
Facilitating innovation in the API economy: Privacy-enhanced and
novelty-aware API recommendation for enterprises

Baogui Xina, Chao Yana,b, Yuxuan Caob, Muhammad Bilalc,*
a College of Economics and Management, Shandong University of Science and Technology, Qingdao, 266590, China
b School of Computer Science, Qufu Normal University, Rizhao, 276826, China
c Department of Computer Engineering, Hankuk University of Foreign Studies, Yongin-si, 17035, South Korea

A R T I C L E I N F O

Article History:

Received 13 June 2022

Accepted 14 June 2023

Available online 20 June 2023

A B S T R A C T

Web APIs provide enterprises with a new way of driving innovations of new technology with limited resour-

ces. API recommendations greatly alleviate the selection burdens of enterprises in identifying potential use-

ful APIs to meet their business demands. However, these approaches disregard the privacy leakage risk in

cross-platform collaboration and the popularity bias in recommendation. To address these issues, first, we

introduce MinHash, an instance of locality-sensitive hashing, into a collaborative filtering technique and pro-

pose a novel, privacy-enhanced, API recommendation approach. Second, we present a simulation algorithm

to analyze the popularity bias in API recommendation. Third, we mitigate popularity bias by improving the

novelty of recommendation results with an adaptive reweighting mechanism. Last, comprehensive experi-

ments are conducted on a real-world dataset collected from ProgrammableWeb. Experimental results show

that our proposed approach can effectively preserve usage data privacy and mitigate popularity bias at a min-

imum cost in accuracy.

© 2023 The Authors. Published by Elsevier España, S.L.U. on behalf of Journal of Innovation & Knowledge. This

is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Keywords:

API recommendation

Popularity bias

Privacy preservation

Recommendation novelty

Introduction

The emergence of web application programming interfaces

(referred to as APIs hereafter) defines a new way of making applica-

tions easier to develop, driving innovations of new technology with

limited resources (Calero et al., 2019; Hu et al., 2021; Wulf & Blohm,

2020). Because of their advantages in speed, ease, and portability in

data exchange, many enterprises offer their services utilizing APIs.

An increasing number of enterprises outsource specific business

requirements to APIs (Catlett et al., 2020; Jensen & Ashby, 2018;

S�anchez et al., 2019). This trend is referred to as the API economy

(Bonardi et al., 2016). With the growing prosperity of the API econ-

omy, the number of APIs has dramatically grown (Evans & Basole,

2016). According to ProgrammableWeb1 (referred to as PW hereaf-

ter), the most prominent API repository, there were more than

24,500 APIs on the website as of May 2022, which is a thirtyfold

increase since 2008 (refer to Fig. 1). All the APIs are derived from 507

categories across a wide range of market sectors, e.g., financial, data,

social, tools, e-commerce, and payments (see Fig. 2).

The vast number of APIs provide enterprises with a wide range of

choices. However, enterprises also face heavy burdens in selecting

suitable APIs to meet their demands (Vijayakumar et al., 2022). Fortu-

nately, recommendation techniques (e.g., collaborative filtering) have

demonstrated effectiveness in alleviating such burdens (Zhou et al.,

2020). A series of API recommendation approaches have been pro-

posed for different scenarios (Bai et al., 2020; Kang et al., 2020; Qi et

al., 2022; Yan et al., 2021). However, two significant challenges arise

for current API recommendation approaches.

First, many recommendation approaches (e.g., matrix factoriza-

tion) assume that the historical usage data employed for API recom-

mendation are centrally stored. However, in practice, these data are

often owned by different platforms. Moreover, these platforms are

reluctant to share data with others because of privacy concerns

(Liang et al., 2020; Yang et al., 2022). Consequently, the risk of privacy

leakage heavily reduces the possibility of cross-platform collabora-

tion, which decreases the accuracy of recommendation.

Second, because of the intrinsic features of recommendation

approaches and training sets, most recommendation methods suffer

from popularity bias issues, i.e., popular APIs are overly recom-

mended to enterprises. However, recommending popular APIs to

enterprises is trivial. Enterprises may have been aware of popular

APIs and decided whether they met their business demands. In
* Corresponding author.

E-mail address:m.bilal@ieee.org (M. Bilal).
1 https://www.programmableweb.com

https://doi.org/10.1016/j.jik.2023.100401

2444-569X/© 2023 The Authors. Published by Elsevier España, S.L.U. on behalf of Journal of Innovation & Knowledge. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

Journal of Innovation & Knowledge 8 (2023) 100401

Journal of Innovation
& Knowledge

https: / /www.journals.elsevier.com/journal-of- innovation-and-knowledge

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jik.2023.100401&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:m.bilal@ieee.org
https://www.programmableweb.com
https://doi.org/10.1016/j.jik.2023.100401
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.jik.2023.100401
http://https://www.journals.elsevier.com/journal-of-innovation-and-knowledge

addition, enterprises tend to adopt novel APIs that differentiate from

their competitors to innovate at a faster rate than competitors.

Given the abovementioned challenges, we propose a novel API

recommendation approach named NAPIRec, which introduces Min-

Hash to the traditional collaborative filtering technique to preserve

data privacy and promote cross-platform collaboration. Furthermore,

we present an adaptive weighting mechanism to mitigate the popu-

larity bias of our proposed approach. To the best of our knowledge,

few studies have attempted to employ MinHash to preserve data pri-

vacy in API recommendations. Moreover, few studies have focused

on the popularity bias issue in API recommendations. The significant

contributions of this paper include the following:

� We analyze the usage frequency of APIs in PW to reveal the long-

tail distribution in API usage. Then, we design a simulation algo-

rithm and demonstrate the popularity bias produced by a classical

collaborative filtering approach.

