham et al., 2020). The 14 major categories of the IFR

dataset and the manufacturing sub-sectors in China were matched to

determine the total number of robots installed at the national level.

Subsequently, using 2006 as the base year, the ratio of employment

in manufacturing sub-sectors in each city to the national total was

used to construct the robot installation density at the “industry−city”

level. Finally, the robot installation densities for each industry were

aggregated to obtain city data (Yang & Shen, 2023). The mathematical

expression for calculating the installed density of an industrial robot

is

IMit ¼
X

S

s¼1

employsit
employit

�
Robst

employst¼2006
�

MRobst
employst¼2005

ð6Þ

where IMit is the density of robot installations in city i in period t. The

variable employsit denotes the number of persons employed in s

industry in city i at period t. Robst denotes the number of robots held

in industry s in period t. employst¼2006 is the number of people

employed in industry s in 2006, and Robst=empilyst¼2006 represents

the industry-level robot installation density indicator for each year.

Using 2005 as a benchmark, robot installation density in the US

manufacturing sector was introduced as an instrumental variable to

mitigate the endogenous effect of China’s industrial distribution on

robot installation density inasmuch as possible (Wang & Dong, 2020).

In Eq. (6), MRobst=employst¼2005 is the annual industry-level robot

installation density in the United States.

Total factor productivity (TFP). To avoid statistical errors caused

by traditional measurement methods and obtain the maximum

expected output with minimum resource consumption and EP under

certain factor input combination conditions, this study uses the SBM

direction distance function and GML index method (SBM-GML) to

measure TFP. The Cobb−Douglas (C−D) production function is still

used in the evaluation system of TFP, selecting labor (employment at

the end of the year), capital (capital stock), land (urban built-up

area), and energy consumption (10,000 standard tons of coal) as the

input vectors. The expected output selects each city based on the

actual GDP in 2006 as the proxy variable. The undesired output uses

SO2, industrial wastewater, and dust as output variables.

Y. Shen and X. Zhang Journal of Innovation & Knowledge 8 (2023) 100384

5



Green technological innovation (GTI). There are many measures of

GTI, of which R&D expenditure and the number of patents in environ-

mental technology are widely used. Generally, the former is regarded

as the input to innovation activities, while the latter is viewed as the

output. The disadvantages and advantages of these indicators have

been discussed (Popp, 2012). In 2010, the IPC of green inventory was

launched by the World Intellectual Property Organization and the

OECD indicator of environmental technology to match the number

of green patents applied and authorized each year at the city level

(Ghisetti &.Quatraro, 2017; Du et al., 2019). The International Patent

Green Classification List (green list) divides green patents into seven

categories, including alternative energy production, waste manage-

ment, agriculture or forestry, energy conservation, and transporta-

tion, following the United Nations Framework Convention on

Climate Change. Furthermore, this article identifies green patents not

mentioned in the green list using the keywords related to green tech-

nologies provided by Wagner (2007). Considering the time required

to develop technologies to patent grants, these technologies will

likely impact a company’s production performance while still in the

application process. Therefore, the number of patent applications is

more reliable and time-sensitive than the number of patents granted.

Control variables. This study controls for the macroeconomic

characteristics of cities to eliminate these variables’ potential impact

on EP. The industrial structure of an economy significantly influences

the efficiency of resource use and the degree of environmental

friendliness in economic development. The optimization and upgrad-

ing of the industrial structure affect the regional division of labor, the

industrial layout, and the prospects for low-carbon sustainable devel-

opment of a region (Dong et al., 2021). From the perspective of the

proportional structure of industrial sectors, this study uses the share

of value added of the tertiary sector in GDP to measure the industrial

structure. A well-developed financial structure encourages firms in

the energy sector to adopt modern technologies, thereby reducing

emissions of energy pollutants. A stable financial system can create a

stable supply of credit for businesses to increase investment in envi-

ronmental technologies, which can help improve environmental

quality (Kumbaroglu et al., 2008; Nasreen et al., 2017). This study

uses the ratio of loan balances of financial institutions to the adminis-

trative area to measure the financial structure. The environmental

Kuznets curve hypothesis suggests that environmental degradation

gradually increases with economic growth but reaches a specific criti-

cal value when EP gradually declines with economic growth. This

nonlinear relationship between economic growth and EP is seen in

less developed economies (Aung et al., 2017; Hao et al., 2021). This

study uses GDP per capita to measure economic growth. The concen-

tration of the population in the central city shortens the commuting

distance for all types of activities. The high-density distribution of the

population and the specialized layout of the city’s functional areas

have led to a relatively robust transport network and infrastructure,

which not only reduces residents’ reliance on small cars for travel but

also promotes the development of green public transport, such as

buses, shared bikes, and railways, which can reduce tailpipe emis-

sions and energy consumption (Yi et al., 2022). This study uses the

number of people per square kilometer and the natural population

growth rate to measure population agglomeration. Theoretical

research on environmental economics has shown that foreign direct

investment has a complex “double” impact on the host country’s EP.

