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A B S T R A C T

As a relevant indicator for quantifying the value of carbon emissions, the marginal abatement cost (MAC) of

carbon emissions has received increasing attention from academics and policymakers. This study uses a qua-

dratic directional output distance function to analyse the technical efficiency, potential emission reduction

and shadow prices of China’s industrial carbon emissions. The results show that the technical efficiency of

China’s industry gradually decreased during the sample period. From the perspective of regions with differ-

ent carbon intensity and industrial output, regions with lower carbon intensity and higher industrial output

gradually closed to the optimal frontier for the technology use level and had relatively high technical effi-

ciency. Rising technical inefficiency and carbon emissions led to a potential emission reduction that also

exhibits an upwards trend. In addition, the MAC of industrial carbon emissions exhibits a U-shaped trajec-

tory, with 2011 as the turning point. Generally, in recent years, regions with lower carbon intensity and those

with higher industrial output have a relatively high MAC for industrial carbon emissions. The empirical find-

ings reveal that a carbon emission reduction policy should be formulated and targeted to each province, and

the principle of ‘easy before difficult’ can be followed to promote emission reduction.

© 2024 The Authors. Published by Elsevier España, S.L.U. on behalf of Journal of Innovation & Knowledge. This

is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/)
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Introduction

As the largest emitter of carbon dioxide (CO2) emissions in the

world, China is under enormous pressure to reduce its emissions.

China is now in the intermediate and late stages of industrial devel-

opment, and the Chinese industry has been labelled ‘high consump-

tion and high emissions’. China’s industrial fossil energy use and CO2

emissions account for 70 % of China’s total energy consumption and

CO2 emissions (Wang & Feng, 2018a,b). To promote low-carbon

development, the Chinese government set several emissions mitiga-

tion targets. The 13th Five-Year Plan set a target to achieve carbon

abatement per unit of GDP by 40 %−45 % by 2020 compared to the

2005 level, working towards achieving the goal of peak carbon emis-

sions by 2030 and aiming for carbon neutrality by 2060. To reach

these targets, the Chinese government took several emission reduc-

tion measures, such as compelling the elimination of outdated pro-

duction facilities and technologies in high-energy consumption

industries via administrative and legislative means and promoting

new energy technologies.

The Chinese government has also started to emphasise and

strengthen its market position to deploy environmental resources,

gradually strengthening the crucial role of market mechanisms in the

allocation of environmental resources (Guo & Feng, 2021). In 2011,

pilot carbon trading projects led by the National Development and

Reform Commission were launched in Beijing, Tianjin, Shanghai,

Chongqing, Guangdong, Hubei and Shenzhen. On 19 December 2017,

the National Carbon Emission Trading Market Construction Plan

(Power Generation Industry) was issued, and the framework of Chi-

na’s carbon emissions trading system was completed, establishing a

national carbon emissions trading market for the first time.

Assessing the value of carbon emissions has emerged as a signifi-

cant area of research and policy focus following the inception of the

Kyoto Protocol (Jin & Chen, 2022). In recent years, the Chinese gov-

ernment has implemented a range of measures to facilitate carbon

reduction. What is the opportunity cost of continuing measures such

as the above emission reduction policies? What are the influencing

factors of opportunity cost for carbon emission reduction? How can

mitigation measures for achieving carbon emission reduction be* Corresponding author.
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achieved at a lower cost? Determining the answers to these questions

could advance carbon emission reduction and the efficient operation

of carbon trading markets. The shadow price of carbon emissions,

namely the theoretical equilibrium price of carbon emission trading,

is the marginal emission reduction cost (marginal abatement cost,

MAC) of CO2 emissions.1 The study’s findings provide a significant

reference for the government to conduct rational allocations of car-

bon emissions, compensate for enterprises’ emission reduction and

offer relevant insights for carbon emissions trading prices in the pri-

mary market and guiding the market trading price.