� We introduce MinHash into a collaborative filtering technique to

preserve API usage privacy in API recommendation. We present

an adaptive weighting mechanism to mitigate popularity bias and

improve the novelty of recommendation results.
� We conduct a series of experiments on a real-world dataset to val-

idate the superiority of our proposed method compared with

state-of-the-art approaches.

The remainder of this paper is organized as follows: first, we

review related works in API recommendation. Second, we formulate

the definition of API recommendation and analyze the popularity

bias issue in API recommendation. NAPIRec is introduced and dis-

cussed in the ``Methodology’’ section. The ``Results and Discussion’’ sec-

tion reports the experimental results conducted on a real-world

dataset and discusses its threats to validity. Last, we conclude this

paper and outline our future work.

Literature review

With the wide adoption of APIs in enterprises, API recommenda-

tion has attracted attentions from both researchers and practitioners.

A series of API recommendation approaches have emerged, as shown

in Table 1. Generally, these approaches are divided into explicit feed-

back-based approaches and implicit feedback-based approaches. For

explicit feedback-based approaches, user preference is explicitly rep-

resented as keywords (Gong et al., 2021; Qi et al., 2020, 2022; Xiao et

al., 2020) or textual descriptions (Gao &Wu, 2017; Yan et al., 2021).

However, to achieve a better user experience, platforms often

need to make recommendations without knowing explicit user pref-

erences. Therefore, implicit feedback from historical usage informa-

tion, such as QoS (Qi et al., 2018; Wang et al., 2021) and historical

invocation records, is employed to capture user preference. As the

QoS information of APIs is generally incomplete and hard to obtain,

most API recommendation approaches focus on utilizing historical

invocation records to capture user preference (Yan et al., 2021; Yao

et al., 2021).

Recommendation approaches based on implicit feedback usually

adopt collaborative filtering methods (Wang et al., 2022), e.g., matrix

factorization (He et al., 2022; Yao et al., 2021). These approaches

assume that the recommendation base, e.g., historical usage data, is

centralized on one platform. However, in practice, historical usage

data are distributed across different platforms. Moreover, platforms

tend not to share data because of privacy concerns. Qi et al. (2018)

introduced locality-sensitive hashing (LSH) to preserve the data pri-

vacy of service providers in web service recommendations. However,

Qi’s recommendation algorithm is based on continuous QoS data,

which is unsuitable for discrete API usage data. To the best of our

knowledge, few researchers have focused on the problem of privacy

preservation in API recommendation.

Fig. 1. Evolution of the number of submitted APIs in PW.

Fig. 2. Open APIs by top 15 sectors in PW.

Table 1

Differential API recommendation approaches.

Study Preference Representation. Model Privacy-Aware Considering Popularity Bias

Xiao et al. (2020) Keywords Deep Neural Network No No

Qi et al. (2022, 2020) Keywords Minimal Steiner Tree No No

Cheng et al. (2020) Keywords Graph Search No No

Gong et al. (2021) Keywords Minimal Steiner Tree No No

Gao andWu (2017) Plain text Clustering No No

Yan et al. (2021) Plain text GCN No No

Yao et al. (2021) Implicit Matrix Factorization No Yes

Wang et al. (2021) Implicit Cover Tree No No

He et al. (2022) Implicit Matrix Factorization No Yes

Qi et al. (2018) Implicit LSH + User-based CF Yes No

This study Implicit MinHash +User-based CF Yes Yes

B. Xin, C. Yan, Y. Cao et al. Journal of Innovation & Knowledge 8 (2023) 100401

2

Some researchers have noticed the popularity bias issue in recom-

mendation and conducted a series of studies. He et al. (2022) investi-

gated the popularity bias in matrix factorization-based, third-party

library usage prediction, and neutralized the popularity bias by

employing an adaptive mechanism. Gong et al. (2021) improved the

diversity of API compositions by introducing sampling techniques to

API recommendations. However, from the perspective of innovation,

diversity is not equal to novelty, which is more likely to lead to inno-

vation. Little attention has been paid to recommending novel APIs for

enterprises. Compared with the previous research works, we propose

a recommendation algorithm to meet the demands of enterprises for

novel and valuable APIs while preserving their data privacy.

Popularity bias in API recommendation

API recommendation

Most enterprise applications invoke several APIs to implement

their business requirements, e.g., online payment and map naviga-

tion. Given an enterprise application set E ¼ fe1; e2; . . . ; emg, and an

API set A ¼ fa1; a2; . . . ; ang which are registered in platforms, we rep-

resent the API usage data of all the enterprise applications in E as a m

�n matrix (referred to as the usage matrix hereafter), as shown in

Fig. 3. For an enterprise application ei 2 E, if API aj is consumed by ei,

ui;j is set to 1. Otherwise, ui;j is set to 0. The aim of API recommenda-

tion is, for an enterprise application ei, to select K APIs fa01; a02; . . . ; a0Kg

� A that are not consumed by ei but are most likely applicable to ei.

As typical representatives of light applications in the API econ-

omy, mashups are created by integrating APIs from different pro-

viders to implement specific business requirements. In our

preliminary study, we collected 6530 mashups from PW.We discover

that some API pairs cooperate in many mashups. Figure 4 shows the

cumulative distribution of the cooperation frequency of API pairs, i.e.,

times invoked by the same mashup. For all the API pairs that collabo-

rate in at least one mashup, approximately 35% of API pairs cooperate

in more than five mashups, and more than 20% API pairs appear in

more than ten mashups. The API usage patterns inspire a new

method to recommend potential useful APIs for enterprises utilizing

collaborative filtering.