The pollution haven hypothesis holds that to avoid the high cost of

environmental regulation in their home countries, foreign-invested

enterprises will transfer their polluting production activities to devel-

oping countries with relatively lenient environmental regulations

and standards and eventually cause the developing countries to bear

the consequences of EP (Nejati & Taleghani, 2022). The pollution halo

hypothesis holds the opposite view, that is, foreign direct investment

enterprises have developed a set of mature environmental manage-

ment concepts and green environmental protection technologies

owing to strict environmental supervision in their home countries.

Through technology spillovers and knowledge diffusion, foreign

direct investment positively impacts the host countries’ environmen-

tal protection (Birdsall & Wheeler, 1993). This study uses the utiliza-

tion of foreign direct investment in various cities to measure foreign

direct investment. With the continuous evolution of the public

administration paradigm, the focus of environmental governance has

gradually shifted from government investment to government

expenditure and from government administrative efficiency to the

supply of environmental public goods. This study chooses the propor-

tion of government general budget expenditure to GDP as a measure

of government macro-control.

Linear regression models

Based on the new economic growth theory, the following econo-

metric model has been constructed to verify the impact of intelligent

industrial manufacturing on EP, combining H1 and existing research

(Zhu et al., 2023):

EPit ¼ a0 þ a1IMit þ
X

7

k¼1

akControlitk þ λi þ nt þ eit ð7Þ

where a1 and ak denote the parameters to be estimated and a0
denotes the constant error term. Control represents a set of informa-

tion that contains all the control variables. λi is an individual fixed

effect. nt is time-fixed effect. eit is a random perturbation term that

obeys a white noise process. k represents the order of the control var-

iables. In the actual estimation process, to prevent outliers from influ-

encing the model estimation results, the continuous-type

explanatory variables are adjusted by winsor2 at the 1st and 99th

percentile of their distribution.

Mechanism test model

The theoretical analysis shows that IM improves resource utiliza-

tion efficiency and increases industrial enterprises’ demand for green

technology R&D. Green technologies can improve environmental

management efficiency and reduce pollutant emissions. Smart

manufacturing can thus reduce pollution by promoting green innova-

tion. Owing to the endogeneity of the three-stage mediating effect

model, the mechanism test in this study only evaluates the influence

of IM on the mechanism variables to overcome endogeneity issues

(Jiang, 2022). Thus, the following two equations can be obtained:

TFPit ¼ b0 þ b1IMit þ
X

7

k¼1

bkControlitk þ λi þ nt þ eit ð8Þ

GTIit ¼ c0 þ c1IMit þ
X

7

k¼1

ckControlitk þ λi þ nt þ eit ð9Þ

According to the new mediation effect test method, part of the

mechanism test only needs to pay attention to whether the regres-

sion coefficient of the core explanatory variable to the mediation

variable is significant and meets the expectation.

Unconditional quantile regression model

Compared with the traditional linear measurement model, the

quantile regression model has two advantages. First, the general lin-

ear regression model focuses on the influence of independent varia-

bles on dependent variable conditional expectation EðljxÞ, and the

average estimation effect obtained can only reflect the concentration

trend of the parameter distribution in ljx. The quantile regression

model can estimate the conditional quantiles of conditional distribu-

tion at different intervals and can better reflect the correlation
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between variables. Second, using the weighted average of the abso-

lute values of the residuals as the minimization objective function

can reduce the influence of outliers on the estimation results. The

quantile regression model can be divided into a conditional quantile

regression (CQR) model and an unconditional quantile regression

(UQR) model. Because the conditional cumulative distribution func-

tion Fljxð ¢ Þ of CQR depends on the independent variable x and the

estimation results of this method consider too many or even unnec-

essary individual characteristics, it is also vulnerable to changes in

covariate deletion. UQR overcomes these defects, and the estimated

result is unconditional (Firpo et al., 2007). The basic approach of this

model is to estimate the unconditional quantile bias effect using the

recentering influence function (RIF) defined by the influence function

in robust estimation. In this study, let qt be the unconditional quan-

tile of EP (to simplify the formula, replace EP with Y); the recentering

response function of the unconditional quantile model can be

expressed as

RIF qt ; y; Fy
� �

¼ qt þ
t � 1 y�qtð Þ

fy qtð Þ
ð10Þ

where RIFðqt ; y; FyÞ is the recentering response function correspond-

ing to FY in quantile t�. qt is the unconditional quantile of Y, subject

to FyðqtÞ ¼ t, f ð ¢ Þ is a density function of Y. Using the iterative law of

conditional expectation (the expectation of the conditional mean is

equal to the unconditional mean) to calculate the conditional expec-

tation of Eq. (10) can obtain

EX E RIF qt ; y; FYð Þ

�

�

�

�

X

� �� �

¼ qt ð11Þ

Therefore, the UQR model is as follows:

qt Yð Þ ¼

Z

E RIF qt ; y; FYð Þ

�

�

�

�

X ¼ x

	 


dFX xð Þ ð12Þ

To solve the influence of marginal change inFXRIFðEP; qtÞ in Eq.

