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A B S T R A C T

This study considers spatial and nonlinear perspectives to examine the heterogeneous role of green technol-

ogy innovation in the economic development and air quality of Chinese cities. We find that green inventive

technology innovation benefits economic development and air quality improvement, which have significant

spatial spillover effects. Conversely, green improved technology innovation has no significant spatial spill-

over effect on air quality. The results show that urban heterogeneity exists in the effects of green technology

innovation on the economy and air quality. From a regional perspective, green technology innovation in the

central region improves air quality in neighboring cities; however, no effective spatial synergy mechanism

has been established within other regions. From an administrative perspective, green technology innovation

in municipalities and provincial capitals can effectively drive the win−win development of the urban econ-

omy and environment. Moreover, this study verifies the nonlinear effect of economic development; the sin-

gle-threshold result indicates that an increase in the level of regional economic development facilitates the

effect of green technology innovation to improve air quality. Furthermore, we elucidate the mediating role of

economic development. This findings of this study offer decision-making guidance to drive economic and

environmental win−win development through green technology innovation and achieve synergistic regional

green development.
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Introduction

Green technology innovation is a pathway to sustainable develop-

ment and has the dual attributes of being green and innovative (Chen

et al., 2022a; Yang et al., 2022a). High pollutant emissions are accom-

panied by global economic booms, and environmental pollution has

become a serious challenge for countries worldwide (Lee et al.,

2022a; Yi et al., 2022). Particularly, the dilemma between economic

growth and resources and environmental damage in China has

become increasingly prominent, and achieving environmentally

inclusive growth has become urgent (Sinha et al., 2020). The report

on the 20th CPC National Congress emphasizes that green technology

innovation is a driver of sustainability and an important technological

reinforcement for enhancing high-quality urban development. As the

primary tool for resolving economic−environmental conflicts (Liu et

al., 2022; García-S�anchez et al., 2023), it is essential to explore

whether green technology innovation can generate economic and

environmental dividends for Chinese cities. If so, what are the under-

lying mechanisms?

In the era of sustainable development, the potential benefits and

drawbacks of green technology innovation have become important

academic topics (Schiederig et al., 2012; Lv et al., 2021; Dong et al.,

2022; Lin & Ma, 2022). Specifically, numerous studies have acknowl-

edged that green technology innovation can create a win−win solu-

tion for the economy and the environment (Chen et al., 2022a);

however, scholars have also argued that green technology innovation

has non-negligible risks and long payoff cycles (Zhu et al., 2021a;

Zhang et al., 2022). Meanwhile, the double externalities and rebound

effects of green technology innovation make it uncertain (Wang et

al., 2021). Overall, existing research has ignored the heterogeneous

types of green technology innovation and mechanisms underlying

the correlation between green technology innovation and economic

and environmental development, leading to mixed evidence on the

role of green technology innovation. Thus, this study extends existing* Corresponding author.
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knowledge about the role of green technology innovation by model-

ing the correlations between innovation and the economy- environ-

ment.

In recent years, air quality, which comprehensively reflects urban

environmental quality, has become a focus of environmental eco-

nomics (Xin & Xin., 2022). Among these, PM2.5, the main air pollut-

ant, has become the main indicator of air quality for significantly

affecting human health and the atmospheric (Wu et al., 2020; Zhang

et al., 2021). The synergistic effect of the urban space as a vehicle for

high concentrations of economic and social activities cannot be

ignored (Wang et al., 2021). Studies have also indicated that technol-

ogy, economy, and environment are often spatially linked, which

potentially affects the action mechanisms among them (Peng et al.,

2021; Wang et al., 2021). Furthermore, economists have highlighted

that there are various types of green technology innovation with var-

ious characteristics (Lian et al., 2022), but the heterogeneous effect of

green technology innovation across different types on air quality and

the economy has been neglected in the literature. Therefore, adopting

spatial and nonlinear perspectives, we explore how green technology

innovation heterogeneously influences economic development and

air quality across types.

This work examines the nexus between green technology innova-

tion, economic development, and air quality and is the first attempt

to answer the following questions: Does heterogeneous green tech-

nology innovation benefit both urban economic development and air

quality? What internal mechanisms does it involved? Are there

regional and administrative-level heterogeneities in the effects of

green technology innovation on economic development and air qual-

ity? To answer these questions, we explores the influence mecha-

nisms of green technology innovation on air quality and economic

development using data from 166 cities from 2004 to 2019. Based on

the empirical results, relevant management implications are

reported.

The contributions of our work are threefold. First, we use the

resource-based view (RBV) theory to extend our understanding of

how green technology innovation plays a role in air quality and eco-

nomic development from a spatial perspective. Second, regarding the

study mechanisms, we consider the nonlinear role of economic

development on the relationship between green technology innova-

tion and air quality. Specifically, we verify the threshold and mediate

the effects of economic development. Accordingly, this study con-

structs a theoretical framework for the influence of green technology

innovation on air quality and economic development. Third, consid-

ering differential green technology innovation across diverse admin-

istrative levels and regions, the heterogeneous mechanisms of green

technology innovation on urban economics and air quality are ana-

lyzed, expanding the depth of the work by considering urban

resource endowment. The results can provide empirical support for

formulating and improving differentiated green technology innova-

tion-driving strategies.

Literature review

Green technology innovation is conducive to resource conserva-

tion, energy-efficiency improvements, and pollution prevention

(Feng et al., 2022). The existing literature has provided mixed results

on the correlations among green technology innovation, air quality,

and economic development (Peng et al., 2021; Xie et al., 2022; Feng

et al., 2021; Ma et al., 2022; Wang et al., 2022; Yang et al., 2022a; Yi

et al., 2022; Wang et al., 2021; Zhai & An, 2021).

There are three main views on green technology innovation and

air quality. Most studies have advocated that green technology inno-

vation has environmentally friendly characteristics that can improve

air quality by reducing pollutant emissions and alleviating the haze

pollution crisis, for example, by optimizing energy usage (Jiang et al.,

2020; Zhu et al., 2021b; Hussain et al., 2022). Conversely, some

studies have indicated that green technology innovation leads to

environmental degradation and the deterioration of air quality due

to rebound effects (Wang et al., 2021). Recent studies have shown

that the eco-friendly effects of green technology innovation are

inconclusive and disputable. The main manifestations are nonlinear

correlations and heterogeneities among the various types of green

technology innovation (Chien et al., 2021). Yan et al. (2020) have pro-

posed that the nonlinear influence of green technology innovation on

air quality is primarily related to regional economic levels. The effect

of green technology on air quality is disputable because of its diverse

social and economic surroundings (Zeng et al., 2022). The heteroge-

neity of global green technology innovation indicators can also lead

to differences in the effect on air quality (Yi et al., 2020); therefore,

the effect of green technology innovation on air quality warrants fur-

ther discussion.

Green technology innovation and economic development revolve

around two perspectives. One is the RBV, which supports the positive

correlation between green technology innovation and economic

development, arguing that green technology innovation can bring

tangible and intangible resources, thereby reducing production and

operation costs and giving cities a “first-mover advantage” (Przy-

chodzen et al., 2020). Moreover, the environment-friendly features of

green technology innovation can effectively enhance a city’s green

image (Xie et al., 2022), which is conducive to enhancing its competi-

tive advantage and promoting its economic development. The second

view advocates the double externalities of high costs and risks, lead

to uncertain economic outcomes of green technology innovation

(Rennings, 2000). According to this view, green technology innova-

tion has higher costs and uncertainties and may impose unnecessary

costs on investors (Hussain et al., 2022), making its economic benefits

questionable. Specifically, the attention-based view demonstrates

that green technology innovation shifts an organization’s attention

from economic, managerial, and technological considerations to envi-

ronmental responsibility due to cognitive and resource constraints,

which can diminish its economic benefits (Mithani, 2017). Further-

more, the long payback cycle of green technology innovation exposes

investors to potential financial risks (Zhang et al., 2022). Moreover,

the knowledge gap divide and insufficient governmental support

always accompany green technology innovation (Abdullah et al.,

2016; Gong et al., 2020). These two perspectives suggest that green

technology innovations present opportunities and challenges for cit-

ies’ economic development.