Popularity bias

Collaborative filtering-based approaches usually suffer from the

popularity bias problem, i.e., a small fraction of APIs consumed by

most enterprises (named popular APIs) dominate the recommenda-

tion list. If this situation continues, APIs consumed by all the enter-

prise applications will concentrate on a tiny number of popular APIs,

which may lead to two problems. First, as many enterprises have

been aware of the most popular APIs, they will not benefit much

from a recommendation list dominated by popular APIs. Second,

newly published APIs have little chance of being seen and consumed

by enterprises, hindering innovation in the API economy.

We conduct experiments on a real-world dataset from PW to

investigate the popularity bias in API recommendation. To simulate

the scenario of recommending APIs for enterprise applications

employing historical API usage information, we choose mashups that

invoke more than two APIs and APIs consumed by more than one

mashup. Then, we build a 2445 � 604 usage matrix M. Detailed

experimental settings are discussed in the “Results and Discussion"

section. We propose an iterative simulation algorithm to investigate

the longitudinal effect of collaborative filtering recommendation, as

shown in Algorithm 1. We assume that enterprises make decisions

entirely relying on the recommendation results. Enterprises consume

the first API in the recommendation list during each simulation

period. We update the usage matrix with new usage data at the end

of each iteration. Then, we make recommendations employing the

updated mashup-API matrix. We plot the API usage matrix with a

scatter diagram, as shown in Fig. 5(a). Each row indicates a mashup,

and each column indicates an API. Data is sorted by the usage fre-

quency of APIs and the number of APIs consumed by mashups. There-

fore, the first row in the scatter diagram represents the mashup that

consumed the most APIs, and the first column represents the API

invoked by the most mashups.

Figure 5(a) shows the initial distribution of API usage data. The

initial distribution reflects a snapshot of realistic, long-tail distribu-

tion, where a small fraction of APIs is consumed by numerous mash-

ups. The results are consistent with the distribution of the usage

frequency of APIs, as shown in Fig. 6.

Figure 5(b) depicts the structural distribution of APIs newly con-

sumed by mashups over 40 simulation periods. The distribution

Fig. 3. An example of Enterprise-API matrix.

Fig. 4. Cumulative distribution of cooperating frequency of API pairs.

Algorithm 1

Algorithm of Iterative Simulation Procedure.

Input :Mashup-API matrix:M, simulation periods: T

Output :Mashup-API matrix of newly consumed APIs

1:M0=M

2: for t ¼ 1 to T do

3: for each rowm inM0 do

4: Predict the values of unused APIs inm

5: Select API jwith the largest predicted value

6: M0½i; j� ¼ 1

7: end for

8: end for

9: returnM0-M

B. Xin, C. Yan, Y. Cao et al. Journal of Innovation & Knowledge 8 (2023) 100401

3

indicates that the newly consumed APIs are condensed into a small

set of APIs. The reason is that the recommendation results of the col-

laborative filtering approach mainly depend on the characteristics of

historical data, e.g., density and value distribution (Adomavicius &

Zhang, 2012). As API usage data follow the long-tail distribution

(Park & Tuzhilin, 2008), the recommendation results are more likely

to show high skewness. Moreover, increased reliance on the recom-

mendation results leads to a skewed distribution of API usage data,

producing more condensed recommendation results.

However, enterprises may not benefit much from popular APIs

because they may already be familiar with them. In addition, from

the perspective of innovation, recommendation results offering nov-

elty and serendipity are more attractive to enterprises.

Methodology

MinHash

MinHash is also known as a minwise independent permutation

locality-sensitive hashing scheme. Locality-sensitive hashing (LSH

hereafter) (Gionis et al., 1999) is an approximate nearest neighbor

search method based on hashing. Letting Dð ¢ ; ¢ Þ denote a distance

function of two elements from a set P, and Prð ¢ Þ represent the proba-

bility that an event holds.

Definition 1. A hash function hð ¢ Þ is referred to as (d1; d2;p1;p2)-sen-

sitive for Dð ¢ ; ¢ Þ if for any x; y 2 P:

� if Dðx; yÞ�d1; Pr
�

hðxÞ ¼ hðyÞ
�

�p1
� if Dðx; yÞ�d2; Pr

�

hðxÞ ¼ hðyÞ
�

�p2

Due to its advantage in compact storage and efficient retrieval,

LSH is widely adopted in many domains, e.g., database, image

retrieval, and clustering. Many LSH approaches have been proposed

for different purposes. These LSH approaches can be classified into

metric-driven and data-driven approaches (Ioffe, 2010). The former

approaches aim at approximating specific distance metrics, e.g.,

cosine distance, Euclidean distance, and Jaccard distance. The latter

approaches aim at learning hash functions from the training data to

gain optimal performance on specified tasks.

MinHash is designed to approximate the Jaccard distance, which

is usually used to measure the similarity between two finite sets.

Assuming that A and B are two sets, the Jaccard distance between A

and B is defined by

J A;Bð Þ ¼
jA\Bj

jA[Bj
ð1Þ

Given a set E, and a series of random hash functions fi : E! Z

mapping each element in E to a distinct integer, let A � E; B � E. The

MinHash value of A under the order inferred by fi is calculated by

h A; fið Þ ¼ argminfi xð ÞÞ
x2A

ð2Þ

It has been proved (Broder et al., 2000) that if fi is uniformly and

randomly chosen,

Pr h A; fið Þ ¼ h B; fið Þð Þ ¼
jA\Bj

jA[Bj
¼ J A;Bð Þ ð3Þ

Method design

In this section, we discuss NAPIRec in detail. Generally, our

approach seamlessly integrates three phases: the privacy preservation

phase, prediction phase, and recommendation phase. Concretely, in the

privacy preservation phase, NAPIRec adopts the MinHash technique to

encode the API usage data of each enterprise application into several

binary bits. In the prediction phase, a collaborative filtering-based

algorithm is proposed to predict the consumption possibilities of

unused APIs for each enterprise application. In the recommendation

phase, NAPIRec reweights the usage probability of APIs based on the

Fig. 5. Distribution scatter plots of recommended APIs.