(12), differential processing is performed to obtain the unconditional

quantile bias effect (UQPE) of the unit translation transformation of

independent variables on the quantiles of the dependent variables:

UQPE tð Þ ¼

Z @E RIF qt ; y; FYð Þ

�

�

�

�

X

	 


@X
dFX ð13Þ

Because panel data are used in this study, unobservable factors

that do not change with time but affect IM must be controlled. The

fixed effect UQR model was proposed by Borgen (2016). The estima-

tion of UQPE is divided into two steps: first, RIF is estimated; second,

RIF is considered an explained variable, and regression is performed

based on core explanatory variables and related control variables.

The model is as follows:

RIF EPit ; qtð Þ ¼ d0 þvIMit þ
X

7

k¼1

bkControlitk þ λi þ nt þ eit ð14Þ

Data sources and descriptive statistical analysis

Based on data availability, this study considers the panel data of

269 prefecture-level and above cities in China from 2006 to 2020 as

statistical samples to empirically test the impact of IM on EP. The con-

centration data of PM2.5 are taken from the Atmospheric Composition

Analysis Group of Dalhousie University. The raw data on IM are from

the International Robot Alliance and China City Statistical Yearbook.

The original GTI data are from the State Intellectual Property Office of

China and Research Data Service Platform of China (CNRDS). The orig-

inal data of the control variables are obtained from the China National

Bureau of Statistics, China Urban Statistical Yearbook, China Urban

and Rural Construction Statistical Yearbook, EPS database, and

CSMAR database. Descriptive statistics for each variable are shown in

Table 1.

Empirical analysis

In accordance with the research hypotheses and topic, this section

focuses on whether IM can significantly reduce EP. The commonly

used fitting models for a given panel data include the ordinary least

square (OLS), random effect (RE), and fixed effect (FE) models. In gen-

eral, the OLS model can be used as a baseline because of its simplicity;

however, it does not include individual effects. The advantage of the

FE and RE models is that these models incorporate individual effects.

The FE model should be used when the individual effects are related

to the independent variables because the coefficient estimates of the

RE model are inconsistent. The RE model should be used when the

individual effect is unrelated to the independent variable because of

its efficiency. In the actual fitting process, the Hausman and F tests

are used to judge the suitability of a model for sample data. In fact, in

the linear panel model, FEs are used by default because it is difficult

for individual effects to be truly independent of the independent vari-

ables and because as the amount of data increases, the problem of

validity becomes decreasingly critical. Most focus on the problem of

consistency. The Hausman test and F tests results show that the sam-

ple data in this study are more suited to the FE model; therefore, this

study uses the FE model as the benchmark regression model. To

obtain more robust parameter estimation results, this study uses

stepwise regression to substitute the control variables in the mea-

surement model. Table 2 reports the calculation results of the FE

model and mixed least squares method. Specifically, columns (1)−(4)

report the results of the FE model, column (5) reports the results of

the OLS method.

As shown in Table 2, the four results of the FE model are highly

consistent; only the coefficients of the fitting parameters vary, indi-

cating that the results of Eq. (7) are robust. The first column of Table 2

shows the FE estimates results without including any control varia-

bles and indicates that the average effect of IM on EP is �0.016, which

is statistically significant at the 1% level. The FE estimation results,

with all the control variables added in the fourth column, show that

Table 1

Variable definitions and descriptive statistics.

Variable Symbol Obs Mean Std. Dev Min Max

Environmental pollution EP 4035 13.046 0.801 10.580 15.079

Intelligent manufacturing IM 4035 0.337 0.845 0.001 5.895

Foreign direct investment FDI 4035 9.923 1.809 4.905 13.874

Population density PD 4035 5.811 0.847 2.908 7.273

Natural population growth rate NPG 4035 5.646 5.370 �16.640 40.780

Financial structure FS 4035 6.812 1.511 3.512 10.668

Industrial structure IS 4035 3.659 0.239 3.008 4.243

Macroeconomic control MC 4035 0.174 0.079 0.063 0.464

Economic growth EG 4035 10.469 0.692 8.803 11.979

Green technology innovation GTI 4035 3.862 1.865 0.001 10.182

Total factor productivity TFP 4035 0.982 0.119 0.489 2.817
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the average effect of IM on EP is �0.015 and is statistically significant

at the 1% level. Overall, the FE estimates suggest that IM can reduce

PM2.5 emissions and improve ecological quality, thus validating H1.