Recently, the growing body of research has recently recognized

the significance of green technology innovation in green develop-

ment. Scholars have shown an increased interest in the effect of

green technology innovation on green development, which integra-

tes economic and air quality considerations. Chen et al. (2022b) have

asserted that green technology innovation can improve raw material

utilization efficiency, lower the cost of resource utilization, and miti-

gate environmental pollution, all of which contribute to achieving

green and sustainable development. Liao and Li (2022) have argued

that the green technology innovation process aims to obtain the max-

imum green innovation output with the least input, while emitting

the least harmful pollutants. Additional studies have reported that

the influence of green technology innovation on the economic envi-

ronment may be heterogeneous because of the differences in

resource endowment (Hao et al., 2020; Liao & Li., 2022). The “polari-

zation-trickle effect” is also worth further discussion. As the ultimate

viable strategy to address global warming, green development has

become a trend in ecological modernization, aiming to stimulate eco-

nomic growth while curbing pollution emissions (Guo et al., 2020).

Measuring green development requires the consideration of both

economic and environmental factors. However, existing studies have

mainly measured it by using single-factor indicators, such as carbon

emissions, unit energy consumption, and air quality, or by construct-

ing a comprehensive index based on deterministic parametric and
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stochastic frontier models (Hao et al., 2020; Sohag et al., 2021; Liao &

Li, 2022; Shahzad et al., 2022). Few studies have examined whether

green technology innovation can generate both economic and envi-

ronmental dividends. Although studies on single-factor indicators

and construction of a comprehensive index have considered the role

of green technological innovation at the micro and systemic levels,

they have not considered possible internal mechanisms. Thus, this

study examines whether green technology innovation can fulfill a

win−win situation for both the economy and the environment from

a two-dimensional perspective and explores its internal mechanisms

from a nonlinear perspective.

Existing research on this topic has provided mixed results, which

could be attributed to previous studies ignoring the inner mecha-

nisms and heterogeneous conditions of the correlations among green

technology innovation, economic development, and air quality.

Green technology innovation should ensure that it benefits both the

economy and the environment, considering how the economy and

environment interact; hence, we employ economic development and

air quality as indexes for an alternative dependent variable. Further-

more, we construct a theoretical framework based on the STIRPAT

and C−D production functions to report on a city’s analysis of how

green technology innovation affects air quality and economic devel-

opment. More specifically, we apply spatial economics to systemati-

cally the role of green technology innovation in heterogeneously

facilitating a win−win situation between the economy and the envi-

ronment across types and spatial and nonlinear perspectives.

Mechanism analysis and the research hypothesis

Green technology innovation and air quality

With the intensification of urban environmental pressures, the

role of green technology innovation in air quality has gradually

become a significant topic of scholarly attention. Green technology

innovation emphasizes the energy-saving and emission-reduction

characteristics of technology innovation, aiming to orient production

toward environmental goals (Lee et al., 2022b). We argue that green

technology innovation can realize energy savings and emissions

reduction effects through input and output mechanisms to improve

air quality. From an input perspective, advanced technology and pro-

duction equipment can reduce material consumption per output

unit. These eco-friendly energy innovations have contributed to

improvements in air quality by reducing fossil fuel consumption and

increasing green energy consumption (Niu, 2011). From an output

perspective, industrial pollutant emissions can be reduced to a man-

ageable range using new technology production. This help realize the

emission reduction utility of green technology innovation and con-

tribute to improving air quality (Fei et al., 2014). Therefore, the first

hypothesis is proposed as follows:

Hypothesis 1: Green technology innovation is beneficial to air

quality.

Green technology innovation, as a technical support for sustain-

ability, has a critical effect on the regional environment (Zhong et al.,

2022; Dong et al., 2022). The double externality of green technology

innovation makes it a spillover characteristic that reduces the costs

of the flow and integration of green technology elements across time

and space (Qi et al., 2022). This situation is conducive to generating

synergistic innovation effects and regional radiation effects, which

subsequently enhance air quality in the regions where the factors

flow. Furthermore, green technology innovation may show “pollution

transfer” and “free-rider” phenomena, making it a negative external-

ity (Zhong et al., 2022) that harms the surrounding areas’ ecological

environment and cannot achieve coordinated governance across

regions. Thus, the spatial spillover effect of green technology innova-

tion on air quality through technology spillover mechanisms is worth

considering; therefore, we propose the following hypothesis:

Hypothesis 2: Green technology innovation has a spatial spillover

effect on urban air quality.

Green technology innovation and economic development

Existing studies have demonstrated the positive (Przychodzen et

al., 2020; Xie et al., 2022) and negative (Mithani, 2017) effects of

green technology innovation on economic development. Despite the

debated background of this subject, we rely on the RBV theory and

argue that green technology innovation enhances economic develop-

ment through resource advantage and technology spillover mecha-

nisms. On one hand, green technology innovation brings tangible and

intangible resource advantages that increase economic benefits

(Zhang et al., 2022). Specifically, green technology innovation can

optimize production methods and promote productivity, creating

economic benefits through cost reduction and efficiency. Further-

more, the competitive advantage generated by green technology

innovation helps capture a larger market share, forming a scale econ-

omies advantage (Zhu et al., 2021c). Therefore, we propose the fol-

lowing hypothesis:

Hypothesis 3: Green technology innovation is beneficial to eco-

nomic development.

On the other hand, the literature has indicated that green technol-

ogy innovation has spatial diffusion (Cao et al., 2022; Huang et al.,

2022). Green technology innovation can produce spillover effects

through the aggregation and flow of innovation factors and facilitate

technology diffusion through learning effects and absorptive capacity

(Zhang et al., 2022). Furthermore, technology diffusion breaks space

constraints, optimizing the configuration of green technology resour-

ces and producing an innovation demonstration effect. This effect

provides new solutions for the economic development of surround-

ing regions. Hence, the following hypothesis is proposed:

Hypothesis 4: Green technology innovation has a spatial spillover

effect on urban economies.

The nonlinear role of economic development

Previous studies have reported that economic development and

air quality are closely related, and that an “Environmental Kuznets

Curve” exists. This indicates that the economic development level

determines the direction of its impact on air quality (Zhu et al.,

2021c; Yang et al., 2022a). We argue that a nonlinear economic driv-

ing effect exists between green technology innovation and air quality,

and that its intrinsic logic is reflected in two aspects. First, the initial

stage of economic development is often crude with high levels of

investment, pollution, and low efficiency (Zeng et al., 2022). A boost

in the cost of green technology innovation in cities may intensify the

decoupling of economic growth and environmental development,

increase energy consumption, aggravate air pollution, and subse-

quently worsening air quality (Zhang, 2021). Second, when economic

development reaches a certain level, the health and environmental

opportunity costs increase rapidly. This increase shifts the crude

development model to a high-quality development transition that

introduces green technology innovation by producing clean products,

improving the production process, and enhancing energy use effi-

ciency, significantly reducing air pollutant emissions and improving

air quality (Ali et al., 2020; Li et al., 2021a). Thus, we propose the fol-

lowing hypothesis:

Hypothesis 5: Economic development has a threshold effect on

the correlation between green technology innovation and air quality.

Green technology innovation is the advancement of green tech-

nology, which improves firm productivity and brings economic bene-

fits, contributing to urban economic development. Green technology

innovation that achieves marketization provides a stronger competi-

tive advantage indicating that high-quality economic development

can provide sufficient capital investment and technical support for
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urban environmental management, thereby improving air quality.

