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A B S T R A C T

As finance returns to its fundamental purpose of serving the real economy, its connections with various

industries are strengthening. Accurately depicting the interdependence among these industries and mitigat-

ing financial risks has become increasingly critical. The dependence among China’s real industries is dynamic

rather than static, which is particularly pronounced during the COVID-19 pandemic. In this paper, we pro-

pose a dynamic factor model to optimize the risk of high-dimensional portfolios. To describe the dependence

structure, we employ the factor copula model, driven by a GAS (Generalized Autoregressive Score) model. By

combining the dynamic factor model with a mean-ES (Expected Shortfall) model, we construct a dynamic

factor copula-mean-ES model. Our empirical findings, based on an analysis of 24 industries in China, suggest

that the dynamic heterogeneous factor copula model is the most suitable for describing portfolio risk. Fur-

thermore, the mean-ES model ensures the lowest portfolio risk for a given expected return. Accurate return

predictions enable leveraging market information to develop a "good knowledge" of dynamic copula and

risk optimization. This "good knowledge" of dynamic copulas facilitates precise return prediction and effec-

tive risk optimization of portfolios, thereby addressing the relationship between risk prevention and sustain-

ability. Moreover, it reveals the internal connection between China’s real industry and the risk landscape of

the financial market.
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Introduction

The COVID-19 pandemic has profound impact on the economy,

leading to a prolonged market downturn and presenting significant

challenges for the Chinese economy. The real economy, a crucial pil-

lar of national development, currently faces financing difficulties due

to its extended production cycle. Thses challenges has been further

exacerbated by the pandemic’s restrictions on production time and

space. In a bid to support the development of the real economy and

promote a stable decline in total financing costs, the central bank

announced a reduction of 0.25 percentage points in the required

reserve ratio of financial institutions, effective from April 25, 2022.

This measure aims to release approximately 530 billion yuan in long-

term funds by implementing a broad-based reduction in the required

reserve ratio. The central bank has emphasized its commitment to

maintaining a prudent monetary policy while considering the overall

situation.

With the sustained and stable development of the market econ-

omy in China, the interdependence among different industries is

increasingly prominent. Each industry has a significant impact on

others and collectively contributes to an integrated economic com-

munity. Furthermore, the dynamic growth of financial markets and

proactive policy implementation have established a foundation for

enhancing service to the real economy. This has facilitated the

organic integration of financial services with the real economy, rein-

forcing the interconnection between finance and the real economy.

However, the proliferation of financial risk events has expanded in a

more extensive and profound manner, making risk measurement

and prevention increasingly complex.

Given the robust policy support and the growing integration of

financial services with the real economy, it is crucial to promote the

stable growth of the real economy in an increasingly interconnected

market economy and seize the opportunities presented by favorable

policies. Since each industry plays a vital role in the real economy, it

is worthwhile to examine their respective development paths. There-

fore, this paper aims to investigate the correlation among the 24

industries classified under first-level industry classification of Shen-

wan in China and their impact on the real economy. This study
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evaluates the changes in risks faced by China’s actual industries and

provides recommendations to bolster the real economy.

This paper proposes a novel model that combines the dynamic

factor copula model with the mean-ES model for studying high-

dimensional portfolio optimization. The paper makes two main con-

tributions. First, it improves upon existing high-dimensional depen-

dency measurement methods. Previous research mainly focused on

dependency relationships among low-dimensional asset portfolios

and faced challenges when dealing with high-dimensional invest-

ment portfolios, resulting in difficult parameter estimation due to the

“curse of dimensionality”. This paper introduces the GAS model into

the dynamic factor copula model, addressing the parameter estima-

tion problem of high-dimensional investment portfolio assets with

complex dependencies. Second, it enhances portfolio risk optimiza-

tion methods. Recognizing the significant impact of asset dependency

relationships on portfolio risk optimization, this paper combines the

dynamic factor copula model with traditional risk optimization mod-

els, constructing a mean-ES model based on the dynamic factor cop-

ula. This model obtains asset weight vectors with minimum portfolio

risk for three types of dependency relationships, providing a "good

knowledge" of the role of dynamic dependence relationships in port-

folio risk optimization.

The remainder of this paper is structured as follows. In the subse-

quent section, we will provide an overview of the relevant literature.

Following this, we will introduce our theoretical framework and

present our novel model. Moreover, we will present the empirical

results and provide interpretations of our findings. Finally, we will

summarize our conclusions and suggest potential avenues for future

research.

Literature review

Dynamic factor copula

Sklar (1959) pioneered the use of copula functions to model com-

plex dependencies and address the challenge of characterizing

dependence relationships among multiple assets. Embrechts et al.

(2002) were the first to introduce copulas in financial risk manage-

ment, and since then, copulas have become a widely employed ana-

lytical tool in the financial and insurance domains. In a recent study,

Chen et al. (2022) examined the dynamic connection between the

international crude oil market and China’s nonferrous metal market

using a change-point detection copula method.