As a ‘bad’ output, carbon emissions lack actual trading value; thus,

no clear market price is evident. As the embodiment of social cost,

the shadow price (MAC) can effectively reflect the trading price of

such bad output. Therefore, accurately measuring the carbon emis-

sion shadow price is crucial to determining rational carbon emission

prices. Among all related estimation approaches, the directional dis-

tance function (DDF) is more relevant to practical needs due to its

characteristic of allowing non-desired and desired outputs to vary in

different proportions. In addition, with the innovation of production

technology and the increase in green growth requirements, the DDF

provides an effective way to expand desired outputs while cutting

non-desired outputs. Considering this, DDF is increasingly favoured

by more researchers. Additionally, different Chinese regions exhibit

various features. To examine regional discrepancies and provide an

evidence-based reference for the government to assign carbon emis-

sion reduction tasks, this study measures the shadow price of indus-

trial CO2 emissions (ICE) at different group levels. For the above two

issues, we use provincial panel data from China’s industrial sector

and develop a quadratic directional output distance function

approach for measuring the shadow price of industrial CO2 emissions.

This study also calculates different regions’ potential industrial car-

bon reductions, which may offer a valuable reference for the govern-

ment to assign carbon emission reduction tasks. In brief, analysing

the shadow price of ICE can provide a relevant reference for the gov-

ernment to accurately implement ICE allocations and compensate

enterprises’ emission reduction, and it is also relevant for the pricing

of carbon emissions trading in the primary market and guiding the

market trading prices.

The remainder of this study is structured as follows. Section ``Lit-

erature review’’ reviews the previous related studies. Section ``Mod-

els and data’’ details the model construction and introduces the data

used for processing. Section ``Empirical results and discussion’’ dis-

cusses the shadow price and potential carbon emission reduction at

the national, group and provincial levels. Section ``Conclusions and

policy implications’’ summarises the full text and offers some rele-

vant policy proposals.

Literature review

Previous research has primarily used two different methods for

measuring shadow price: computable general equilibrium and the

distance function. The distance function method only requires histor-

ical input−output data to estimate the shadow price and does not

require an abundance of assumptions regarding future forms of eco-

nomic development and technological progress (Wang et al., 2018).

In addition, the estimated results can effectively measure the MAC

and potential emission reductions; thus, the distance function has

been extensively used for quantifying pollutant shadow prices

(Zhang et al., 2019).

The Shephard distance function and DDF are the two most com-

monly employed distance functions (Murty & Kumar, 2002). The

Shephard distance function approach only requires the actual pollu-

tion emissions and does not require input−output price information.

By using the dual relationship between output distance and income

functions, we can obtain the pollutant shadow price, which provides

a clearer economic meaning. Given the advantages of the distance

function, this method has been widely used for pollutant shadow

price measurement. For instance, Reig-Martı́nez et al. (2001) esti-

mated the shadow price of two industrial wastes in the ceramic pave-

ment industry in Spain using the Shephard output distance function.

Park and Lim (2009) also applied the output distance function to cal-

culate the shadow price of CO2 emissions from electric power plants

in Korea.

However, the Shephard distance function only allows for the

change rate of good output to be the same as that of bad output, and

that does not suit the needs of policymakers, for whom good output

should increase while bad output decreases (Cheng & Kong, 2022; Li

et al., 2023; Wu et al., 2023). Under this circumstance, Chambers et

al. (1996) proposed the DDF, which eliminates the angular constraint

by simultaneously adjusting the input and output in different direc-

tions. Chung et al. (1997) first applied the DDF to a study contain-

ing bad outputs. The basic idea of DDF is to incorporate good and

bad outputs that occur in the production course into the model,

enabling disproportionate scale changes in both forms of output;

that is, as good output increases, bad output can decrease. This

model also means that the observation point meets the frontier

of efficiency only when good output is unable to continue to

expand and bad output is unable to continue to shrink. DDF con-

forms to the actual circumstances and has considerable flexibility

and low data requirements (i.e. DDF only requires the corre-

sponding input and output data, which are extremely easy to

obtain); thus, the technique is more attractive to scholars for

measuring shadow price (or MAC).