Furthermore, the integrative view of this study on economic develop-

ment and air quality reflects the natural RBV theory, which suggests

that green technology innovation can help cities gain sustainable

competitiveness and achieve win−win economic and ecological

development. This can be achieved by changing the direction of tech-

nological progress and applying the advantages of resources and

capabilities to environmentally friendly products and processes

(Alam et al., 2019; Zhang et al., 2022).

Generally, the literature has revealed that green technology inno-

vation indirectly affects air quality through economic development.

We show that green technology innovation contributes to economic

development and provides cities with a greater resource advantage.

Green-oriented resource utilization can be enhanced through techno-

logical breakthroughs, leading to production and service toward

environmental goals. Therefore, we suggest that economic develop-

ment determines how green technology-innovative cities can

improve their air quality. This leads to the sixth hypothesis, which is

as follows:

Hypothesis 6: Economic development mediates the correlation

between green technology innovation and air quality.

Fig. 1 presents our study’s theoretical model, showing the hypoth-

esis-evolution process. The lines with arrows indicate the influencing

mechanisms and channels. Specifically, Hypotheses 1 and 3 examine

the heterogeneous effect of green technology innovation on air qual-

ity and economic development. Hypotheses 2 and 4 focus on the

spillover mechanisms of green technology innovation. Finally,

Hypotheses 5 and 6 address the nonlinear role of economic develop-

ment in the green technology innovation−air quality transmission

mechanism.

Research design

Model specification

We use the theoretical framework of the STIRPAT and C−D pro-

duction function models to construct a model specification for

exploring how green technology innovation affects air quality and

economic development. The STIRPAT model proposed by Dieta and

Rosa (1997) is widely used as a theoretical framework to explore the

effect of technology innovation on environmental indices. It was con-

structed as follows:Iit ¼ aPb
itA

c
itT

d
iteit

The logarithmic forms of all variables are considered to eliminate

heteroscedasticity, which can be expressed as follows:

lnðIitÞ ¼ aþ b lnðPitÞ þ c lnðAitÞ þ d lnðTitÞ þ eit ð1Þ

Here, I denotes the environmental index, P is pollution, A is afflu-

ence, and T is the technology. The subscripts i and t represent the city

and year, respectively; moreover, b, c, and d indicate the parameters

to be estimated; a is the constant term and e is the error term. Fol-

lowing Ma et al. (2022), the technology level in STIRPAT can be repre-

sented by technology innovation. Thus, based on the STIRPAT

framework, we develop models to investigate the effects of green

technology innovation on air quality:

lnPM2:5it ¼ b1 lningpit�1 þ b2 lnstruit þ b3 lnpopit þ b4 lnfdiit

þ b5 lnpGDPit þ ai þ eit ð2Þ

lnPM2:5it ¼ b1 lnnewgpit�1 þ b2 lnstruit þ b3 lnpopit þ b4 lnfdiit

þ b5 lnpGDPit þ ai þ eit ð3Þ

Here, PM2.5 indicates air quality, and ingp and newgp denote

green inventive technology innovation and green improved technol-

ogy innovation, respectively. Following Coad et al. (2016) and Zhu et

al. (2021a), we lag the green technology innovation variables by one

year to reduce potential endogeneity concerns in the econometric

models. Furthermore, considering the multicollinearity problem, we

construct a model to study the heterogeneous effects of different

types of green technology innovation . stru, pop, fdi and pGDP are the

control variables defined in Section 3.4.3. b1−b5 are the parameters

to be estimated, and ai stands for individual effect.

The Cobb−Douglas production function can be expressed as

follows:Yit ¼ AitK
b
itL

c
iteit

We take the logarithmic form for all variables to eliminate hetero-

scedasticity and extreme values, which can be expressed as follows:

lnðYitÞ ¼ lnðAitÞ þ b lnðKitÞ þ c lnðLitÞ þ lnðeitÞ ð4Þ

Here, Y is the production index and K and L denote capital and

labor, respectively; A represents other factors affecting production,

such as technical progress. Referring to Shao et al. (2022), we intro-

duce green technology innovation into the production formula, with

the related explanatory variables controlled to build a model specifi-

cation that investigates the effect of innovation on economic devel-

opment.

lnpGDPit ¼ b1 lningpit�1 þ b2 lnstruit þ b3 lnpopit þ b4 lnfdiit

þ b5 lnklit þ ai þ eit ð5Þ

lnpGDPit ¼ b1 lnnewgpit�1 þ b2 lnstruit þ b3 lnpopit þ b4 lnfdiit

þ b5 lnklit þ ai þ eit ð6Þ

Here, pGDP denotes economic development, the control variables

include stru, pop, fdi, and kl, and the other variables are the same as

before.

Spatial econometric model

Considering that green technology innovation, economic develop-

ment, and the environment have pronounced agglomeration and

spillover effects, spatial correlations should be considered (Shao et

al., 2022). Following Elhorst (2012), we adopt a spatial Durbin

Fig. 1. Theoretical model.
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econometric model to examine the spatial dependence and heteroge-

neity of green technology innovation on the economy and environ-

ment, as shown in Eq. (7). Compared to the spatial error model (SEM)

and spatial lag model (SLM), the spillover effect of the spatial Durbin

model (SDM) is not restricted by endogenous or exogenous con-

straints. According, it can avoid parameter estimation bias caused by

the spatial dependence of omitted variables (Zhai & An, 2021; Cao et

al., 2022).

yit ¼ r
X

N

j¼1

wijyjt þ xitbþ g
X

N

j¼1

wijxjt þ ai þ λt þ eit ð7Þ

Here, y indicates the explained variables and x and b indicate core

explanatory and control variables and their coefficients, respectively;

w represents the geographical distance spatial weight matrix. w ¢ y is

a spatial lag term for the explained variables. r is the spatial correla-

tion coefficient, measuring the spatial correlation strength between

city i and its geographically neighboring city j.
PN

j¼1 wijxjt and g
denote the spatial lag term and its coefficient vector for the indepen-

dent variables, respectively. ai, λt, and eit refer to the space-fixed and

time-fixed effects, and the error terms, respectively.

We capture the spatial marginal effect by employing a partial dif-

ferential technique to disintegrate spatial spillover effects into direct,

indirect, and total effects (Huang et al., 2022). Thus, the SDM can be

rewritten as follows:

Yit ¼ ðIn � rWÞ�1
eþ ðIn � rWÞ�1ðXtbþWXtgÞ ð8Þ

The partial derivative matrix of Y to Xk for different individuals at a

specific time is given by Eq. (9). The direct and indirect effects are the

averages of the sums of the diagonal and non-diagonal elements of

the rightmost matrix, respectively.

@EðYÞ
@x1k

⋯
@EðYÞ
@xNK

� �

t

¼
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⋯
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Nonlinear effect regression model

Coordinating the economy and the environment are important for

the perspective of high-quality development. According to the STIR-

PAT framework, the heterogeneous effect of green technology inno-

vation on air quality is influenced by regional discrepancies in

economic development. Considering China’s large land area and its

heterogeneous features, its economic development is unbalanced

(Fang et al., 2022); therefore, there may be nonlinear linkages

between green technology innovation and air quality. First, following

Hansen (1999), we employ a panel threshold regression estimator to

verify the nonlinear linkages:

lnPM2:5it ¼ b0 þ b1gpit ¢ Iðqit�cÞ þ b2gpit ¢ Iðqit > cÞ þ biXit þ ai

þ λt þ eit ð10Þ

Here, b is the coefficient to be estimated. I(.) is the indicator func-

tion, qit is the threshold variable, and c is a specific threshold value.

gpit denotes green technology innovation and specifically includes

lningp and lnnewgp. The threshold variable used in this study is

lnpGDP. Xit is a vector of control variables and ai, λt, and eit are synon-

ymous with Eq. (7).