There are many causes of pollution; however, in the case of pollu-

tants emitted from industrial production, poor technology and man-

ual handling are the leading causes, which are humanly controllable.

Poor technology reduces the efficiency of energy use and the ability

to use clean energy, while manual handling often causes additional

pollution. Modern information technologies, such as artificial intelli-

gence, cloud computing, and blockchain, have accelerated the inte-

gration of data elements with traditional manufacturing industries;

promoted the transformation and upgrading of traditional industries

through industrial linkages, technology diffusion, and knowledge

spillovers; and generated strategic emerging industries that are more

environmentally friendly. Second, as an essential part of pollution

management, enterprises can use the virtual reality, database, and

IoT technologies of the IM system to effectively integrate various

information resources in production decision-making and analyze

product, process, and resource data for decision-making and plan-

ning reorganization (Magazzino et al., 2021). Digital technology pro-

vides an opportunity for better observability, the improved

forecasting of resource needs, and the consistent optimization of

energy savings. By improving resource utilization efficiency, the pro-

duction process can be advanced efficiently, thus reducing pollutant

emissions. In addition, smart terminal equipment plays a key role in

measuring and optimizing the energy consumption of enterprises

and households. Bastida et al. (2019) showed how the digital trans-

formation of the energy sector affects users’ perception of energy

consumption. Finally, the introduction of installed industrial robots is

a vital substitute for human labor and increases the organic composi-

tion of a company’s capital. IM has advantages over human labor in

terms of technical standards, processes, and production precision,

which can improve the purification and energy use efficiency and

reduce EP.

Endogenous test

Because many factors can reduce EP, this study selects several

control variables to mitigate the endogeneity problems arising from

the omission of essential variables. However, the causal endogeneity

between IM and EP is still worth caution. For example, places with

less EP may have better network infrastructure and may promote the

rapid development of IM. Urban environmental quality may have a

specific reverse effect on the development of IM. Because machines

and equipment must maintain a suitable temperature for regular

operation, market players may prioritize cities with good air quality

and suitable temperatures for the layout of digital industries. Finally,

the industrial structure mainly manifests in the resource-dependent

extensive economic development mode in areas with severe EP.

Thus, IM with high-tech characteristics will be ignored because of the

significant investment capital. However, enterprises face more strin-

gent policy constraints in areas with high-quality environments. The

self-emission control and emission reduction of the manufacturing

sector with a high level of pollution should be based on the R&D of

clean technology. The information and technical demands of techno-

logical R&D will undoubtedly force enterprises to undertake intelli-

gent transformation and deepen the application of artificial

intelligence technology in the management business and production

process. The reverse causality between smart manufacturing and EP

may challenge the reliability of the estimated results of the FE model

herein. This study uses an instrumental variable approach to elimi-

nate the endogeneity problem.

Following the principle of exclusivity and correlation, this study

mainly selects topographic relief as the instrumental variable. Geo-

graphical conditions of mountainous and hilly areas is difficult to

improve the facilities that support the related transport infrastruc-

ture and industry chains, thus limiting intellectual manufacturing

development. Topographic relief naturally affects air circulation rates

and local climate and has no direct correlation to pollutant emissions.

Regarding data characteristics, topographic relief comprises cross-

sectional data that do not change over time, and its effect on IM may

vary from year to year. The intersecting multiplier term of topo-

graphic relief and annual dummy variables were used as the instru-

mental variables (Cao et al., 2021).

The results of the two-stage least squares first-stage estimation

in Table 3 show that the two instrumental variables significantly

impact IM. The instrumental variable validity test results showed

that the C−D Wald F statistic of 515.94 was more significant than

the 10% critical value of 16.38, indicating that there was no weak

instrumental variable problem with the instrumental variables.

The p-value of the LM statistic was less than 0.001, strongly reject-

ing the original hypothesis that the instrumental variables were

unidentifiable. From the results of the second-stage estimation,

the regression coefficient of IM on EP is �0.122 and is statistically

significant at the 1% level. This result is similar to the FE estima-

tion that IM can reduce EP.

Table 2

Results of the linear regression.