Dimensionality reduction is crucial for constructing a dependent

structure model with high-dimensional variables. Vine copula (Bed-

ford & Cook, 2001) and factor copula (Krupskii & Joe, 2013) are two

specific approaches to achieve this goal. Vine copula models, which

combine the graphical tools of the "vine" with pair copulas, are often

used to characterize the interdependent structure of stock markets

(Du, 2009; Wu et al., 2013; Fan et al., 2013; Zhang et al., 2014; Gong

& Deng, 2015; Guo, 2017; Wei & Wei, 2018; Xu et al., 2019). On the

other hand, some scholars have utilized factor copula models to rep-

resent the interdependent structure in credit portfolio risk through

common factors (Su & Furman, 2017; Chen et al., 2020).

However, the twomethods mentioned above are applicable to dif-

ferent dimensions. The vine copula model is primarily used to

address dependence among data with dimensions lower than 12

(Song et al., 2019). Conversely, the factor copula model reduces the

parameter complexity of the model through the factor structure,

transforming high dimensions into low dimensions (Wang & Yuan,

2017). Additionally, there are significant correlations among indus-

tries in the Chinese stock market, and the factor copula model can be

extended to the real industries in China, playing a crucial role in

studying the structure of dependence.

The financial market is subject to rapid changes due to various

influences, particularly in response to major political or economic

events. It is inadequate to rely solely on a single structure or parame-

ter copula model to depict the dynamic correlation of the financial

market (Gong & Shi, 2011; Zhang et al., 2022). The generalized autor-

egressive scoring (GAS) model is a data-driven approach for modeling

time-varying parameters proposed by Creal et al. (2013). It encom-

passes a range of time-varying parameter modeling issues within the

same framework, providing a novel approach to modeling copula

functions. Numerous studies have utilized copula models within the

GAS framework to capture the dynamic dependence structure (Zou &

Fan, 2018; Li & Kang, 2016; Song et al., 2020; Zhao et al., 2021; Oh &

Patton, 2017).

Studies on the dynamic factor copula model have primarily

focused on credit default swaps and systemic risk in banks, with no

previous application to the analysis of real industries. In this paper,

our aim is to contribute to the literature by utilizing the dynamic fac-

tor copula model to depict the dynamic interdependence among

multiple real industries in optimizing market risk. By doing so, we

aim to develop a "good knowledge" of the role of dynamic depen-

dence relationships in this context.

The role of the dynamic factor copula in forecasting returns

Baumol (1963) originally proposed value at risk (VaR) as a risk

measure, which represents the potential loss of a specific financial

asset or portfolio at a certain confidence level over a specific period.

However, VaR does not satisfy the properties of a consistent risk mea-

sure as proposed by Artzner et al. (1999) when returns do not follow

a normal distribution. To address this limitation, Rockafellar and

Uryasev (2002) introduced expected shortfall (ES), a risk metric that

captures tail information beyond VaR and covers the exposure of risk

in extreme market situations. They transformed the optimization

problem into minimizing continuously differentiable functions that

connect VaR and ES. Forecasting the return of each asset is an essen-

tial component of risk optimization based on the mean-ES model.

Therefore, it is necessary to capture the dependence structure among

the returns of different assets.

Zhang (2004) used the copula function to calculate VaRs for

optimizing portfolio risk. To enhance the effectiveness of risk

measurement, several scholars have combined copulas with other

risk measurements in portfolio optimization. For instance, Bou-

baker and Sghaier (2013) employed the copula method to exam-

ine the impact of long memory on portfolio optimization. Deng

and He (2017) integrated pair copulas with the mean-ES model

to explore optimal strategies for market portfolios. Feng and Ou

(2012) illustrated the asymmetrical tail correlation among finan-

cial markets using the SJC copula and utilized the CVaR to deter-

mine the efficient frontier and optimal strategy of asset

portfolios. Bekiros et al. (2015) employed the vine copula to

model the interdependence structure of portfolios during the

financial crisis in three periods and optimize portfolio risk.

Based on the literature mentioned above, research on portfolio

risk optimization has yielded advanced findings and has been widely

implemented in various fields. However, accurate dependence rela-

tionships are crucial for portfolio risk optimization. Currently, the

mean-ES model is primarily combined with traditional copula func-

tions or vine copula models. Further research is needed to investigate

the combination of the mean-ES model and the dynamic factor cop-

ula model. In this paper, our aim is to examine the impact of the

mean-ES model on portfolio risk optimization based on dynamic fac-

tor copula models of various dependence types, in order to explore

the effect of different dynamic factor copula models on asset portfolio

optimization. It is important to consider the combination of the

dynamic factor copula model and the mean-ES model in the study of

portfolio optimization.
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Methodology

This section will present the theoretical basis of the analysis pre-

sented in this paper. We will introduce the dynamic factor copula

model and use it as the basis for constructing the mean-ES model.

Dynamic factor copula model

We consider an n-dimensional vector Y ¼ ½Y1; Y2;⋯;YN�
0 with joint

distributions F,marginal distribution Fi, and a copula function C:

Y1;Y2;⋯; YN½ �0 � Y»F ¼ C F1; F2;⋯; FNð Þ ð1Þ

Following the construction principle of the factor model, the data

generation process of potential variables Xi is given by the following

simple factor structure:

Xi ¼ λiZ þ ei; i ¼ 1;2;3;⋯N ð2Þ

(3)

X1;X2;⋯;XN½ �0 � X»Fx ¼ C G1 uð Þ;G2 uð Þ;⋯;GN uð Þ; uð Þ ð4Þ

where Z represents the common factor, ei denotes the idiosyncratic

variable, and C is the factor copula. This type of factor model is con-

sidered to be more flexible and practical compared to the factor

model proposed by Li (2000).