Second, we adopt a stepwise regression method to verify the

mediating role of economic development in the technology innova-

tion−air quality relationship. The following models are estimated:

lnPM2:5it ¼ g0 þ g1gpit�1 þ g2Xit þ ai þ eit ð11Þ

lnpGDPit ¼ f0 þ f1gpit�1 þ f2Xit þ ai þ eit ð12Þ

lnPM2:5it ¼ b0 þ b1gpit þ b2 lnpGDPit þ b3Xit þ ai þ λt þ eit ð13Þ

Here, g , ’ and b are the parameters to be estimated. The other

variables are same as those in Eq. (10).

Variable description and data source

Explained variables

Air quality (PM2.5) is measured using the annual average PM2.5

concentration. PM2.5 represents the degree of air pollution and

urban environmental performance. Referring to Ma et al. (2022), the

higher the PM2.5 content in the air concentration, the worse the air

pollution is; thus, the environmental performance deteriorates.

Economic development (pGDP) is measured using per capita real

GDP, a term commonly used in the related literature (Huang et al.,

2022; Fang et al., 2022), to represent urban per capita wealth. It is a

core indicator of urban economic growth and efficiency, and reflects

local economic development.

Explanatory variables

Green patents are an effective and robust indicator of green tech-

nology innovation output and productivity, and can be identified

using the International Patent Classification code (Li et al., 2021b; Lee

et al., 2022b; Zhang et al., 2022). China’s patent law and existing

studies define green patents as inventions and utility model patents

(Lian et al., 2022). Specifically, green invention patents must meet

the features of inventiveness, novelty, and practicality, as well as

energy conservation and emission reduction. Green utility model pat-

ents refer to product or process improvement innovations with

energy conservation and emissions reduction features. Accordingly,

our work explores the heterogeneous effect of green technology

innovation from a multidimensional perspective, including green

inventive and green improved technology innovation. Considering

that patent applications better reflect innovation activities without

time lags and institutional preferences (Yang et al., 2022b), this work

measures green inventive technology innovation (ingp) based on the

number of green invention patent applications and green improved

technology innovation (newgp) using the number of green utility

model patent applications.

Control variables

Based on the theoretical framework of the STIRPAT and C−D pro-

duction function models, we employ the following control variables:

Industrial structure (stru) is measured by the tertiary industry output

value to the secondary industry output value (Liu et al., 2022), and

the optimization and upgrading of the industrial structure is a critical

driver for enhancing high-quality economic development. Population

density (pop) is measured using the number of resident populations

per square kilometer, representing urban agglomeration capacity

(Wang et al., 2022). Capital−labor ratio (kl) is measured as fixed

assets to the number of urban employees. It considers capital and

labor as the two primary factors of production, reflecting the inten-

sity of either capital or labor (Zhang et al., 2022). Foreign direct

investment (fdi) is measured as the actual foreign investment used in

the year to the GDP, which is a crucial factor affecting regional eco-

nomic development and environmental quality. On one hand, foreign

investment can introduce advanced technology through demonstra-

tion and learning effects; on the other hand, foreign investment

comes with the risk of the host country becoming a “pollution refuge”
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(Wang et al., 2021). Notably, all variables in the estimation of model

parameters are logarithmically treated to eliminate the influence of

heteroscedasticity.

Data source and descriptive statistics

Considering data availability, this study employs 166 prefecture-

level cities in China from 2004 to 2019 as the research object (some

cities were not included in the examination because of missing

PM2.5 and patent data). The innovation data were obtained from the

CNDRS database. Other data were collected from the China City Sta-

tistical Yearbook (2005−2020). Missing data were manually collected

from the websites of the local municipal governments. Descriptive

statistics are shown in Table 1.

Results and discussion

Spatial econometric tests

Global Moran’s I statistic is a critical indicator for examining the

presence of spatial dependence in variables. Table 2 shows that each

value is always significantly positive, indicating that China’s green

innovation, air quality, and economic development have a significant

positive spatial dependence among cities. Improvements in green

technology innovation, air quality, and economic development in a

city can significantly boost green technology innovation, air quality,

and economic development in neighboring cities. Furthermore, we

depict a local Moran’s I scattergram of the core variables in 2019 to

investigate the instability and type of local spatial agglomeration.

Fig. 2 indicates that most cities fall in the quadrants I (high−high)

and III (low−low), showing that a positive spatial dependence of core

variables exists among cities in China. Considering the existence of

spatial cluster characteristic, spatial econometrics must be employed.

Statistical tests of the spatial model applicability on the regression

results for green innovation and air quality and green innovation and

economic development were conducted, as shown in Table 3. First,

the Lagrange multiplier (LM) (robust) test results significantly reject

the null hypothesis at the 1% level, suggesting spatial dependence

characteristics in the sample data. Second, the likelihood ratio (LR)

test is used to verify whether the SDM could be simplified to an SLM

or SEM and whether the two-way fixed effects could be simplified to

spatial- or time-fixed effect models. Considering the LR test results,

all hypotheses were rejected at the 1% level, indicating that the two-

way fixed-effects SDM model is best suited for this study. Finally, the

Hausman test result indicates that a fixed-effects model should be

employed; hence, we conclude that the a spatial- and time-fixed

SDM is optimal for our study.

Spatial benchmark regression

This study employs a two-way fixed SDM to investigate the effect

of green innovation on air quality and economic development. Tables

4 and 5 show that the direct effect explains the intra-region effect of

green technology innovation, whereas the indirect effect explains the

effect of green technology innovation on the surrounding regions,

which represents the spillover effect. Finally, the total effect explains

the effect of green technology innovation on the entire region.

As shown in Table 4, the autocorrelation coefficient r of PM2.5 is

significantly positive at the 1% level, indicating a highly positive spa-

tial spillover effect of PM2.5. PM2.5 can characterize urban environ-

mental pollution through spatial aggregation and dependence, which

aligns with Ma et al. (2022). Furthermore, different green technology

innovations have heterogeneous impacts on air quality. Specifically,

the direct effect coefficient of lningp is significantly negative, indicat-

ing that green inventive technology innovation can effectively sup-

press local PM2.5 emissions while improving urban air quality. The

indirect effect coefficient of lningp is also significantly negative, indi-

cating that green inventive technology innovation affects air quality

of the surrounding areas; it can also be seen as having “symbiotic

effects” (Zhong et al., 2022). This phenomenon can be attributed to

the positive externalities of green inventive technology innovation

and air quality (Xu et al., 2021). Notably, the indirect effect coefficient

of lningp is higher than the direct effect coefficient, implying that

green inventive technology innovation has a significantly greater

Table 1

Descriptive statistics.

Variables Obs Mean Std Max Min

lnPM2.5 2656 3.589 0.472 4.895 1.509

lnpGDP 2656 10.360 0.892 12.156 0.000

lningp 2656 3.479 2.076 10.088 0.000

lnnewgp 2656 3.806 1.932 9.270 0.000

lnstru 2656 0.626 0.226 1.817 0.000

lnpop 2656 5.846 0.880 8.960 0.000

lnfdi 2656 0.247 0.211 1.384 0.000

lnkl 2656 12.198 0.805 14.006 9.356

Table 2

Global Moran’s I of variables from 2004−2019.