Variable (1) (2) (3) (4) (5)

FE FE FE FE OLS

IM �0.016 *** (�3.99) �0.018 *** (�4.55) �0.016 *** (�3.90) �0.015 *** (3.92) 0.069 *** (3.99)

EG �0.045 *** (�3.97) �0.044 *** (3.97) �0.032 *** (�2.86) �0.174 *** (5.63)

IS �0.088 *** (�3.27) �0.084 *** (�3.25) 0.116 * (1.93)

MC 0.219 ** (2.37) 0.193 ** (2.26) �0.063 (�0.46)

NPG �0.002 *** (�2.74) �0.002 ** (2.50) �0.008 *** (�4.16)

OD �0.268 *** (�3.68) �0.323 *** (�12.28)

FDI �0.004 (1.34) 0.195 *** (24.49)

FS �0.028 *** (�2.65) �0.274 *** (�11.86)

Cons_ 13.158 *** (2712.62) 13.586 *** (126.62) 13.884 *** (88.45) 15.489 *** (36.24) 16.298 *** (38.86)

City Yes Yes Yes Yes No

Year Yes Yes Yes Yes No

R2 0.7920 0.7950 0.7993 0.8037 0.4257

No:Obs 4035 4035 4035 4035 4035

F test 401.25 367.29 319.77 276.66 373.11

Hausman test 2.83 * 21.80 *** 34.55 *** 164.32 ***

*** p < 0.01.

** p < 0.05.

* p < 0.1. t statistics are reported in parentheses of the FE and OLS models.
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Robustness test

To more rigorously examine the robustness of the findings that

smart manufacturing reduces EP, this study uses the following two

methods for robustness testing. First, it replaces the core explanatory

variables. Artificial intelligence technology was proposed as a new

general-purpose technology in the 1950s. However, owing to the lim-

itations of computer data processing, it spent more than 40 years in

the recognition stage until the computer improved in pattern recog-

nition and prediction, at which point it entered the rapid develop-

ment stage again. The identification and introduction phase of

intelligent industrial technology will prompt the transfer of many

resources from the production sector to complementary investment.

The new technology will subsequently spread through the core

industry to the surrounding industries until it can be used in various

industries. These industries will need a long time to adapt and oper-

ate. Therefore, IM takes a long time to improve EP. In addition, an

enterprise adopting an intelligent transformation requires a period of

practice and exploration to adapt and optimize the corresponding

process technology and production process. Therefore, the positive

effect of IM on the improvement of pollution control efficiency may

have a time lag effect. A one-period lag of IM was used as the core

explanatory variable to test for time lag effects.

Second, regarding the replacement of econometric models, in tra-

ditional panel FE models, both individual and time FEs are substituted

additively, thus controlling for individual differences that do not vary

over time and time differences that do not vary over individuals in

the sample. Bai (2009) introduced individual and time interaction

effects in a linear panel model to capture differences in the effects of

common factors across individuals. The interactive FE model fully

considers the multidimensional shocks existing in the real economy

and the asymmetry of different individuals’ responses to these

shocks. Thus, Eq. (7) can be rewritten as follows:

EPit ¼ d0 þ d1IMit þ
X

7

k¼1

dkControlit þ g 0

iFt þ λi þ nt þ eit ð15Þ

where Ft is the common factor, λ
0

i is the factor load, and λ
0

iFt is the

interaction fixing effect.

Table 3 shows that in the results of both robustness tests, there is

a negative relationship between IM and EP. Their estimated coeffi-

cients were �0.019 and �0.015, respectively, and both were signifi-

cant at the 1% significance level. The sign and significance of the

estimated coefficients of the two model parameters are consistent

with the results of the FE estimation. Therefore, the result that IM can

reduce EP is robust.

Nonlinear analysis

For the UQR model, five representative quartiles of 10%, 25%, 50%,

75%, and 90% were selected to estimate Eq. (12) as per the empirical

tests available in the literature (Ma et al., 2019; Tran & Vu, 2020). As

seen from Table 4, the marginal impact effect of IM on EP is negative

at different sub-points, indicating the validity of the conclusion that

IM reduces EP during the study period. The trend in the variation of

the parameter estimates of IM at different points of division is appar-

ent, indicating that its impact on EP is nonlinear, thus verifying H3.

Specifically, the direction and significance of the impact of IM on

EP were similar to the mean regressions in Table 2 for the five sub-

locations selected. The absolute value of the parameter estimates for

the five quartiles in the UQR is significantly higher than that in the

mean regression at �0.015, possibly because the quartiles tolerate

some outliers and the estimated coefficients increase without chang-

ing the direction of influence or significance. As the quantile shifts

from 10% to 90%, the impact of smart manufacturing on EP decreases,

with the regression coefficient falling from �0.035 to �0.030. The

impact of IM on EP reaches an inflection point at the 50% quantile,

with regression coefficients at both ends being more remarkable

than that at the inflection point. The effect of IM on reducing EP is an

“M-shaped” trend: up, then down, then up again, and finally down.