Oh and Patton (2017) describe the dynamics of parameters in the

factor copula using the GAS model. The GAS model is specifically

designed to adapt to the joint distribution of multiple variables, offer-

ing significant advantages in modeling dynamic dependencies in

high-dimensional scenarios. The dynamic factor copula model can be

illustrated as follows:

Xit ¼ λit gλð ÞZt þ eit ; i ¼ 1;2;3;⋯N ð5Þ

(6)

Xt »Ht ¼ Ct F1t gð Þ; F2t gð Þ;⋯; FNt gð Þ;gð Þ ð7Þ

where Xt ¼ ½X1t ; X2t ;⋯; XNt �
0, Zt represents the common factor, eit ; i ¼

1;2;3;⋯N denotes the idiosyncratic variable, C is the factor copula,

and λitðgλÞ is the ith factor loading at time t. The GAS model for loga-

rithmic factor loadings is given by:

logλit ¼ vi þ blogλi;t�1 þ asi;t�1; i ¼ 1;2;⋯;N ð8Þ

sit ¼
@logc ut ; λt;gZ ;ge

� �

@logλit
ð9Þ

lt ¼ λ1t ; λ2t⋯; λNt½ �
0
gλ ¼ vi;b;a½ �

0
ð10Þ

The model would have N + 2 parameters requiring estimation

without considering the parameters of Fet and FZt. This can result in

significant computational complexity, particularly when N is sizeable.

To address this issue, Oh and Patton (2018) introduced the variance

targeting (VT) method under the assumption of a strictly stationary

sequence {λt}. Eq. (8) can be rewritten as

logλit ¼ 1� bð ÞE logλit½ � þ b logλi;t�1

þasi;t�1; i ¼ 1; 2; ⋯; N ð11Þ

where E½logλit � ¼
vi

1�b
. Eq. (11) effectively reduces the number of

parameters to be estimated and resolves the issue of "dimension

disaster".

Mean-ES model based on the dynamic factor copula

With the evolution of financial practices, the use of variance as a

method of measuring risk has consistently revealed inadequacies.

Consequently, alternative and superior risk measures have progres-

sively replaced variance. In this paper, we use ES as a replacement for

variance and implement the mean-ES model to examine the portfolio

optimization problem. ES represents the conditional expected value

when the loss is below a given level of significance (Artzner et al.,

1999). To be precise, ES can be defined as follows:

ESb;t ¼ E rt jrt�VaRb;t
� �

¼

R VaRb;t
�1

rtft rtð Þdrt

P rt�VaRb;t
� � ð12Þ

where f tðrtÞ is the density function of the return rt. We assume

u ¼ FtðrtÞ, where 0< rt�VaRb;t. FtðVaRb;tÞ ¼ b, Ftð�1 Þ ¼ 0, and

rt ¼ F�1
t ðuÞ ¼ VaRu, the above equation can be rewritten as:

ESb;t ¼

R b
0 VaRudu

b
ð13Þ

Rockafellar and Uryasev (2002) introduced a consistent risk mea-

sure called ES, which demonstrates both subadditivity and convexity.

They also established a connection between VaR and ES using a

unique function. The definition of this function is as follows:

Fb w;að Þ ¼ aþ
1

1� b

Z

f w;rð Þ�a�0

f w; rð Þ � að Þp rð Þdr ð14Þ

where w represents the weight vector, r represents the vector of asset

returns with probability density function is pðrÞ, f ðw; rÞ represents the

loss function, and a is the portfolio VaR value at the confidence level

1� b. By minimizing the function Fbðw;aÞ, the value of ðw�;a�Þ can

be determined. According to Rockafellar and Uryasev’s (2002) find-

ings, the weight w� is associated with the minimum ES, while a� rep-

resents the corresponding VaR value. In practice, since the

distribution of returns r is often unknown, the returns rk; k ¼ 1;2;⋯M

for M cases can be obtained using Monte Carlo simulation. Eq. (14)

can be approximately transformed into the following form:

Fb w;að Þ ¼ aþ
1

M 1� bð Þ

X

M

k¼1

�w
T
rk � a

� �þ
ð15Þ

In the field of portfolio risk optimization, Markowitz (1952) pio-

neered the concept of an optimal portfolio that balances risk and

return. His fundamental idea is that if investors expect a portfolio

return that is not inferior, then optimization should focus on mini-

mizing risk. Conversely, if investors aim to control the risk of exceed-

ing the expected value, then optimization should prioritize

maximizing returns. Building upon this principle, we propose the

mean-ES model based on the dynamic factor copula. In this model,

we aim to minimize risk while the achievement of the expected

return. The model takes the following specific form:

minw Fb w;að Þ
� �

¼ minw aþ
1

M 1� bð Þ

X

M

k¼1

�w
T
rk � a

� �þ

 !