Years lnPM2.5 lnpGDP lningp lnnewgp

Moran’s I Z Moran’s I Z Moran’s I Z Moran’s I Z

2004 0.164*** 17.568 0.045*** 5.862 0.038*** 4.551 0.078*** 8.657

2005 0.165*** 17.568 0.123*** 13.294 0.047*** 5.451 0.073*** 8.126

2006 0.176*** 17.568 0.124*** 13.405 0.060*** 6.782 0.085*** 9.385

2007 0.182*** 17.568 0.123*** 13.241 0.066*** 7.448 0.094*** 10.293

2008 0.183*** 17.568 0.119*** 12.851 0.074*** 8.252 0.090*** 9.899

2009 0.184*** 17.568 0.113*** 12.275 0.084*** 9.316 0.099*** 10.778

2010 0.181*** 17.568 0.108*** 11.722 0.090*** 9.874 0.117*** 12.684

2011 0.186*** 17.568 0.104*** 11.308 0.084*** 9.217 0.118*** 12.717

2012 0.173*** 17.568 0.097*** 10.638 0.083*** 9.165 0.123*** 13.314

2013 0.196*** 17.568 0.106*** 11.511 0.085*** 9.364 0.119*** 12.865

2014 0.180*** 17.568 0.090*** 9.888 0.081*** 8.960 0.114*** 12.335

2015 0.226*** 17.568 0.092*** 10.050 0.082*** 9.043 0.108*** 11.687

2016 0.221*** 17.568 0.093*** 10.154 0.096*** 10.530 0.119*** 12.887

2017 0.176*** 17.568 0.040*** 6.213 0.092*** 10.079 0.118*** 12.754

2018 0.195*** 17.568 0.095*** 10.438 0.091*** 10.005 0.110*** 11.926

2019 0.206*** 17.568 0.104*** 11.361 0.102*** 11.122 0.116*** 12.505

Note: *** means significant at the levels of 1%.
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impact on the air quality of surrounding cities via spillover effects.

Thus, the total effect is significantly negative, reflecting that green

inventive technology innovation can positively improve urban air

quality across regions. The coefficient of lnnewgp is positive; how-

ever, only the direct effect passes the statistical significance test. This

results suggests that green improved technology innovation is one of

the elements that aggravate local air pollution; moreover, its corre-

sponding spatial distance spillover mechanism has not yet been

formed and does not have any spatial spillover effects. Thus, Hypoth-

eses 1 and 2 are partially verified. Our results regarding air pollutants

are consistent with those of Ma et al. (2022) and Yi et al. (2022);

however, we focus on air quality considering heterogeneous green

technology innovation.

Table 5 shows that the autocorrelation coefficient r of pGDP is sig-

nificantly positive at the 1% level, implying that urban economic

development has significant spatial spillover effects and that the

“local club phenomenon” exists. Furthermore, the direct effect coeffi-

cients of lningp and lnnewgp are insignificant, while the indirect and

total effect coefficients are significantly positive. Therefore, green

technology innovation does not improve local economic develop-

ment; however, the heterogeneous types of green technology inno-

vation can drive the economic growth of neighboring cities, which

supports H3 and H4. Unlike Feng et al. (2021), our results concerning

the spatial effect of green technology innovation are consistent with

those of Peng et al. (2021). They have argued that the network effect

of green technology innovation can expand the spatial spillovers of

tacit knowledge and facilitate the absorption of knowledge and tech-

nology, thereby playing a significant role in fostering the surrounding

cities’ economies. Overall, green inventive technology innovation sig-

nificantly promotes economic development while suppressing the

increase in PM2.5 concentration, showing that green inventive tech-

nology innovation can drive win−win economic development and air

quality.

Among the control variables, lnpGDP has a significantly negative

effect on PM2.5, indicating that economic development is conducive

to urban air quality improvement. lnfdi has a significantly positive

effect on PM2.5 and a significantly negative direct effect on pGDP,

implying that FDI is detrimental to urban air quality improvement

and local economic development. lnstru significantly and negatively

affects economic development, indicating that the current structure

of secondary and tertiary industries is not conducive to economic

Fig. 2. Moran’s scatter plot in 2019.

Table 3

Evaluation of spatial measurement model selection.

Test parameters lnPM2.5 lnpGDP

lningp lnnewgp lningp lnnewgp

LM-Error test 3350.218*** 3424.175*** 224.072*** 185.651***

Robust LM-Error test 3134.260*** 3206.036*** 240.135*** 201.093***

LM-Lag test 636.680*** 632.927*** 101.976*** 118.444***

Robust LM-Lag test 420.722*** 414.789*** 118.039*** 133.885***

LR test (H0: SLM nested

in SDM)

168.520*** 175.850*** 46.370*** 46.350***

LR test (H0: SEM nested

in SDM)

188.680*** 184.860*** 57.010*** 57.470***

LR test (H0: spatial

nested in both)

118.530*** 91.520*** 42.880*** 46.400***

LR test (H0: time nested

in both)

3651.440*** 3668.310*** 2237.320*** 2177.250***

Hausman Test (H0: ran-

dom-effects)

185.300*** 163.500*** 80.550*** 58.190***

Note: *** means significant at the levels of 1%.
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development and that it is necessary to optimize the industrial struc-

ture. Additionally, the coefficients of lnkl on pGDP are significant and

positive, indicating that greater capital intensity benefits urban eco-

nomic development.

Endogeneity problems

To address the potential endogeneity problems caused by bidirec-

tional causality, we employ the instrumental variable (IV) method,

which effectively mitigates the effects of endogeneity problems (Lee

et al., 2022b; Wu et al., 2022). As Liu et al. (2022) have suggested, we

select the third-order lags of urban total post and telecommunica-

tions businesses as the IV to conduct a 2SLS regression estimation, as

shown in Table 6; the IVs are valid. Furthermore, the coefficients of

green inventive and improved technology innovation align with the

total effect of the spatial benchmark regression results, supporting

the conclusions of this study. Accordingly, we can conclude that the

results obtained from the benchmark model remain robust after con-

sidering potential endogeneity problems.

Robustness tests

We verify these results by conducting three robustness tests

(Table 7). First, we modify the spatial weight matrix. Following Zhong

et al. (2022), we replace the geographic distance spatial weight

matrix with a geographic proximity 0−1 matrix to justify the

dependability of our spatial model estimation results. Our study is

considered robust because the results are generally consistent with

those of previous studies. Second, following Deng et al. (2022), we

replace the original core explanatory variables with the number of

patent grants instead of applications. The results indicate that the

coefficients’ features of the green inventive and improved technology

innovation are consistent with the results of the spatial benchmark;

this further verifies the robustness of the research results. Third, we

exclude the odd values of the core explanatory variables. We apply a

1% two-sided tailing process to green inventive and improved tech-

nology innovation variables to reduce the interference of outliers

with the study results. The results show no change in the significance

and coefficient sign of the green technology innovation variables, fur-

ther verifying the reliability of the results.

Table 4

Spatial effects decomposition results of heterogeneous green technology innovation on PM2.5.

Variable Direct effect Indirect effect Total effect Direct effect Indirect effect Total effect

lningp �0.032*** �3.569*** �3.602***

(0.009) (1.342) (1.350)

lnnewgp 0.019** 0.067 0.086

(0.008) (1.003) (1.008)

lnstru �0.046 1.823 1.777 �0.052 0.136 0.084

(0.043) (5.817) (5.847) (0.044) (6.056) (6.086)

lnpop �0.041 �4.645 �4.686 �0.045 �5.208 �5.253

(0.031) (4.109) (4.137) (0.032) (4.319) (4.348)

lnpGDP �0.104*** �14.916*** �15.020*** �0.125*** �18.128*** �18.253***

(0.031) (4.928) (4.958) (0.036) (5.812) (5.812)

lnfdi 0.138** 23.718*** 23.855*** 0.205*** 34.417*** 34.622***

(0.053) (8.092) (1.350) (0.068) (10.788) (10.851)

r 0.955***(0.011) 0.956***(0.011)

Note: Robust standard errors are shown in parentheses. ***.

** and * mean significant at the levels of 1%, 5% and 10%, respectively.

Table 5

Spatial effects decomposition results of heterogeneous green technology innovation on pGDP.