The role of IM in reducing EP is greater in the 25% quantile, followed

by the 75% quantile, and then the 10% quantile. The sum of the coeffi-

cient values for the 10% and 25% quartiles is more significant than

that for the 75% and 90% quartiles. This result indicates that the pro-

tective effect of IM on the ecological environment is more significant

at lower PM2.5 concentrations. According to the regional distribution

of PM2.5 concentration in the air in China, the stations with higher

PM2.5 concentrations are located in north China, central China, and

northern east China, while the stations with lower PM2.5 concentra-

tions are located in the Qinghai−Tibet Plateau and southwest China

(He & Zhang, 2020; Liu et al., 2023). Owing to the diminishing mar-

ginal effect of information technology, IM is crucial for environmental

protection in economically underdeveloped areas. By contrast, the

eastern coastal areas have a relatively excellent digital infrastructure,

high population density, and high economic density, leading to more

complex impacts of IM on the environment. In addition, with the

rapid development of information technology and the constant

Table 3

Endogeneity and robustness tests.

Variable Endogeneity First stage Robustness tests Second stage Method 1 Method 2

IM �0.122 *** (�15.58) �0.019 *** (�4.41) �0.015 *** (�2.60)

Instrumental variable 1 396.623 *** (22.71)

Control variable Yes Yes Yes Yes

City Yes Yes Yes Yes

Year Yes Yes Yes Yes

*** p < 0.01, **p < 0.05, *p < 0.1, t statistics in parentheses.

Table 4

Results of the unconditional quantile regression model.

Variable Q10 Q25 Q50 Q75 Q90

IM �0.035 * (�1.82) �0.055 *** (�4.21) �0.031 *** (�2.82) �0.049 *** (�4.40) �0.030 ** (�2.10)

Control variable Yes Yes Yes Yes Yes

City Yes Yes Yes Yes Yes

Year Yes Yes Yes Yes Yes

*** p < 0.01.

** p < 0.05.

* p < 0.1, t statistics in parentheses.
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change in market demand, the complexity of intelligent technology

at the production frontier is continuously increasing, and the emerg-

ing digital product field is constantly emerging; therefore, the

manufacturing industry must invest heavily to promote technological

and manufacturing equipment upgrading. Areas and industries at

the forefront of technology urgently need to explore application

scenarios and business models in relation to advanced information

technology. Moreover, in technology and equipment upgrading,

manufacturing personnel must be able to absorb and transform new

technologies, transform traditional production concepts, and reallo-

cate resources for production. This increases the requirements for the

organizational structure, resource identification, and integration abil-

ity of the manufacturing industry and, finally, means that IM has a

weak impact on EP. Therefore, smart manufacturing presents better

mitigation in western regions where PM2.5 concentration is low.

Channel test

The aforementioned benchmark regression results support the

inhibitory effect of IM on EP; however, there is an indirect physical

mechanism for this effect. To evaluate whether IM can reduce EP by

optimizing resource allocation to improve TFP in the production pro-

cess, as well as examine the mediating role of GTI, this study used the

mediation effect model to verify H2 and H4.

The results in Table 5 show that the regression coefficients of IM

in terms of TFP and GTI are 0.0527 and 0.0286, respectively, which

pass the significance test of 1% and 10%, respectively. These results

show that the production mode of IM not only improves the resource

allocation ability within the city but also promotes the willingness of

enterprises to undertake GTI. Therefore, H2 and H4 are verified. Intel-

ligent technology has the characteristics of data, networks, and intel-

ligence, and its integration with the manufacturing industry is

increasing. This industry has realized the unprecedented changes in

the manufacturing paradigm. IM reduces the cost of information dis-

semination, improves the efficiency of market transactions, acceler-

ates the diffusion of new knowledge and technology, and helps

manufacturing researchers broaden channels for acquiring new

knowledge, thus improving the level of independent innovation (Erik

et al., 2019). In accordance with the equation of the new mediation

effect test, this section focuses on the influence path of IM on the

mechanism variables. The application of digital technologies such as

artificial intelligence and big data has improved the ability of self-

renewal and knowledge production of the manufacturing system.

Intelligent technology, combined with the rolling task, can optimize

the production process of the manufacturing workshop, solve the

complex problem of production factor scheduling and distribution,

address the dynamic changes in actual production demand, and

improve TFP (Nordhaus, 2021). IM has a network effect and acts as a

platform through digital infrastructure, which reduces the mobility

barriers of production factors in the manufacturing industry. The

manufacturing industry can make timely adjustments to the factor

input in the production process, avoid the problem of redundant or

insufficient factor input, and optimize its factor allocation efficiency.