ð16Þ

s:t:

1

M

X

M

i¼1

w
T
rk�mp

X

n

i¼1

wi ¼ 1

8

>

>

>

>

<

>

>

>

>

:

It is important to note that the returns rk; k ¼ 1;2;⋯M are gener-

ated based on the dynamic factor copula model, wi represents the

corresponding optimal weight, n is the number of study variables,

and mp is the expected return. This model forms the foundation for

the development of "good knowledge".

Empirical results

Data

This paper focuses on 24 industries classified according to Shen-

wan’s first-level industry classification in China. These industries

Z. Chen, J. Zhou and X. Hao Journal of Innovation & Knowledge 8 (2023) 100453

3



covers a wide spectrum: agriculture, forestry and fishing (abbrevi-

ated as AFF), mining, chemical, steel, nonferrous metal, electronics,

household appliance, food and beverage, textile and clothing, light

manufacturing, pharmaceutical biology, public utilities, transporta-

tion, leisure services, synthesis, building material, building decora-

tion, electrical equipment, defense industry, computer, media,

communication, car, and machinery. These industries represent lead-

ing enterprises in their respective sectors. The sample period for

index returns spans from December 1, 2011, to December 1, 2021.

The data were obtained from the iFinD database and analyzed using

R language and MATLAB.

The daily logarithmic return of each industry index is calculated

according to rit ¼ logpit � logpi;t�1. The value of pit is the closing

price of the industry index i on a specific day t, generating a total of

2438 sample groups of daily logarithmic returns.

Subsequently, a time series graph depicting the daily logarithmic

returns for the 24 industry indices is plotted. This graphical represen-

tation facilitates an analysis of the fluctuation characteristics exhib-

ited by each index, providing insights into their respective returns.

Fig. 1 illustrates the time series diagram illustrating the logarithmic

returns for the 24 industry indices.

Based on the observations from Fig. 1, it is evident that the 24

industry indices display a consistent asymmetric return trend, indi-

cating a strong correlation among the industries. Notably, significant

fluctuations occurred in 2015 and 2020, primarily attributed to the

global stock market crash in 2015 and the substantial impact of

COVID-19 pandemic on the stock market in 2020.

Table 1 presents the mean, standard deviation, kurtosis, skewness,

median, minimum, and maximum values of the daily logarithmic

return for the 24 industry indices. Additionally, tests are conducted

to assess the stationarity and volatility clustering within these

returns.

According to the results in Table 1, the ADF test rejects the null

hypothesis for the stability of returns in the 24 industry indices, indi-

cating stability at a 1% significance level. Furthermore, the ARCH

effect test showed that the returns of the 24 industry indices did not

reject the presence of an ARCH effect.

Marginal distributions

Considering the presence of leptokurtosis, asymmetry, and vola-

tility clustering in financial time series, this paper utilizes the AR-

GARCH model to capture the characteristics of the returns’ marginal

distribution. Moreover, the residuals are assumed to follow a t distri-

bution. The model’s explicit expression is presented as follows:

rt ¼ frt�1 þvþ at ð17Þ

at ¼ stet ; et » t nð Þ ð18Þ

Fig. 1. Daily logarithmic returns of each industry index.
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s2
t ¼ mþ aa2t�1 þ bs2

t�1 ð19Þ

where rt and rt�1 are the returns at times t and t � 1, respectively. s2
t

is the conditional variance of at .

The estimated parameters of the marginal distributions are used

to analyze the returns. The results of the Jarque-Bera test suggest

non-normal distributions in returns. Additionally, to validate the suit-

ability of the AR-GARCH model, the Ljung-Box test is employed to

verify that the residuals conform to a white noise sequence. The

results of the Jarque-Bera and Ljung-Box tests are presented in

Table 2.

Based on the findings presented in Table 2, the results of the Jar-

que-Bera test indicate that none of the residuals associated with the

24 industry indices followed a normal distribution, as evidenced by

the rejection of the null hypothesis for all of them. Furthermore, the

Ljung-Box test revealed no significant autocorrelation in any of the

24 residuals at the 1% significance level. Additionally, the residuals

exhibited characteristics of white noise sequences, indicating that

the AR-GARCH model provided a reasonably good fit.

Dependency analysis

In this section, we employ the dynamic factor copula model to

estimate the dynamic dependence structure among real industries.

We consider three different structure: equidependence, block depen-

dence, and heterogeneous dependence structures, aiming to compare

the differences in the dependent structure across these models. We

Table 1

Summary statistics of the index returns.

Industry Mean Std. Dev. Kurtosis Skewness Median Min. Max. ADF (p value) ARCH (p value)