Fig. 6. Long-tail distribution of the usage of APIs.

B. Xin, C. Yan, Y. Cao et al. Journal of Innovation & Knowledge 8 (2023) 100401

4

popularity of APIs and returns a certain number of APIs with the

highest possibilities to enterprise applications.

Privacy preservation phase

Step 1: Encode API usage data employing MinHash to preserve

the privacy of enterprises. For the usage matrix M, the ith row rep-

resents the API usage data of the ith enterprise application. Given a

family F of functions, I ¼ f0;1; . . . ;n� 1g, for each function

f ð ¢ Þ2F : I! I, f ð ¢ Þ maps I into a random permutation of elements

in the set I. The form of f ð ¢ Þ is defined by

f ið Þ ¼ d� iþ 1ð Þ mod n ð4Þ

where d is a random positive integer and i is the index of an API.

Moreover, to satisfy 8 j2 I; j 6¼ i; f ðiÞ 6¼ f ðjÞ, d and n must be relatively

prime. The family H of hash functions is a set of functions

h : E! Zþ. Letting ui denotes the API usage data of the ith enterprise,

i.e., the ith row of usage matrix M. The MinHash value of ui under the

order induced by f is defined as follows:

h ui; fð Þ ¼ min
j2 Si

f jð Þ ð5Þ

where Si ¼ fjui;j ¼ 1g.

Prediction phase

Step 2: Calculate the similarity between two enterprises

according to hash values. In Step 1, under the order inferred by each

f 2F , the API usage data of each enterprise are hashed to an integer

value. Consequently, all the hash values of ui are represented as

H uið Þ ¼ h ui; f1ð Þ; h ui; f2ð Þ; . . . ;h ui; fzð Þf g ð6Þ

The similarity between ui and uj is calculated by

h ui; fsð Þ � h uj; fs
� �

¼
1; h ui; fsð Þ ¼ h uj; fs

� �

0; h ui; fsð Þ 6¼ h uj; fs
� �

(

ð7Þ

sim ui;uj

� �

¼
X

z

k¼1

h ui; fkð Þ � h uj; fk
� �� �

ð8Þ

Step 3: Predict consumption possibilities for unused APIs. In

this step, for each enterprise, we select the k most similar enterprises

into a set, i,e, NB_Set, and then predict the consumption possibility

for an unused API by

ui;j ¼

P

t 2NB_Setut;jvt

k
ð9Þ

Recommendation phase

Step 4: Reweight predicted values and make top-k recommen-

dations for enterprise applications. As mentioned in Section ``Popu-

larity bias in API recommendation’’, traditional CF-based

recommendation approaches may suffer from popularity bias issues.

To alleviate the popularity bias in the recommendation list, we assign

different weights to APIs according to their popularity and the length

of the recommendation list, i.e., r. The weight of API ai is calculated as

follows:

weight ¼
r

log pið Þ þ 1

� �

a

ð10Þ

where pi denotes the popularity of ai and a is a hyperparameter con-

trolling the influence of popularity in API recommendation. Then we

multiply the predicted values of unused APIs by their weights and

select the K APIs with highest values as the final recommendation

results.

Results and discussion

In this section, we describe experimental settings and then show

the advantages of NAPIRec based on the following research questions:

� RQ1: Does NAPIRec outperform state-of-the-art API recommenda-

tion approaches in accuracy and novelty?
� RQ2: How does the size of function family F and the number of

most similar enterprise applications, i.e., k, affect the performance

of NAPIRec?
� RQ3: How does the hyperparameter a affect the novelty of the

recommendation results provided by NAPIRec?

Experimental setting

Dataset. To simulate the scenario of API recommendation for

enterprises, we collected 18,748 APIs and 6146 mashups from PW.

Each mashup is an enterprise application. We removed the mashups

that invoked less than two APIs. To validate the performance of

NAPIRec in recommending less popular APIs for enterprises, we

removed the API with the lowest popularity in each mashup. The

ground truth of the experiments is that these removed APIs are most

beneficial to corresponding enterprise applications.

Experimental Environment. All experiments are performed on a

machine with Intel i9-10,900K CPU 3.70 GHz, 32 GB RAM, running

Windows 10 � 64 Professional and Python 3.8.

Performance Metrics. We adopt four commonly employed metrics

to comprehensively measure the performance of NAPIRec from two

perspectives: accuracy and novelty. These metrics are within the

range of [0, 1].

� Mean Precision (MP). Given an API recommendation list, the pre-

cision is the ratio of correctly recommended APIs to all the APIs in

the list (Tang et al., 2021). MP averages precisions across all rec-

ommendation lists. A more significant value indicates better accu-

racy.
� Mean Recall (MR). Given an API recommendation list, recall is

considered the ratio of correctly recommended APIs to all APIs

that should be recommended (Ma et al., 2021). MR averages recall

across all recommendation lists. A more significant value is better.
� Normalized discounted cumulative gain (NDCG). NDCG meas-

ures the ranking quality of recommendation results and is calcu-

lated by

NDCG@K ¼
1

R

X

K

i¼1

2reli � 1

log2 iþ 1ð Þ
ð11Þ

where K is the length of the recommendation list and R represents

the ideal discounted cumulative gain. A larger NDCG value indicates

better performance.