Examples of relevant DDF−shadow price studies include Du and

Mao (2015), who examined the CO2 MAC of Chinese coal-fired power

plants, combining production theory with output DDF. Molinos-Sen-

ante et al. (2015) used parametric quadratic DDF to calculate the CO2

shadow price of wastewater treatment plants. Kaneko et al. (2010)

used non-parametric DDF to evaluate the sulfur dioxide (SO2) emis-

sions MAC of China’s thermal power sector. Liu and Feng (2018) esti-

mated the CO2 emissions shadow prices of 165 countries using a

quadratic output DDF and examined its influencing factors. He et al.

(2018) estimated the provincial CO2 MAC for China employing

parametric DDF. Wang et al. (2020) also used DDF to measure the

MAC of China’s regional CO2 emissions. Ji and Zhou (2020) employed

a multi-pollutant parametric output DDF to evaluate the MACs of

CO2, SO2 and nitrogen oxide (NOx) emissions in 105 cities across

China from 2006 to 2014. Wu et al. (2020) adopted the quadratic DDF

model to calculate the CO2 emissions MAC of the Chinese 30 provin-

ces and determined quotas for CO2 emissions among provinces based

on the results. Wu et al. (2021) used DDF and slacks-based measure

(SBM) techniques to measure the shadow prices of SO2 and CO2 in

China. Wang et al. (2022) used non-parametric DDF to calculate car-

bon shadow prices in 152 countries worldwide. Thuy et al. (2023)

applied DDF to estimate the MAC of three water contaminants in the

seafood processing industry in Vietnam.

Parametric and non-parametric approaches have primarily been

used to calculate the distance function (Ma et al., 2019; Oh et al.,

2020; Xian et al., 2020). The non-parametric method predominantly

employs data envelopment analysis (DEA). Examples of researchers

who have used non-parametric approaches include Choi et al. (2012),

Wang and He (2017), Wu et al. (2019), Chen et al. (2021), Kumar and

Jain (2021)), Shen et al. (2021), Bale�zentis et al. (2022), Yue et al.

(2023) and Silva and Magalh~aes (2023). In parametric methods, the

distance function is approximately expressed using a translog or qua-

dratic function, and the corresponding parameters are estimated

using linear programming or stochastic frontier analysis (SFA). As

one of the non-parametric methods, DEA may have the defect of the

estimation result not being unique when estimating the shadow
1 The meaning of MAC is equal to the shadow price in this manuscript.
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price. Additionally, by parameterising the DDF, the boundary of pro-

duction is represented in the form of a specific production function,

and the shadow price of bad output can be obtained through differ-

entiation, but using the non-parametric method to calculate the

shadow price of bad output through differentiation is difficult.

Many scholars have adopted parametric approaches to esti-

mate DDF when investigating shadow prices. For example, Tang

et al. (2016) employed a parametric DDF approach to estimate

the MACs of China’s CO2 and SO2 emissions from 2003 to 2012.

Zhang and Jiang (2019) applied a parametric meta-frontier input

distance function to calculate the shadow price of SO2 emissions

for 93 of China’s coal-fired power plants located in China’s key

‘environmental protection cities’. Adenuga et al. (2020) applied a

translog function that is specified in an SFA framework to value

the shadow price and cost ratio of pollution of surplus P in dairy

farms in Northern Ireland. Wei and Zhang (2020) proposed a par-

tial parametric environmental production frontier to estimate CO2

and SO2 emissions shadow prices for 93 coal-fired power plants

in China. Qi and Choi (2020) examined DDF calculated by SFA to

estimate the CO2 MAC of 92 coal-fuel generators located in

Shanghai, China. Maziotis et al. (2020) used a parametric

approach to estimate the shadow price of reducing unplanned

water supply interruptions for 21 Chilean water companies. He et

al. (2021) used the parameter method to set a quadratic DDF to

calculate the shadow price of agricultural greenhouse gases. Ji et

al. (2021) parameterised DDF using the quadratic function and

applied the parameterisation method to estimate the shadow pri-

ces of four pollutants in major cities in China. Rekker et al.