AFF 0.0002 0.0178 3.2732 �0.5562 0.0007 �0.0976 0.0663 0.00 0.00

Mining �0.0002 0.0183 3.4461 �0.5450 0.0002 �0.0956 0.0780 0.00 0.00

Chemical 0.0004 0.0166 3.7461 �0.8920 0.0016 �0.0893 0.0675 0.00 0.00

Steel 0.0001 0.0182 3.3102 �0.5142 0.0008 �0.1030 0.0732 0.00 0.00

Nonferrous Metal 0.0002 0.0198 2.4419 �0.4923 0.0010 �0.0975 0.0924 0.00 0.00

Electronics 0.0005 0.0197 2.5017 �0.6796 0.0013 �0.1024 0.0641 0.00 0.00

Household Appliance 0.0006 0.0170 2.9237 �0.4281 0.0007 �0.0923 0.0732 0.00 0.00

Food & Beverage 0.0006 0.0170 2.3221 �0.4022 0.0008 �0.0860 0.0673 0.00 0.00

Textiles & Clothing 0.0000 0.0160 4.6485 �0.9386 0.0009 �0.0884 0.0666 0.00 0.00

Light Manufacturing 0.0002 0.0155 3.7456 �0.9662 0.0013 �0.1001 0.0511 0.00 0.00

Pharmaceutical Biology 0.0004 0.0165 2.9250 �0.6411 0.0009 �0.0873 0.0631 0.00 0.00

Public Utilities 0.0001 0.0148 5.4853 �0.8843 0.0009 �0.0826 0.0640 0.00 0.00

Transportation 0.0001 0.0152 5.4853 �0.8175 0.0004 �0.0892 0.0655 0.00 0.00

Leisure Services 0.0006 0.0190 3.0325 �0.4447 0.0011 �0.0957 0.0749 0.00 0.00

Synthesis 0.0001 0.0168 2.7267 �0.8481 0.0011 �0.0798 0.0566 0.00 0.00

Building Material 0.0003 0.0180 3.4978 �0.5967 0.0010 �0.0917 0.0813 0.00 0.00

Building Decoration 0.0001 0.0170 5.2965 �0.5714 0.0003 �0.1021 0.0802 0.00 0.00

Electrical Equipment 0.0005 0.0185 2.8856 �0.6450 0.0012 �0.0916 0.0734 0.00 0.00

Defense Industry 0.0003 0.0226 3.2288 �0.4552 0.0014 �0.1023 0.0894 0.00 0.00

Computer 0.0004 0.0208 2.1052 �0.4823 0.0005 �0.0966 0.0715 0.00 0.00

Media 0.0001 0.0188 2.2275 �0.5319 0.0005 �0.0929 0.0582 0.00 0.00

Communication 0.0001 0.0190 3.0067 �0.6380 0.0009 �0.0952 0.0684 0.00 0.00

Car 0.0004 0.0171 3.8455 �0.7709 0.0011 �0.0969 0.0717 0.00 0.00

Machinery 0.0002 0.0171 4.3351 �0.8981 0.0011 �0.1000 0.0696 0.00 0.00

Table 2

The parameter estimation results for the AR-GARCH model.

Industry m f v (�10�6) a b n J-B (p value) L-B (p value)

AFF 0.0004 0.0517 3.6213 0.0806 0.9104 5.8944 0.49 0.00

Mining 0.0001 0.0073 7.0738 0.0735 0.9065 5.1383 0.51 0.00

Chemical 0.0011 0.0411 3.9987 0.0708 0.9154 5.5201 0.52 0.00

Steel 0.0003 �0.0050 5.1822 0.0829 0.9037 5.6211 0.62 0.00

Nonferrous Metal 0.0005 0.0119 6.3986 0.0718 0.9138 5.9342 0.39 0.00

Electronics 0.0011 0.0274 2.5024 0.0541 0.9406 7.0246 0.73 0.00

Household Appliance 0.0009 �0.0107 5.4172 0.0604 0.9210 6.6028 0.51 0.00

Food & Beverage 0.0009 0.0097 4.5687 0.0635 0.9218 7.2344 0.50 0.00

Textiles & Clothing 0.0006 0.0759 3.2966 0.0776 0.9111 4.9687 0.33 0.00

Light Manufacturing 0.0009 0.0590 4.2398 0.0695 0.9135 5.2582 0.42 0.00

Pharmaceutical Biology 0.0008 0.0345 0.9636 0.0623 0.9364 8.3393 0.36 0.00

Public Utilities 0.0003 0.0187 3.1730 0.1007 0.8875 5.2691 0.59 0.00

Transportation 0.0004 0.0497 2.7652 0.0633 0.9233 5.4634 0.25 0.00

Leisure Services 0.0008 0.0429 2.3531 0.0721 0.9236 6.8801 0.03 0.00

Synthesis 0.0009 0.0627 5.8366 0.0755 0.9051 5.5290 0.05 0.00

Building Material 0.0009 0.0342 5.3229 0.0625 0.9219 5.1222 0.81 0.00

Building Decoration 0.0001 0.0395 3.9142 0.0701 0.9163 4.9983 0.27 0.00

Electrical Equipment 0.0009 0.0228 2.3545 0.0662 0.9301 5.5268 0.23 0.00

Defense Industry 0.0006 0.0180 8.3705 0.0864 0.9007 5.3221 0.24 0.00

Computer 0.0005 0.0403 3.0131 0.0544 0.9390 7.8140 0.84 0.00

Media 0.0000 0.0303 1.6680 0.0551 0.9417 6.5481 0.11 0.00

Communication 0.0006 0.0209 2.5276 0.0525 0.9413 6.2276 0.69 0.00

Car 0.0009 0.0204 2.6348 0.0626 0.9305 5.3867 0.73 0.00

Machinery 0.0010 0.0285 3.7637 0.0635 0.9243 4.9658 0.34 0.00
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assume that the common factor Z follows a skewed distribution,

while the idiosyncratic variables e follow a t distribution. This gener-

ates three unknown parameters. To estimate these parameters

through maximum likelihood estimation, we refer to the work of Oh

and Patton (2018).