Conclusion

In recent years, modern digital technologies, represented by artifi-

cial intelligence, smart manufacturing, and big data analysis, have

developed rapidly and penetrated deeply into all areas of society,

including government governance, enterprise production, and indi-

vidual lives, with a significant impact on energy conservation and

emission reduction. A series of new technologies, products, and

models spawned by IM are used in EP control. The role of modern

information technology is particularly notable in environmental

monitoring and the low-cost acquisition of GTI knowledge, which

will help reduce EP. This study uses the panel data of 269 cities in

China from 2006 to 2020 to investigate the impact of IM on EP and

the intermediary role of GTI. The empirical evidence shows that IM

can significantly reduce the concentration of PM2.5 in the air and pro-

tect the environment. In addition, the instrumental variable method,

replacement of explanatory variables and measurement models, and

self-help robust standard errors for multiple tests are used to ensure

the robustness of the benchmark results. The internal mechanism

test results show that IM can reduce EP by promoting TFP. Consistent

with the conclusions of previous research, we found that IM with dig-

italization at its core plays a vital role in environmental sustainability

(Pigola et al., 2021; Xu et al., 2023). However, further research found

something different. The effect of IM on EP is nonlinear. Smart

manufacturing reduces EP the most at the 25% quantile, followed by

the 75% quantile and the 10% quantile. It can be argued that the posi-

tive effects of IM are more significant in the lower quartile. IM has a

more significant effect on ecological improvement in areas with bet-

ter environmental quality. Finally, IM can indirectly improve air qual-

ity through mechanisms that promote the development of green

technologies in companies. Similar to previous investigations, we

found that IM promotes the spillover and use of knowledge

(Bouncken & Barwinski, 2021; Vuori et al., 2019), resulting in

increased green TFP (Ribeiro-Navarrete et al., 2021). Simultaneously,

to promote digitalized IM-related work, IM is an essential method of

pollution control and sustainable development for enterprises (Bol-

ton & Hannon, 2016; Sarkodie et al., 2019;Alam &Murad, 2020).

Policy enlightenment

As the largest developing country in the world, China should

accept responsibility and adopt a mission to promote collaborative

governance in terms of pollution and carbon reduction. Digitization

and intelligentization are the themes of modern-day industrial devel-

opment. The industry is the primary source of carbon dioxide and EP.

The Chinese government’s experience in the intelligent transforma-

tion of the manufacturing industry and the reduction of EP through

IM has contributed to China’s solutions and wisdom for global envi-

ronmental governance and helped other countries learn from these

experiences to protect the environment in accordance with local con-

ditions. The results of this study show that the Chinese government

should accelerate the intelligent transformation of industrial enter-

prises, use various methods to promote the strategy of Made in China

2025, and accelerate the overall level of IM. Accordingly, this study

proposes the following policy implications.

First, relevant departments should actively promote the develop-

ment of IM and encourage enterprises to accelerate the process of

digital transformation. The results herein show that IM can improve

the efficiency of pollution control, reduce the pollution control costs

for representative enterprises, and ultimately reduce pollutant emis-

sions. Therefore, a focus on developing IM to promote the digital

transformation of enterprises is imperative. For the rapid develop-

ment of industrial intelligence, functional departments must make

overall plans for IM production, equipment, technology, and manage-

ment from an industrial integration perspective and constantly

improve the IM policy system and coverage areas. Given major

Table 5

Ruselt of mediating effect.

Variables TFP GTI

IM 0.0527*** (3.64) 0.0286* (1.91)

Control variable Yes Yes

City Yes Yes

Year Yes Yes

R2 0.3046 0.8022

*** p < 0.01.

* p < 0.1, t statistics in parentheses.
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industrial and technical problems, we should concentrate elite

resources, using “the open competition mechanism to select the best

candidates” to quickly address the scientific and technological prob-

lems of “bottleneck project” Industrial policies should fully use the

market’s decisive role in allocating IM resources. Government depart-

ments should maintain a smooth flow of production factors, such as

talent, capital, and technology, among high-tech industries to pro-

mote the rapid development of the IM industry. Furthermore, admin-

istrative departments should carry out trials and demonstrations of

IM in key industries and strengthen the role of leading enterprises in

innovation. Social forces must be actively guided to participate in the

investment and distribution of basic research so that enterprises

become the leading force in integrating innovation elements. Enter-

prises in China should leverage intelligent technology, optimize

resource allocation, strengthen the R&D of intelligent technology, cul-

tivate technological independence, eliminate pollution-related tech-

nologies, and reduce pollution emissions. Moreover, deep integration

applications and innovative digital and manufacturing technology

development in various industries must be encouraged. A group of

representative enterprises in specific industries can be selected to

demonstrate the overall digital transformation, and a comprehensive

and multidimensional transformation model for similar enterprises

should be provided.