� Coverage (Cov). Coverage indicates the fraction of distinct APIs in

all recommendation lists to all the APIs in set A (Zhou et al., 2021).

Assume that the recommendation lists for all the enterprises are

represented as the set RL ¼ frl1; rl2; . . . ; rlmg. The Cov value is cal-

culated as follows:

COV ¼
jrl1 [rl2 [. . . [rlmj

jAj
ð12Þ

A higher COV value means that the recommendation method rec-

ommends more novel APIs to enterprises. If a recommendation

approach suffers more from popularity bias, the COV value will be

low.

Compared Methods. In the experiments, to testify to the effective-

ness of our proposed approach in privacy-preserving and

5

B. Xin, C. Yan, Y. Cao et al. Journal of Innovation & Knowledge 8 (2023) 100401

recommending novelty APIs, we compare NAPIRec with six classical

approaches:

� POP. The popularity-based method always recommends the most

popular APIs that have not been consumed by enterprises, which

is the baseline method in our experiments.
� UPCC; UJACC. User-based collaborative filtering algorithms

adopt Pearson and Jaccard coefficients as similarity metrics. The

two methods are also baselines in our experiments.
� MF. (Koren et al., 2009) Matrix factorization decomposes the

usage matrix into latent factors to obtain better performance.
� SerRecdistri_LSH . (Qi et al., 2018) Locality-sensitive hashing-based

collaborative filtering approach has the ability to preserve data

privacy.
� ARIRec. API recommendations can preserve data privacy but do

not reweight the predicted values.

To conduct a fair evaluation, we tune the parameters of each

approach to achieve the best performance. In detail, we set the

number of nearest neighbors k ¼ 600 for UPCC and UJACC. For

SerRecdistriLSH , the number of hash functions and tables is set to 8. We

set the dimension of latent factors to 604 for theMF approach.

RQ1: Performance comparison

Table 2 compares the performance of NAPIRec with six competi-

tive approaches. The comparison demonstrates that NAPIRec outper-

forms all competing methods in terms of accuracy and novelty, as

indicated by four metrics.

Specifically, NAPIRec significantly improved over POP by 240.01%,

240.01%, 286.83%, and 1580.01% in terms of MP, MR, NDCG, and COV,

respectively; it also significantly improved over MF by 86.35%,

86.35%, 192.36%, �15.31%. It should be noted that the improvement

ofMF in COV is achieved at the cost of a decrease in accuracy.

The ways of predicting UPCC, UJACC and APIRec are similar to

NAPIRec. We discover that NAPIRec shows a slight advantage over

UPCC, UJACC, and APIRec in MP, MR, and NDCG. However, NAPIRec

achieves better improvements over the three approaches in COV, i.e.,

18.98%, 49.91%, and 50.01%, which fully demonstrates the effective-

ness of NAPIRec in improving the novelty of recommendation results.

Moreover, as two recommendation approaches capable of pre-

serving the privacy of enterprises, NAPIRec demonstrates significant

advantages over SerRecdistriLSH in MP, MR, NDCG, and COV, i.e., 56.14%,

56.14%, 70.64%, and 112.6%, respectively. These results show the

effectiveness of NAPIRec in balancing privacy preservation, accuracy,

and novelty.

RQ2: Performance analysis w.r.t z and k

Impact of z. Parameter z indicates the number of functions in F ,

which is equal to the number of hash tables in MinHash. Parameter z

determines the accuracy of MinHash in identifying approximate

nearest neighbors. To investigate its impact on the performance of

APIRec and NAPIRec, we vary z from 60 to 270 in steps of 30. Figure 7

shows the performance of APIRec in the first row and NAPIRec in the

second row.

Table 2

Performance Comparison across different K.

Methods K = 1 K = 5

MP MR NDCG COV MP MR NDCG COV

POP 0.02 0.02 0.02 0.01 0.04 0.18 0.11 0.02

UPCC 0.20 0.20 0.20 0.15 0.06 0.30 0.25 0.36

UJACC 0.18 0.18 0.18 0.11 0.06 0.30 0.25 0.28

MF 0.00 0.00 0.00 0.30 0.03 0.16 0.08 0.52

LSH 0.11 0.11 0.11 0.06 0.04 0.21 0.16 0.18

APIRec 0.19 0.19 0.19 0.11 0.06 0.31 0.25 0.28

NAPIRec 0.21 0.21 0.21 0.21 0.07 0.33 0.27 0.45

Methods K = 10 K = 15

MP MR NDCG COV MP MR NDCG COV

POP 0.02 0.23 0.12 0.03 0.02 0.28 0.14 0.04

UPCC 0.04 0.40 0.28 0.46 0.03 0.44 0.29 0.50

UJACC 0.04 0.39 0.27 0.40 0.03 0.45 0.29 0.45

MF 0.02 0.23 0.10 0.56 0.02 0.27 0.12 0.57

LSH 0.03 0.31 0.19 0.33 0.02 0.34 0.20 0.44

APIRec 0.04 0.40 0.28 0.39 0.03 0.45 0.29 0.46

NAPIRec 0.04 0.41 0.30 0.51 0.03 0.46 0.31 0.52

Fig. 7. Impact of z on the performance of APIRec and NAPIRec:

6

B. Xin, C. Yan, Y. Cao et al. Journal of Innovation & Knowledge 8 (2023) 100401

We observe that as z increases from 50 to 150, the performance of

APIRec shows a significant increase in MP, MR, and NDCG. When z >

180, the increase in z does not significantly increase the performance

of APIRec. In addition, the increase in z slightly impacts the perfor-

mance of NAPIRec in MP, MR, and COV. Moreover, when z > 180, the

NDCG value of NAPIRec drops slightly. Therefore, we choose 180 as a

reasonable value for z.