Variable Direct effect Indirect effect Total effect Direct effect Indirect effect Total effect

lningp �0.012 0.343*** 0.331***

(0.014) (0.120) (0.118)

lnnewgp 0.022 0.373*** 0.395***

(0.017) (0.142) (0.139)

lnstru �0.403*** �1.533* �1.936** �0.388*** �1.514* �1.903**

(0.082) (0.855) (0.833) (0.082) (0.852) (0.829)

lnpop �0.002 0.223 0.220 �0.005 0.066 0.062

(0.035) (0.532) (0.537) (0.035) (0.532) (0.538)

lnfdi �0.146** 0.085 �0.061 �0.154** �0.283 �0.436

(0.066) (0.759) (0.756) (0.066) (0.725) (0.721)

lnkl 0.104*** 0.902*** 1.005*** 0.103*** 0.990*** 1.093***

(0.023) (0.246) (0.242) (0.023) (0.252) (0.248)

r 0.224*(0.122) 0.224*(0.122)

Note: Robust standard errors are shown in parentheses. ***.

** and * mean significant at the levels of 1%, 5% and 10%, respectively.

Table 6

Endogenous problem analysis.

Variable lnPM2.5 lnpGDP

lningp �0.023* 0.334***

(0.013) (0.013)

lnnewgp 0.023 0.335***

(0.017) (0.012)

Controls Yes Yes

R-squared 0.4679 0.4663 0.575 0.590

Kleibergen-Paap rk LM

statictic

63.196 73.189 550.428 591.513

Kleibergen-Paap rk

Wald F statictic

1566.948 2158.732 2544.850 3777.113

Note: Robust standard errors are shown in parentheses. ***.

** and * mean significant at the levels of 1%, 5% and 10%, respectively. For space

limitations, the results of parameter estimation of control variables are not

presented.
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Heterogeneity analysis

Regional heterogeneity. China is a vast territory with significant

differences in regional green technology innovation and socioeco-

nomic development (Shao et al., 2022). Based on Zhang and Liu

(2022), this study further examines spatial heterogeneity by dividing

the sample cities into the following four subsamples: eastern, central,

western, and northeastern. Table 8 shows that the estimation results

for green inventive and improved technology innovation show pro-

nounced spatial heterogeneity.

Considering the effects on air quality in the central and western

regions, the direct and indirect effects of green inventive technology

innovation on PM2.5 are significantly negative. Furthermore, a signif-

icantly negative spatial spillover effect of green improved technology

innovation exists in the central region. Moreover, we observe a sig-

nificantly positive spatial spillover effect in the western region. These

results indicate that green inventive patent production in the central

and western cities can improve local air quality and have spillover

effects on neighboring cities. The findings support that the “demon-

stration−imitation” mechanism of green inventive technology

Table 7

Robustness test.

Variables lnPM2.5 lnpGDP

Direct effect Indirect effect Total effect Direct effect Indirect effect Total effect

Replace the spatial weight matrix

lningp �0.021*** �1.168*** �1.189*** �0.018 0.298*** 0.280***

(0.006) (0.332) (0.335) (0.014) (0.082) (0.083)

lnnewgp 0.009 �0.656* �0.647* 0.021 0.177** 0.199**

(0.007) (0.350) (0.352) (0.017) (0.088) (0.088)

Controls Yes Yes Yes Yes Yes Yes

(2) Replace the core explanatory variables

lningp �0.052*** �5.956*** �6.008*** �0.001 0.226** 0.225**

(0.012) (1.889) (1.900) (0.014) (0.114) (0.113)

lnnewgp 0.007 �0.428 �0.429 0.008 0.320** 0.328**

(0.008) (0.954) (0.959) (0.017) (0.134) (0.132)

Controls Yes Yes Yes Yes Yes Yes

Excluding odd values of core explanatory variables

lningp �0.025*** �3.341** �3.366** �0.012 0.348*** 0.336***

(0.009) (1.291) (1.298) (0.014) (0.118) (0.116)

lnnewgp 0.028*** 0.502 0.530 0.022 0.381*** 0.403***

(0.008) (1.010) (1.015) (0.017) (0.139) (0.137)

Controls Yes Yes Yes Yes Yes Yes

Note: Robust standard errors are shown in parentheses. ***.

** and * mean significant at the levels of 1%, 5% and 10%, respectively. For space limitations, the results of

parameter estimation of control variables are not presented, and the estimation results of green inventive tech-

nology innovation and green improved technology innovation are shown in the same column and distinguished

by the horizontal lningp and lnnewgp, respectively.

Table 8

Estimation results for the SDM by region.

Variables lnPM2.5 lnpGDP

Direct effect Indirect effect Total effect Direct effect Indirect effect Total effect

Eastern region

lningp 0.018* 0.406 0.423 �0.029 �0.077 �0.106

(0.010) (0.259) (0.265) (0.026) (0.149) (0.150)

lnnewgp 0.024* 0.404 0.429 0.130*** �0.345** �0.215

(0.013) (0.315) (0.321) (0.032) (0.176) (0.176)

Controls Yes Yes Yes Yes Yes Yes

Central region

lningp �0.034*** �1.021** �1.054*** 0.004 �0.044 �0.040

(0.010) (0.394) (0.401) (0.022) (0.080) (0.074)

lnnewgp �0.012 �0.987** �0.999** 0.037 0.109 0.146*

(0.011) (0.439) (0.446) (0.027) (0.098) (0.088)

Controls Yes Yes Yes Yes Yes Yes

Western region

lningp �0.054*** �1.197*** �1.251*** �0.035 0.136 0.101

(0.013) (0.371) (0.378) (0.032) (0.109) (0.107)

lnnewgp 0.104*** 2.877*** 2.982*** �0.090** �0.314 �0.404*

(0.027) (0.936) (0.959) (0.039) (0.235) (0.245)

Controls Yes Yes Yes Yes Yes Yes

Northeastern region

lningp �0.007 0.061 0.054 �0.003 0.015 0.011

(0.018) (0.062) (0.067) (0.020) (0.057) (0.059)

lnnewgp 0.028 0.136 0.165 �0.049** �0.165** �0.214***

(0.021) (0.095) (0.107) (0.021) (0.066) (0.072)

Controls Yes Yes Yes Yes Yes Yes

Note: Robust standard errors are shown in parentheses. ***,** and * mean significant at the levels of 1%, 5% and

10%, respectively. For space limitations, the results of parameter estimation of control variables are not pre-

sented, and the estimation results of green inventive technology innovation and green improved technology

innovation are shown in the same column and distinguished by the horizontal lningp and lnnewgp, respectively.
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innovation is applicable (Shao et al., 2022), indicating that green

inventive patent production can also improve the air quality of sur-

rounding cities. Furthermore, green design-based patent production

can help neighboring cities in the central region improve air quality;

however, it is unfavorable to neighboring cities in the western region.

Additionally, the absolute value of the indirect effect coefficient is

significantly larger than that of direct effect, implying that cities

within the central and western regions are more closely con-

nected in terms of modern ecological technology. In the north-

eastern region, the effects of green technology innovation are

insignificant. Green technology innovation can aggravate local

environmental pollution in the eastern region, and no intrare-

gional spatial distance spillover mechanisms are observed. This

result is supported by that of Zhang and Liu (2022), who have

pointed out that green technology innovation has a “crowding

effect” and has entered a bottleneck because of long preferential

development in the eastern region.

Considering the effects on economic development, the indirect

effects of green inventive technology innovation on urban economic

development are not significant in any region, while green improved

technology innovation has significantly negative indirect effects in

the eastern and northeastern regions. The results indicate that the

positive spatial spillover effect of green technology innovation on

Chinese economic development is mainly realized cross-regionally. A

possible reason for this phenomenon is that the Chinese economy is

at a stage of high-quality development, whereas the level of green

technology innovation is in the early development stages. The coun-

try’s high costs and long cycle characteristics are insufficient to drive

synergistic economic growth within the region. Simultaneously, simi-

lar resource endowments within the region face competitive pres-

sure for development, and the awareness of learning and cooperation

for green technology is weak; therefore, effective synergistic effects

have not yet been formed.