In the dynamic factor copula model of equidependence, vi ði ¼ 1;

2; ⋯; NÞ remains constant in Eq. (11). This model involves only six

parameters. The specific form of the model is as follows:

Xit ¼ λt gλð ÞZt þ eit ; i ¼ 1; 2; 3; ⋯; N ð20Þ

log λt ¼ vþ b log λt�1 þ ast�1 ð21Þ

The parameter estimation for the dynamic homogeneous factor

copula model using maximum likelihood estimation is presented in

Table 3.

Table 3 displays the results of maximum likelihood estimation for

parameter estimation of the dynamic equidependence factor copula

model.

In the dynamic block dependence factor copula model, the time-

varying parameter in Eq. (11) is determined based on the grouping

situation, where identical values are assigned to the same group of vi

ði ¼ 1; 2; ⋯; NÞ. This model yields 5 + M parameters, with M repre-

senting the number of groups. The specific form of the model is as fol-

lows:

Xit ¼ λg ið Þ;t gλð ÞZt þ eit ; i ¼ 1; 2; ⋯; N ð22Þ

log λg ið Þ;t ¼ vg ið Þ þ blog λg ið Þ;t�1 þ asg ið Þ;t�1 ð23Þ

where λgt denotes the factor load under different groups, and Eq. (23)

is the time-varying equation of the factor load for each group.

Considering the significance of the real industry in the country’s

economy, this paper has categorized the 24 indices into six well-bal-

anced groups. The results of the cluster analysis are presented in

Table 4.

In this case, M = 5, and a total of 10 parameters are generated for

the dynamic block dependence factor copula using maximum likeli-

hood estimation, as shown in Table 5.

In the dynamic heterogeneous dependence factor copula model,

the time-varying parameters vi ði ¼ 1; 2; ⋯; NÞ in Eq. (11) are not

equal. This model generates N + 5 parameters, and the specific model

form is as follows:

Xit ¼ λi; t gλð ÞZt þ eit ; i ¼ 1; 2; 3;⋯; 24 ð24Þ

logλi;t ¼ vi þ blog λi;t�1 þ asi;t�1 ð25Þ

where λit represents the factor loads of different potential variables,

and Eq. (25) represents the time-varying equation for each factor

load.

In the case of the heterogeneous dependence model, a large num-

ber of parameters are involved in the dynamic factor copula model

when dealing with high-dimensional data. To reduce the computa-

tional complexity, Oh and Patton (2018) employed the variance tar-

geting (VT) method to calculate vi. The calculation is as follows:

vi ¼ 1� bð ÞE log λit½ �; i ¼ 1; 2; ⋯; N ð26Þ

The estimated results are shown in Table 6.

Tables 3-6 illustrates that the dynamic factor copula model,

encompassing equidependence, block dependence, and heteroge-

neous dependence structure, provides an enhanced representation of

the dynamic interdependence among the 24 industry indices. Specifi-

cally, it was discovered that the log-likelihood of the dynamic hetero-

geneous dependent factor copula model attained the highest value,

indicating a superior fit. Building upon the copula model of real

industry dependence, this paper further investigates the portfolio

optimization within China’s real industry.

Portfolio optimization

Building upon the previously mentioned interdependence among

the real industries, the Monte Carlo method generates 20,000 sets of

random weight vectors. These weights are then used to calculate the

corresponding expected returns and risks. By utilizing the effective

frontier theory, the portfolio with minimum risk is identified. There-

fore, Table 7 displays the optimal position ratios for the minimum-

risk portfolio.

Based on the information presented in Table 7, it can be observed

that public utilities industry holds the largest proportion in the mini-

mum-risk portfolio, accounting for 41.54%. Following this, the food

and beverage industry and transportation industry follow, represent-

ing the second and third largest shares at 24.93% and 15.57%, respec-

tively. Further clustering analysis distributes the seven industries

into six distinct groups. This suggests a relatively low correlation

among the industries, as detailed in Table 4.

Specifically, public utilities are categorized into Group 5, while

food and beverage as well as transportation are grouped into Group

6, recognized as typical defensive industries. Light manufacturing

belongs to Group 3, which is associated with industrial production.

Steel is part of Group 1, representing the industrial branch. Pharma-

ceutical biology is included in Group 4, representing emerging indus-

tries. Lastly, household appliance is placed in Group 2, encompassing

electronics and appliances. These classifications align with the mean-

ES model, which asserts that hedging risk and enhancing returns

require weak dependence among the assets in the portfolio. There-

fore, it highlights the feasibility of portfolio optimization using the

mean-ES model, and its theory is consistent with the observed sce-

nario.

The aforementioned conclusion can be more intuitively visualized

through Fig. 2.

Fig. 2 illustrates that the portfolio with the minimum risk in China

encompasses the country’s pillar industries, which cater to our essen-

tial daily needs. Public utilities include industries such as water,

power, and heat supply, and their stable operation and sustainable

Table 3

Parameter estimation results in the equidependence case.