Impact of k. APIRec and NAPIRec utilize information from similar

enterprise applications to predict the consumption possibilities of

APIs for an enterprise application. Parameter k indicates how many

similar enterprise applications are employed in making predictions.

To evaluate the impact of k, we vary k from 50 to 650 in steps of 50.

Figure 8 demonstrates the influence on the performance of APIRec in

the first row and NAPIRec in the second row. We discover that APIRec

and NAPIRec significantly improved in MP, MR, and NDCG as k

increased. In contrast, the COV values of the two approaches decrease

slightly as k increases. Thus, the appropriate value of k is set to 600.

RQ3: Performance analysis w.r.t. a

Parameter a is used to set the weight of APIs. It controls the

degree of reliance on popularity in API recommendation. An overly

small a, i.e., a ¼ 0, may lead to a loss in novelty. On the other hand,

an excessively large a disregards the positive effect of popularity

bias, which may result in a loss in accuracy. To investigate the impact

of a, we vary a from 0 to 1.8 in steps of 0.3. The statistical results are

shown in Fig. 9. We can find that when a< 1:5, the MP and MR val-

ues slightly change as a increases. The NDCG and COV values signifi-

cantly improve as a increases from 0 to 1.5. However, when a>1:5,

the performance of NAPIRec decreases in MP, MR, NDCG and slightly

increases in COV. Therefore, an appropriate value of a is identified,

i.e., a ¼ 1:5.

Discussion

There are a few external and internal validity threats in our evalu-

ation. One of the main potential threats to the external validity in

evaluation is the representativeness of our dataset. To mitigate this

threat, we crawl mashup and API data from PW, one of the world’s

most famous and largest API repositories. An increasing number of

APIs and mashups are registering in PW to further improve its repre-

sentativeness. Another potential threat is whether our experiments

can reflect real-world recommendation demands. To minimize this

threat, we simulate the to-be-improved version of these mashups by

Fig. 8. Impact of k on the performance of APIRec and NAPIRec:

Fig. 9. Impact of a on the performance of NAPIRec:

B. Xin, C. Yan, Y. Cao et al. Journal of Innovation & Knowledge 8 (2023) 100401

7

removing APIs that are currently invoked by mashups. These

removed APIs are the ground truth for evaluation and can adequately

validate the capability of our approach in making accurate recom-

mendations for enterprises.

Our internal validity is whether the comparison with POP, UPCC,

UJACC, MF, and SerRecdistri_LSH correctly verifies the performance of

our proposed approach. We mitigate this threat in four different

ways. First, we implement a popularity-based method, i.e., POP, as a

baseline to analyze the novelty of recommendation results in experi-

ments. Second, to demonstrate the accuracy of our proposed

approach, we compare NAPIRecwith state-of-the-art collaborative fil-

tering approaches. UPCC and UJACC are two representatives of user-

based collaborative filtering methods. MF is one of the most success-

ful collaborative filtering recommendation methods. Third, we also

compare NAPIRec with SerRecdistri_LSH , which considers preserving the

privacy of service providers while making recommendations. Fourth,

to demonstrate the validity of our proposed approach in mitigating

popularity bias, we compare NAPIRec with APIRec, which adopts the

same approach as NAPIRec without reweighting predicted values.

Moreover, we compare these approaches in terms of not only novelty

but also accuracy.

Conclusion

In this paper, first, we reveal the importance of API recommenda-

tion in facilitating innovation in enterprises. Second, we point out

two challenges raised in current API recommendation approaches. To

address the first challenge, we introduce MinHash into a classical col-

laborative filtering approach to preserve data privacy in API recom-

mendations. To address the second challenge, we investigate the

popularity bias in a collaborative filtering recommendation approach,

and propose a reweighting mechanism to mitigate the popularity

bias. Comprehensive experiments are conducted on a real-world

dataset obtained from PW. Experimental results show the superiority

of NAPIRec in preserving data privacy and mitigating popularity bias.

There are still limitations to our proposed method. First, as an

implicit feedback-based approach, NAPIRec provides enterprises with

a suggestion list without knowing the specific requirements of enter-

prises. Therefore, the accuracy is lower than that of keyword search-

based approaches. Second, because NAPIRecmakes recommendations

utilizing historical usage information, it may suffer from cold-start

problems. Third, because NAPIRec assigns higher priorities to less

popular APIs, it may exclude some potential APIs with high popular-

ity from the recommendation list. Thus, it may not be suitable in

some cases, e.g., enterprises taking the API adoption rate as the high-

est priority. However, in most cases, recommending popular APIs is

trivial for enterprises.

In future work, we will collect more API usage data from other

sources to validate the effectiveness of NAPIRec. Moreover, we plan to

leverage additional information of APIs, e.g., category and descrip-

tion, to further improve the performance of NAPIRec.

Statements and declarations

Consent

All authors have approved the manuscript.

Data availability

Data are available on request due to privacy or other restrictions.

Declaration of Competing Interest

The authors have no relevant financial or non-financial interests

to disclose.

Funding

This work was supported by the National Planning Office of Phi-

losophy and Social Science of China (Grant No. 21BJY206).

References

Adomavicius, G., & Zhang, J. (2012). Impact of data characteristics on recommender
systems performance. ACM Transactions on Management Information Systems, 3(1),
1–17.