Administrative-level heterogeneity. We further explore the het-

erogeneous effects of green technology innovation on the economy

and environment under the constraints of different urban resource

endowments. Following Zhang et al. (2018), this study divides the

sample into the following two groups to consider the differences in

city administrative levels: municipalities and provincial capitals and

other prefecture-level cities. This division allows us to analyze the

heterogeneous spatial spillover effects of green technology innova-

tion from the perspective of administrative-level heterogeneity, as

shown in Table 9.

For municipalities and provincial capitals, green inventive and

improved technology innovation have significant spatial spillover

effects, meaning that green technology innovation can significantly

promote urban economic development while effectively improving

environmental quality. This finding suggests that partnerships

between municipalities and provincial capitals are formed, and the

improvement of local green technology innovation positively affects

neighboring cities. This drives neighboring municipalities and pro-

vincial capitals to achieve a win−win economy and environment

quality development. Green technology innovation has an insignifi-

cant direct effect in other prefecture-level cities. However, it has a

significantly positive spatial spillover effect on economic develop-

ment. Green improved technology innovation exacerbates local envi-

ronmental pollution and has no significant spatial spillover effect.

This result indicates that different types of green technology innova-

tion have heterogeneous effects among other prefecture-level cities.

Specifically, green inventive technology innovation can drive neigh-

boring prefecture-level cities to enhance their economies and envi-

ronment, while green improved technology innovation is not

environmentally friendly. Our results expand the findings of Zhang et

al. (2018), who have argued that municipalities and provincial capi-

tals given their higher administrative levels, are generally factor-

gathering places and business centers within each province. Accord-

ingly, they have better talent and technology transfer platforms than

other prefecture-level cities. Higher administrative levels with more

solid support and resource advantages allow green technology inno-

vation to exert economic and environmental effects and achieve syn-

ergy; thus, differentiated policies are crucial for varying

administrative levels of cities. Government departments can allocate

green scientific and technology innovation resources through scien-

tific and reasonable administrative means to optimize the spatial pat-

terns of the urban economy and environment.

Nonlinear effects mechanism analysis

Du et al. (2019) and Zeng et al. (2022) have stated that economic

development is vital for harmonizing green technology innovation

and air quality. To verify the nonlinear transmission mechanisms of

economic development, we examine the threshold and mediating

effects. We suggest that the heterogeneous effect of green technology

innovation on air quality is correlated with the intensity and types of

green technology innovation and is related to the varying levels of

economic development. Using economic development as the thresh-

old variable, the results in Table 10 show that green inventive and

improved technology innovation have single-threshold effects with

the threshold value of 11.628; thus, Hypothesis 5 is verified.

Table 11 reports the threshold effects of regression resulting from

the heterogeneous green technology innovation on PM2.5. The esti-

mated parameters of green inventive technology innovation are

Table 9

Estimation results for the SDM by administrative levels.

Variables lnPM2.5 lnpGDP

Direct effect Indirect effect Total effect Direct effect Indirect effect Total effect

Municipalities and provincial capitals

lningp �0.095** �0.658* �0.753** 0.076*** 0.539*** 0.615***

(0.041) (0.345) (0.362) (0.017) (0.128) (0.134)

lnnewgp �0.038 �1.320*** �1.359*** 0.097*** 0.464*** 0.561***

(0.048) (0.457) (0.469) (0.021) (0.166) (0.170)

Controls Yes Yes Yes Yes Yes Yes

Other prefecture-level cities

lningp �0.030*** �2.298*** �2.328** �0.013 0.324*** 0.311***

(0.008) (0.984) (0.990) (0.016) (0.121) (0.119)

lnnewgp 0.022** 1.090 1.112 0.022 0.349** 0.372***

(0.009) (0.936) (0.942) (0.019) (0.144) (0.140)

Controls Yes Yes Yes Yes Yes Yes

Note: Robust standard errors are shown in parentheses. ***,** and * mean significant at the levels of 1%, 5% and

10%, respectively. For space limitations, the results of parameter estimation of control variables are not pre-

sented, and the estimation results of green inventive technology innovation and green improved technology

innovation are shown in the same column and distinguished by the horizontal lningp and lnnewgp, respectively.
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insignificantly positive (0.004) and significantly negative (�0.021).

Conversely, green improved technology innovation is significantly

positive (0.023) and insignificantly negative (�0.002). The results

indicate that when lnpGDP is below 11.628, green inventive technol-

ogy innovation has an insignificant effect on PM2.5, and green

improved technology innovation significantly and positively affects

PM2.5. When lnpGDP exceeds 11.628, green inventive technology

innovation significantly and negatively affects PM2.5, and green

improved technology innovation has an insignificant effect on PM2.5.

This impact is manifested by the backward economic development

level, which hinders green technology innovation from promoting air

quality and leads to the failure of the economic driving effect. How-

ever, a relatively high economic development facilitates green tech-

nology innovation to achieve the emission reduction effect. The

threshold effect results reveal that Chinese green technology innova-

tion is synergistic with economic and environmental development,

and economic development does not crowd out attention to environ-

mental factors, such as air quality. When economic development is

low, the focus should be on green inventive technological innovation

because resource constraints accelerate economic development.

Once economic development has reached a certain level, dual eco-

nomic and environmental dividends are realized through green tech-

nological innovation, which based on sufficient resources and mature

markets. Consistent with Zeng et al. (2022), our results reveal the

improvement of a green environment at the advanced economic

growth stages. This may be because in the early stages of economic

development, when the economic level is relatively backward and

the green technology innovation investment is low, the traditional

high-pollution model can be adopted to enhance the boom of urban

economies. However, this is not beneficial to achieving the eco-

friendly utility of green technology innovation. When the economy is

highly developed, green technology innovation receives sufficient

investment, which contributes to improved air quality.

This study further employs a stepwise regression mediating

mechanism test to explore the nonlinear role of economic develop-

ment in the correlation between green technology innovation and air

quality, as shown in Table 12. Economic development mediates the

relationship between green technology innovation and air quality.

Both green inventive and improved technology innovation are signif-

icantly positive in terms of economic development (see Columns (2)

and (5)), even through they have a heterogeneous effect on air quality

(see Columns (1) and (4)). Second, economic development has a sig-

nificantly negative effect on air quality (see Columns (3) and (6)).

Additionally, the Sobel test results for economic development are sig-

nificant, indicating that the mediating effects are robust; thus,

Hypothesis 6 is supported. These findings are similar to those

reported in Liu and Dong. (2021) and Dong et al. (2022), who have

proposed that green technology innovation is environmentally rele-

vant, and high-quality technology that promotes sustainable eco-

nomic development. As economic development improves, more

attention is paid to environmental governance, which helps achieve

emission-reduction targets and green development.

The results demonstrate that green inventive technology innova-

tion directly affects air quality, while indirectly affecting air quality

through economic development. Although the green improved tech-

nology innovation does not directly affect air quality, it can indirectly

enhance it through economic development. Better economic devel-

opment can produce more funding and technical support to improve

urban air quality (Zhang et al., 2019). This finding supports the natu-

ral RBV theory, indicating that green technology innovation activities

Table 10

Results of threshold effect.

Explanatory variables Threshold F-value p-value 1% 2% 3%

lningp Single 75.590** 0.010 66.824 38.376 26.885

Double 9.150 0.620 28.220 23.811 21.498

lnnewgp Single 72.910*** 0.003 59.330 39.046 30.190

Double 12.520 0.400 42.321 27.681 21.629

Note: ***.