Parameter v a b 1=nZ 1=ne cZ LL

Estimate 0.0483 0.0213 0.9207 0.1137 0.3076 �0.0418 36,638

Table 4

Classification of various industries of the real industry.

Group

number

Group name Industry

1 Industrial branch Mining; Steel; Nonferrous Metal; Chemical

2 Electronics & Appliances Electronics; Household Appliance; Electri-

cal Equipment; Machinery

3 Industrial production Light Manufacturing; Car; Textile & Cloth-

ing; Building material

4 Emerging industry Computer; Media; Communication; Phar-

maceutical Biology

5 Services Leisure Services; Building Decoration; Pub-

lic Utilities; Synthesis

6 Typical defensive

industry

AFF; Transportation; Food & Beverage;

Defense Industry

Table 5

Parameters estimates of the block dependence factor copulas.

Parameter v1 v2 v3 v4 v5 v6

Estimate 0.0352 0.0248 0.0296 0.0248 0.0276 0.0292

Parameter a b 1=nZ 1=ne cZ LL

Estimate 0.0305 0.9437 0.0458 0.2766 �0.0419 37,373
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growth contribute to the promotion of the economic system and

meeting the housing demand.

Food and beverage is closely tied to people’s lives and hold signifi-

cant economic value. Transportation provides essential support for

economic development and growth. Light manufacturing represents

a traditional and advantageous industry in China’s economy, catering

to the clothing needs of the population.

Pharmaceutical biology serves as a pillar of China’s economy and

an emerging industry meeting the increasing health demands of an

aging population. Supported by the government, pharmaceutical

biology has evolved into a high-tech sector that fulfills the require-

ment of medical field.

Intelligent home appliances have become indispensable tools for

creating a comfortable living environment, with chips playing a piv-

otal role in their functions and addressing specific customer needs.

Household appliance has been significantly impacted by global eco-

nomic dynamics and policies, including technological sanctions and

the global shortage observed in developed countries.

Steel products are fundamental materials extensively used in vari-

ous industries related to food, clothing, housing, and medicine. Dur-

ing the pandemic, China’s steel industry played a crucial role in

facilitating the rapid recovery of the national economy due to its

robust and abundant production capacity. However, it also exempli-

fies a high-energy consumption and high-emission sector within the

industrial landscape. With the carbon peaking and carbon neutrality

goals in mind, there is increased pressure and a substantial challenge

to reduce carbon emissions. This necessitates the adoption of tar-

geted reform measures for steering China’s steel industry toward

low-carbon development.

By using the optimal weights from Table 7, the VaR and ES for the

optimal portfolio were calculated at a 5% significance level, and the

results are presented in Table 8.

Table 8 illustrates that at a 5% significance level, the ES of the opti-

mal portfolio is significantly smaller than the VaR, indicating that ES

effectively capture extreme losses. When evaluating risk, it is essen-

tial to concentrated on the lower tail of extreme risk using ES as a

measure.

This paper undertakes a comparative analysis of the efficient fron-

tier generated by the mean-ES model across three dynamic factor

copula models. The comparison results are shown in Fig. 3.

Fig. 3 illustrates the variations in the efficient frontier calculated

using three dynamic factor copula models. The dynamic heteroge-

neous dependence factor copula model exhibits a more pronounced

discrepancy in the effective frontier compared to the other two

dynamic factor copula models.

If the expected return falls below 0.0012, the efficient frontier of

the dynamic heterogeneous dependence factor copula model is

Table 6

Parameters estimates of the heterogeneous dependent factor copulas.

Parameter Estimate Corresponding industry Parameter Estimate Corresponding industry

v1 0.0347 AFF v16 0.0416 Building Material

v2 0.0318 Mining v17 0.0399 Building Decoration

v3 0.0745 Chemical v18 0.0554 Electrical Equipment

v4 0.0275 Steel v19 0.0287 Defense Industry

v5 0.0339 Nonferrous Metal v20 0.0434 Computer

v6 0.0468 Electronics v21 0.0415 Media

v7 0.0282 Household Appliance v22 0.0443 Communication

v8 0.0228 Food & Beverage v23 0.0506 Car

v9 0.0536 Textiles & Clothing v24 0.0781 Machinery

v10 0.0669 Light Manufacturing a 0.0726

v11 0.0347 Pharmaceutical Biology b 0.9732

v12 0.0447 Public Utilities 1=nZ 0.0654

v13 0.0420 Transportation 1=ne 0.2253

v14 0.0311 Leisure Services cZ �0.0603

v15 0.0496 Synthesis LL 37,730

Table 7

Optimal position ratios.