Bai, B., Fan, Y., Tan, W., & Zhang, J. (2020). DLTSR: A deep learning framework for rec-
ommendations of long-tail web services. IEEE Transactions on Services Computing,

13(1), 73–85. doi:10.1109/TSC.2017.2681666.
Bonardi, M., Brioschi, M., Fuggetta, A., Verga, E. S., & Zuccal�a, M. (2016). Fostering col-

laboration through API economy. IEEE/ACM 3rd International workshop on software
engineering research and industrial practice (SER&IP) (pp. 32−38). doi:10.1145/
2897022.2897026.

Broder, A. Z., Charikar, M., Frieze, A. M., & Mitzenmacher, M. (2000). Min-wise indepen-
dent permutations. Journal of Computer and System Sciences, 60(3), 630–659.

Calero, C., Mancebo, J., García, F., Moraga, M.�A., Bern�a, J. A. G.,
Fern�andez-Alem�an, J. L., et al. (2019). 5Ws of green and sustainable software.
Tsinghua Science and Technology, 25(3), 401–414.

Catlett, C., Beckman, P., Ferrier, N., Nusbaum, H., Papka, M. E.,
Berman, M. G., et al. (2020). Measuring cities with software-defined sensors. Jour-
nal of Social Computing, 1(1), 14–27.

Cheng, H., Zhong, M., & Wang, J. (2020). Diversified keyword search based web service
composition. Journal of Systems and Software, 163, 110540. doi:10.1016/j.
jss.2020.110540.

Evans, P. C., & Basole, R. C. (2016). Economic and business dimensions: Revealing the
API ecosystem and enterprise strategy via visual analytics. Communications of the
ACM, 59(2), 26–28. doi:10.1145/2856447.

Gao, W., & Wu, J. (2017). A novel framework for service set recommendation in
mashup creation. 2017 IEEE International conference on web services (ICWS) (pp. 65
−72). doi:10.1109/ICWS.2017.17.

Gionis, A., Indyk, P., & Motwani, R. (1999). Similarity search in high dimensions via
hashing. 25th International conference on very large data bases (pp. 518−529).

Gong, W., Lv, C., Duan, Y., Liu, Z., Khosravi, M. R., Qi, L., et al. (2021). Keywords-driven
web APIs group recommendation for automatic app service creation process. Soft-
ware: Practice and Experience, 51(11), 2337–2354. doi:10.1002/spe.2902.

He, Q., Li, B., Chen, F., Grundy, J., Xia, X., & Yang, Y. (2022). Diversified third-party
library prediction for mobile app development. IEEE Transactions on Software Engi-

neering, 48(1), 150–165. doi:10.1109/TSE.2020.2982154.
Hu, X., Xiang, Y., Li, Y., Qiu, B., Wang, K., & Li, J. (2021). Trident: Efficient and practical

software network monitoring. Tsinghua Science and Technology, 26(4), 452–463.
Ioffe, S. (2010). Improved consistent sampling, weighted minhash and L1 sketching. In

Proceedings - IEEE international conference on data mining, ICDM (pp. 246−255).
doi:10.1109/ICDM.2010.80.

Jensen, T. C., & Ashby, D. (2018). APIs for dummies. John Wiley & Sons, Inc.
Kang, G., Liu, J., Cao, B., & Cao, M. (2020). NAFM: Neural and attentional factorization

machine for web API recommendation. In Proceedings - 2020 IEEE 13th interna-

tional conference on web services, ICWS 2020 (pp. 330−337). doi:10.1109/ICW-
S49710.2020.00050.

Koren, Y., Bell, R., & Volinsky, C. (2009). Matrix factorization techniques for recom-
mender systems. Computer, 42(8), 30–37.

Liang, Y., Liu, Y., & Gupta, B. B. (2020). PPRP: Preserving-privacy route planning scheme
in VANETs. ACM Transactions on Internet Technology (TOIT). doi:10.1145/3430507.

Ma, Y., Sun, H., Chen, Y., Zhang, J., Xu, Y., Wang, X., et al. (2021). DeepPredict: A zone
preference prediction system for online lodging platforms. Journal of Social Com-

puting, 2(1), 52–70.
Park, Y. J., & Tuzhilin, A. (2008). The long tail of recommender systems and how to

leverage it. ACM Recsys.
Qi, L., He, Q., Chen, F., Zhang, X., & Ni, Q. (2020). Data-driven web APIs recommendation

for building web applications. IEEE Transactions on Big Data. doi:10.1109/TBDA-
TA.2020.2975587.

Qi, L., Lin, W., Zhang, X., Dou, W., Xu, X., & Chen, J. (2022). A correlation graph based
approach for personalized and compatible web APIs recommendation in mobile
APP development. IEEE Transactions on Knowledge and Data Engineering.

Qi, L., Zhang, X., Dou, W., Hu, C., Yang, C., & Chen, J. (2018). A two-stage locality-sensi-
tive hashing based approach for privacy-preserving mobile service recommenda-
tion in cross-platform edge environment. Future Generation Computer Systems, 88,
636–643. doi:10.1016/j.future.2018.02.050.

S�anchez, M. C., de Gea, J. M. C., Fern�andez-Alem�an, J. L., Garcer�an, J., & Toval, A. (2019).
Software vulnerabilities overview: A descriptive study. Tsinghua Science and Tech-
nology, 25(2), 270–280.

Tang, S., Huang, S., Zheng, C., Liu, E., Zong, C., & Ding, Y. (2021). A novel cross-project
software defect prediction algorithm based on transfer learning. Tsinghua Science
and Technology, 27(1), 41–57.

Vijayakumar, P., Jegatha, D. L., & Rajkumar, S. C. (2022). Deep reinforcement learning-
based pedestrian and independent vehicle safety fortification using intelligent per-
ception. International Journal of Software Science and Computational Intelligence
(IJSSCI), 14(1), 1–33. doi:10.4018/IJSSCI.291712.