** and * mean significant at the levels of 1%, 5% and 10%, respectively.

Table 11

Threshold effects results of heterogeneous green technology innovation on PM2.5.

Variable Coefficient Std Coefficient Std

lningp (lnpGDP≤11.628) 0.004 0.004

lningp (lnpGDP>11.628) �0.021*** 0.005

lnnewgp (lnpGDP≤11.628) 0.023*** 0.005

lnnewgp (lnpGDP>11.628) �0.002 0.006

lnstru 0.243*** 0.035 0.190*** 0.035

lnpop �0.016 0.019 �0.021 0.019

lnpGDP �0.001 0.008 �0.022*** 0.009

lnfdi 0.045 0.034 0.055 0.034

Note: ***.

** and * mean significant at the levels of 1%, 5% and 10%, respectively.

Table 12

Mediating effects results of heterogeneous green technology innovation on PM2.5.

Variable (1) (2) (3) (4) (5) (6)

lnPM2.5 lnpGDP lnPM2.5 lnPM2.5 lnpGDP lnPM2.5

lningp �0.018*** 0.265*** �0.054***

(0.006) (0.011) (0.013)

lnnewgp 0.017 0.293*** 0.047

(0.015) (0.016) (0.032)

lnpGDP �0.136*** �0.138***

(0.037) (0.035)

Controls Yes Yes Yes Yes Yes Yes

Year FEs Yes Yes Yes Yes Yes Yes

R-squared 0.490 0.611 0.516 0.490 0.622 0.516

Soble �0.046***(0.004) �0.049***(0.004)

Note: Robust standard errors are shown in parentheses. ***.

** and * mean significant at the levels of 1%, 5% and 10%, respectively. For space limitations, the

results of parameter estimation of control variables are not presented..
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accompany the production of intangible resources and capabilities

(Zhang et al., 2022). This theory emphasizes that green technol-

ogy innovation must attach importance to the natural environ-

ment protections and the rational allocation and utilization of

natural resources to obtain sustainable competitive advantages.

Consequently, green technology innovation benefits urban eco-

nomic development by improving the production products and

processes. Furthermore, cities with high-quality economic devel-

opment can use green technology innovation to improve air qual-

ity. Our results confirm that heterogeneous green technology

innovation can improve air quality through direct or indirect

transmission mechanisms; this finding is supported by Feng et al.

(2021). Therefore, green technology innovation is critical for

urban sustainability.

Conclusions and implications

Conclusions

Our study adopts the RBV theory to examine the internal mecha-

nisms of the correlations between heterogeneous green technology

innovation and air quality and economic development from spatial

and nonlinear perspectives. Using panel data from 166 Chinese pre-

fecture-level cities between 2004 and 2019, we empirically explore

the heterogeneous spatial effect of green technology innovation on

air quality and economic development, as well as the nonlinear role

of economic development (from mediating and threshold effects).

Furthermore, this study examines regional and administrative het-

erogeneity characteristics.

The following conclusions are drawn. First, green inventive tech-

nology innovation has significant spatial spillover effects on improv-

ing economic development and air quality. Second, green improved

technology innovation has a significantly positive spatial spillover

effect on economic development but no significant spillover effect on

air quality. Third, the mechanism analysis proves that a nonlinear

linkage exists between heterogeneous green technology innovation

and air quality. On one hand, this shows the single-threshold charac-

teristics of economic development; on the other hand, green technol-

ogy innovation significantly and indirectly improves air quality

through economic development. Fourth, the heterogeneity analysis

shows that the effects of green technology innovation on air quality

and economic development have regional and administrative levels

of heterogeneity. Moreover, green inventive technology innovation

has a significantly negative spillover effect on air quality in the cen-

tral and western regions and an insignificant spillover effect on eco-

nomic development in all regions. Furthermore, green improved

technology innovation has a significantly negative spillover effect on

air quality only in the central region. Compared to other administra-

tive levels, green inventive and improved technology innovation in

municipalities and provincial capitals with high administrative levels

can significantly drive economic and air quality win-wins situations

while having significant spatial spillover effects.

Theoretical contributions

This theoretical contributions of this study are as follows: First,

the study utilizes the RBV theory to develop a theoretical model that

includes green technology innovation, economic development, and

air quality, which expands previous research (Jiang et al., 2020;

Zhang et al., 2022; Chen et al., 2022b). Additionally, this study

extends the understanding of the spatial linkages and synergistic

effect mechanisms of green technology innovation on air quality and

economic development from a spatial spillover perspective. We con-

firm the heterogeneous characteristics of spillovers at the regional

and administrative levels.

Second, the theoretical framework for the internal mechanisms of

green technology innovation, economic development, and air quality

is extended by exploring the threshold and mediating role of eco-

nomic development. We find a single-threshold role of economic

development. Furthermore, heterogeneous green technology innova-

tions can indirectly improve urban air quality by boosting economic

development.

Third, based on existing studies, our study contributes to the the-

ory by investigating the role of green technology innovation from a

multidimensional perspective, including green inventive and

improved technology innovation. Different from Zhang et al. (2018)

and Lee et al. (2022b), we consider various types of green technology

innovation to expand the literature on urban green technology inno-

vation. Varying types of green technology innovation have heteroge-

neous effects on economic development and air quality.

Multidimensional green technology innovation measures offer a

more comprehensive basis for managers to develop green technology

innovation strategies.

Practical implications

The policy implications of our study are as follows. Policymakers

should encourage heterogeneous green technology innovation. Green

technology innovation can be seen help create a win−win economy

and environment by enhancing to economic development and air

quality. Policymakers should also understand the resource utilization

of urban green technology innovation. Managers should pay atten-

tion to the spillover and nonlinear mechanisms of green technology

innovation to optimize their effectiveness.

The findings have specific implications for future research. First,

policymakers should offer service guarantees to safeguard the gath-

ering and support of green technology innovation elements. Further-

more, because economic development is conducive to air quality, it is

necessary to focus on improving the market-oriented nature of green

technology innovation to cater to customer needs. Accordingly, that

it can be recognized and paid for by the market and generate eco-

nomic benefits. Moreover, different policy orientations should pro-

mote the patent effects of green inventions and utility models.

Second, concerning the contribution of green technology innova-

tion to the economy and air quality improvement of neighboring cit-

ies through spatial spillover, the government should encourage

regional green technology cooperation to narrow technology gaps.

Simultaneously, given that green technology innovation within each

region has not yet formed an effective and benign spatial spillover

mechanism, the government should build green technology innova-

tion exchange platforms faster and guarantee the sharing and

exchange of green technology innovation results among cities within

regions. This way, the development mode can changes from beggar-

thy-neighbor to partner-thy-neighbor.

Third, considering that green technology innovation in cities and

provincial capitals is beneficial to local economic development and

air quality and has significant economic and environmental spillover

effects, policies and financial support for green technology innovation

in municipalities and provincial capitals should be strengthened. The

advantages of the region’s own resource endowments can be brought

into play by stimulating green technology innovation in municipali-

ties and provincial capitals. The “strong alliance” between municipal-

ities and provincial capitals should be promoted to realize a win−win

situation for the overall regional economic environment.

Limitations and future research

Some limitations need to be addressed in the future. Specifically,

considering the availability of data, this study uses urban data as the

sample to investigate the influence mechanisms of green technologi-

cal innovation driving the economy and improving air quality.
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Examining the green technology innovation effect at the firm level

can complement that at the urban level, which is beneficial for com-

prehensively and systematically expanding key bottleneck of green

technology innovation drive from the macro to the micro level.

Therefore, further research on dimension reduction at the enterprise

level is required. Despite these limitations, this study remains vital to

policymakers, as the vision of cities to realize the double dividend of

a green technology innovation-driven economy and air quality runs

unabated, which is conducive to green development.
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