Second, enterprises must actively participate in the top-level

design of national standards; develop standards in terms of IM archi-

tecture, technical realization, and application structure; and improve

the openness and compatibility of existing standards. Enterprises

must strengthen the research on the standards of important new

technologies and products and comprehensively cover the common

and key technical standards such as basic generality, technology,

management, testing, and evaluation. Moreover, enterprises should

actively adopt advanced standards, encourage changes to adopt

international standards, and gradually build a progressive, open, and

coordinated IM standard system. Related market subjects will con-

tinue to improve the construction of IM inspection and certification

systems and service platforms in the fields of complete set, safety,

process, and machine performance as well as key components. The

administrative department should examine and formulate a policy of

intelligent certification and acceptance, support the priority use of

certified products in major projects, encourage local governments to

establish corresponding acceptance mechanisms, and promote the

healthy development of industry norms.

Third, government departments should comprehensively con-

sider resource endowments within their respective jurisdictions and

formulate incentive policies accordingly. In order to maximize the

benefits of IM technology to the growth of the green economy, rele-

vant entities should develop intelligent incentive policies based on

regional resource endowments, expand the scope of intelligent appli-

cations, and gradually establish an intelligent high-tech industrial

system. For example, the government should establish a credit fund

for IM to address the issues of financing for the development of

enterprises. Banks and other financial institutions should be encour-

aged to use funds, interest discounts, and guarantees to provide

exclusive financial services for intelligent upgrading for manufactur-

ing enterprises. The government should strengthen fiscal policy sup-

port, expand the proportion of government research projects on IM,

improve tax policies on technological innovation in IM, identify costs

incurred for enterprise and technology R&D, coordinate various fiscal

and tax policies to support IM technology innovation, and enhance

the policy synergy effect.

Finally, the government should encourage enterprises to increase

investment in R&D and emission reduction technologies. GTI com-

prises management and technology innovation, including environ-

mental protection as the goal; it is closely related to ecological,

sustainable, and environmental innovation. Studies have shown that

IM can reduce the cost and shorten the cycle of green technology

R&D, thus promoting the technological progress of emission reduc-

tion and reducing EP. However, the R&D of green technologies and

the digital transformation of enterprises depend on the availability of

sufficient funds. Therefore, financial and policy support must be

strengthened for the technological innovation of enterprises, with

special assistance for the R&D of enterprises concerning environ-

ment-friendly technologies and policy support for technological R&D

and environmental protection of small and weak microenterprises,

such as significant tax reductions and exemption policies. Market

entities and credit management departments should collaborate to

improve the corporate governance environment, establish an evalua-

tion mechanism for corporate green development, and constantly

expand the scope of environmental information disclosure by enter-

prises. The external role of green finance governance should be fully

utilized. Focusing on the transformation and upgrading of traditional

industries, we should implement several demonstration projects for

the application of green technologies and projects to upgrade green

technologies and accelerate the transformation of traditional indus-

tries. Specifically, we should focus on emerging electronic informa-

tion industries, high-end equipment manufacturing, digital, new

materials, and new-energy vehicles with comparative advantages

and development potential; tackle critical technologies; and enhance

our capacity for GTI.

Limitations

To strengthen the existing qualitative and quantitative informa-

tion, the research gap can be highlighted in light of the following cav-

eats and limitations. First, the present study focuses on the

relationship between IM, GTI, and EP; therefore, it would be more

robust and interesting if future researchers inspect the relationship

between IM and EP at a micro or macro level (firms or industrial

level), specifically by analyzing the relationship between IM and

environmental sustainability in different firms and industries in

China. Second, we have focused on the impact of smart manufactur-

ing on EP but found measurement to be a challenge. China’s ecology

department published PM2.5 concentration data for each city consec-

utively in 2012; therefore, China’s monitoring data cannot satisfy the

required number of statistical samples. Thus, considering only air-

borne PM2.5 concentrations to measure air quality may be a compro-

mise. Future studies must consider air pollutants. In addition,

measuring the development of IM at the city level is also a challeng-

ing task. This study uses the installation density of industrial robots

and the number of automation equipment used in factories as the

proxy variable of digital technology. Because industrial robots can

only partially reflect the intelligent transformation of industry and

the adoption of digital technology, this index may not be accurate for

measuring digital technology. Third, there is a need to construct a

theoretical link between IM usage and the energy environment from

multiple perspectives and acquire a more in-depth understanding of

the drivers of energy saving and emission reduction driven by robot

usage. Finally, this study uses a poor cause-and-effect identification

method when analyzing the causal relationships between variables.

An excellent instrumental variable is often challenging to obtain;

therefore, the conclusions of the 2SLS model may still need to be

questioned. In future studies, using the policy evaluation method to

test the influence mechanism and causality among variables in accor-

dance with the policies related to IM or smart cities promulgated by

China will be of great significance.
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