Wang, J., He, D., Castiglione, A., Gupta, B. B., Karuppiah, M., & Wu, L. (2022). PCNNCEC:
Efficient and privacy-preserving convolutional neural network inference based on

B. Xin, C. Yan, Y. Cao et al. Journal of Innovation & Knowledge 8 (2023) 100401

8

http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0001
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0001
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0001
http://dx.doi.org/10.1109/TSC.2017.2681666
http://dx.doi.org/10.1145/2897022.2897026
http://dx.doi.org/10.1145/2897022.2897026
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0004
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0004
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0005
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0005
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0005
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0005
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0005
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0005
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0005
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0006
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0006
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0006
http://dx.doi.org/10.1016/j.jss.2020.110540
http://dx.doi.org/10.1016/j.jss.2020.110540
http://dx.doi.org/10.1145/2856447
http://dx.doi.org/10.1109/ICWS.2017.17
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0010
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0010
http://dx.doi.org/10.1002/spe.2902
http://dx.doi.org/10.1109/TSE.2020.2982154
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0013
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0013
http://dx.doi.org/10.1109/ICDM.2010.80
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0015
http://dx.doi.org/10.1109/ICWS49710.2020.00050
http://dx.doi.org/10.1109/ICWS49710.2020.00050
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0017
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0017
http://dx.doi.org/10.1145/3430507
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0019
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0019
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0019
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0020
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0020
http://dx.doi.org/10.1109/TBDATA.2020.2975587
http://dx.doi.org/10.1109/TBDATA.2020.2975587
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0022
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0022
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0022
http://dx.doi.org/10.1016/j.future.2018.02.050
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0024
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0024
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0024
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0024
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0024
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0024
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0024
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0025
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0025
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0025
http://dx.doi.org/10.4018/IJSSCI.291712

cloud-edge-client collaboration. IEEE Transactions on Network Science and Engineer-

ing. doi:10.1109/TNSE.2022.3177755 1−1.
Wang, L., Zhang, X., Wang, T., Wan, S., Srivastava, G., Pang, S., et al. (2021). Diversified

and scalable service recommendation with accuracy guarantee. IEEE Transactions on
Computational Social Systems, 8(5), 1182–1193. doi:10.1109/TCSS.2020.3007812.

Wulf, J., & Blohm, I. (2020). Fostering value creation with digital platforms: A unified
theory of the application programming interface design. Journal of Management
Information Systems, 37(1), 251–281. doi:10.1080/07421222.2019.1705514.

Xiao, Y., Liu, J., Kang, G., Hu, R., Cao, B., Cao, Y., et al. (2020). Structure reinforcing and
attribute weakening network based API recommendation approach for mashup
creation. 2020 IEEE International conference on web services (ICWS) (pp. 541−548).
doi:10.1109/ICWS49710.2020.00078.

Yan, R., Fan, Y., Zhang, J., Zhang, J., & Lin, H. (2021). Service recommendation for com-
position creation based on collaborative attention convolutional network. 2021

IEEE International conference on web services (ICWS) (pp. 397−405). doi:10.1109/
ICWS53863.2021.00059.

Yang, H., Vijayakumar, P., Shen, J., & Gupta, B. B. (2022). A location-based privacy-pre-
serving oblivious sharing scheme for indoor navigation. Future Generation Com-
puter Systems, 137, 42–52. doi:10.1016/j.future.2022.06.016.

Yao, L., Wang, X., Sheng, Q. Z., Benatallah, B., & Huang, C. (2021). Mashup recommenda-
tion by regularizing matrix factorization with API Co-invocations. IEEE Transactions
on Services Computing, 14(2), 502–515. doi:10.1109/TSC.2018.2803171.

Zhou, X., Li, Y., & Liang, W. (2020). CNN-RNN based intelligent recommendation for
online medical pre-diagnosis support. IEEE/ACM Transactions on Computational

Biology and Bioinformatics, 18(3), 912–921.
Zhou, X., Xu, X., Liang, W., Zeng, Z., & Yan, Z. (2021). Deep-learning-enhanced multitar-

get detection for end−edge−cloud surveillance in smart IoT. IEEE Internet of Things

Journal, 8(16), 12588–12596.

B. Xin, C. Yan, Y. Cao et al. Journal of Innovation & Knowledge 8 (2023) 100401

9

http://dx.doi.org/10.1109/TNSE.2022.3177755
http://dx.doi.org/10.1109/TCSS.2020.3007812
http://dx.doi.org/10.1080/07421222.2019.1705514
http://dx.doi.org/10.1109/ICWS49710.2020.00078
http://dx.doi.org/10.1109/ICWS53863.2021.00059
http://dx.doi.org/10.1109/ICWS53863.2021.00059
http://dx.doi.org/10.1016/j.future.2022.06.016
http://dx.doi.org/10.1109/TSC.2018.2803171
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0034
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0034
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0034
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0035
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0035
http://refhub.elsevier.com/S2444-569X(23)00097-5/sbref0035

	Facilitating innovation in the API economy: Privacy-enhanced and novelty-aware API recommendation for enterprises
	Introduction
	Literature review
	Popularity bias in API recommendation
	API recommendation
	Popularity bias

	Methodology
	MinHash
	Method design
	Privacy preservation phase
	Prediction phase
	Recommendation phase

	Results and discussion
	Experimental setting
	RQ1: Performance comparison
	RQ2: Performance analysis w.r.t z and k
	RQ3: Performance analysis w.r.t. α
	Discussion

	Conclusion
	Statements and declarations
	Consent
	Data availability

	Declaration of Competing Interest
	Funding
	References