Index name Optimal position (%) Index name Optimal position (%)

AFF 0.00 Transportation 15.57

Mining 0.00 Leisure Services 0.00

Chemical 0.00 Synthesis 0.00

Steel 4.77 Building Material 0.00

Nonferrous Metal 0.00 Building Decoration 0.00

Electronics 0.00 Electrical Equipment 0.00

Household Appliance 2.70 Defense Industry 0.00

Food & Beverage 24.93 Computer 0.00

Textiles & Clothing 0.00 Media 0.00

Light Manufacturing 5.78 Communication 0.00

Pharmaceutical Biology 4.71 Car 0.00

Public Utilities 41.54 Machinery 0.00

Fig. 2. Minimum risk portfolio chart.
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positioned to the left of the other two models, exhibiting its lower

risk while maintaining a consistent expected return. Conversely,

when the expected return exceeds 0.0012, the efficient frontier of the

dynamic heterogeneous dependence factor copula model shifts to

the right of the other two models. This shift correlates with an increase

in the ES of the dynamic heterogeneous dependence factor copula

model as the expected return rises. Consequently, as the expected

return grows, this model effectively mitigates risk by accurately. These

findings highlights the crucial impact of characterizing the dependent

structure among real industries on portfolio optimization.

The expected return is derived based on the optimal weight pro-

vided in Table 8. A basic statistical analysis is then conducted, and the

results are presented in Table 9.

Under the mean-ES model, the three dependent structures pro-

duce distinct expected returns. In particular, the dynamic heteroge-

neous dependence factor copula model exhibits the highest mean

expected return and the smallest variance. This signifies the capacity

of the dynamic heterogeneous dependence factor copula model to

generate a superior and more consistent return. As a result, this

model maximizes returns while minimizing portfolio risk by an accu-

rate characterization of the dependencies among real industries.

We proceed to evaluate the accuracy of the minimum VaR and

minimum ES that were acquired for the three corresponding depen-

dent structures. The results of the test at a significance level of 5% are

presented in Table 10.

The findings in Table 10 demonstrate that the minimum VaR and

minimum ES based on the three dependent structures successfully

pass the test at a 5% significance level. This suggests that the dynamic

copula models, specifically the equidependence, block dependence,

and heterogeneous dependence factor copula models, are better

suited to capture the dynamic dependence among the 24 real indus-

tries. Notably, the p value associated with the dynamic heteroge-

neous factor copula model is the highest, indicating that the VaR and

ES based on this model are the most accurate.

Fig. 3. Mean-ES effective frontier based on three dynamic factor copula models.

Table 8

Optimal weight combination of the industry index.

Confidence interval Optimal weights (%) VaR ES

95% Steel Household Appliance Food & Beverage Light Manufacturing Pharmaceutical Biology Public Utilities Transportation �0.0315 �0.0683

4.77 2.70 24.93 5.78 4.71 41.54 15.57

Table 9

Descriptive statistics of the expected return.

Factor copula model Mean Std. Dev. Kurtosis Skewness Max. Min.

Equidependence 0.00069 0.0053 1.3638 �0.1160 0.0216 �0.0211

Block dependence 0.00073 0.0053 1.2283 �0.1067 0.0207 �0.0205

Heterogeneous dependence 0.00082 0.0041 1.3854 0.0341 0.0181 �0.0168

Table 10

Return test results for minimum VaR and minimum ES for the dynamic factor copula

model.

Factor copula model Minimum VaR Minimum ES

p value Test results p value Test results

Equidependence 0.3084 accept 0.3929 accept

Block dependence 0.4335 accept 0.6728 accept

Heterogeneous dependence 0.6680 accept 0.8092 accept
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In the ES test, the p value of the dynamic heterogeneous factor

copula model exceeds 0.05, indicating acceptance of the null hypoth-

esis. These test results suggest the superior performance of the

dynamic heterogeneous factor copula model over the other twomod-

els in risk optimization studies using ES as a risk metric. In conclu-

sion, a “good knowledge” of the mean-ES model can greatly enhance

the accuracy of risk measurement. Furthermore, the risk metric ES

proves to be more precise than VaR.

Conclusion

We construct a dynamic factor copula-mean-ES model to explore

the relationship among real industries in China and examine the

impact of dynamic connections on optimizing portfolio risk. The

empirical results are as follows.

First, the three dynamic factor copula models constructed in this

study accurately measure risk in portfolio optimization. Particularly,

the dynamic heterogeneous factor copula model demonstrates the

highest accuracy in estimating the minimum ES by effectively charac-

terizing the dependence relationship among China’s real industries.

This highlights the "good knowledge" gained regarding the role of

dynamic dependency relationships in portfolio risk optimization.

Second, in the analysis of portfolio risk optimization, the public

utilities industry holds the largest weight. This is due to its inclusion

of industries such as water, power, and heat supply, which exert a

significant influence on national economic development. Conversely,

the mining sector holds the smallest weight as it is highly influenced

by downstream nonferrous metals and steel, facing increased risks

due to the rapid development of new energy sources. Although this

study focuses solely on China without incorporating data from other

countries, the model shows promising applicability for future eco-

nomic research due to the shared nature of financial data.

Discussion

Research on financial risk is a significant and timely topic in the

current academic field. China places a high importance on its real

economy and consistently implements policies to support its growth.

In this context, it is crucial to promote the steady development of the

real economy in an increasingly interconnected market. This paper

utilizes the dynamic factor copula model to measure the financial

risk within the real industry and examines its portfolio optimization

problem. The empirical analysis has yielded insightful conclusions.

However, it is important to note that a country’s financial market

operates within a broader global context and is subject to various

external factors. Future research could incorporate factors from other

countries, taking into account the risk contagion effect. This would

provide investors and relevant government departments with more

comprehensive and effective information.
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