(2023) used a parametric quadratic DDF to calculate the MAC of

CO2 in the European chemical industry.

In terms of research regarding the environmental emissions

shadow price in China’s industrial sector, Chen et al. (2013) used DDF

to evaluate the MAC of industrial CO2 emissions in China and analyse

the MAC differences among various industrial sectors. Wu et al.

(2020) measured CO2 shadow prices in China’s 36 industrial sectors

from 2006 to 2015 using an environmental production frontier DDF

based on a non-parametric approach. Cheng et al. (2020) adopted the

by-production DEA model’s dual formulation to investigate industrial

carbon shadow prices based on Chinese provincial panel data. Liu et

al. (2020) applied a joint production DEA-based model to analyse the

MAC change and its decomposed factors of SO2 emissions in China’s

industrial sector. Wang et al. (2020) applied the dual model of the

traditional SBM to measure the CO2 MAC of China’s industrial sector

from a provincial perspective. Shen et al. (2021) used the revised

backpropagation-DEA model to measure the carbon shadow prices

generated in China’s industrial sector from 1998 to 2017. Zhang et al.

(2022) used quadratic DDF and SFA methods to estimate SO2 and CO2

emissions shadow prices in China’s industrial sector.

The above industrial sector studies produced many meaningful

results, providing relevant references for China’s future emission reduc-

tion in the industrial sector. However, these previous studies have two

notable limitations. First, most industrial carbon MAC studies were con-

ducted from the perspective of different sub-industries. Although a few

studies examined industrial CO2 shadow prices at the provincial level,

these studieswere not conducted according to the characteristic cluster-

ing groups of different provinces. Second, as noted above, non-paramet-

ric methods carry the defect of the estimation result not being unique

when estimating shadow prices. Regrettably, studies that conducted

shadow price analysis at the provincial level all adopted the non-

parametric approach. As pointed out above, a non-parametric approach

may have the defect of the estimation result not being unique when

estimating the shadow price. In addition, the boundary of production is

represented in the form of a specific production function, and then the

shadow price of ‘bad’ output can be obtained by differentiating through

parametric DDF, whereas it is difficult to calculate the shadow price of

‘bad’ output by differentiating through the non-parametric method.

Considering this, this study conducts extended research in the

following two ways. First, we use the data from each province in

China’s industrial sector from 2000 to 2017 to estimate technical

efficiency by adopting a quadratic directional output distance

function method (which is a kind of parametric approach) for

CO2 shadow price and potential CO2 emission reduction (PCR).

Second, this study classifies the 30 provinces into different groups

based on the characteristics of geographical location, carbon

intensity and per capita industrial output value to examine the

discrepancies in technical efficiency, shadow price and PCR in dif-

ferent groups.

Models and data

Directional output distance function

In the production process, the desired product and its by-products

(such as pollutants) are often produced simultaneously. We assume

that n decision-making units use M inputs x ¼ ðx1; x2;⋯xmÞ2Rþ
M to

produce S good output (y ¼ ðy1; y2;⋯ysÞ2Rþ
S ) and J bad output

b ¼ ðb1; b2;⋯bjÞ2Rþ
J . Subsequently, the process of production can be

formulated as follows:

P xð Þ ¼ y; bð Þ : xð Þcan produce y; bð Þf g ð1Þ

According to Chung et al. (1997), the possibility set of production

is bounded and closed, and input and good output can be more easily

disposed. Furthermore, according to the co-production relationship

of good and bad output, the following two assumptions must also be

satisfied: (1) null-jointness, if ðy; bÞ2 PðxÞ and b ¼ 0; then y ¼ 0; (2)

weak disposable of bad output, if ðy; bÞ2 PðxÞ and 0�u�1 ¼ 0; then

ðuy; ubÞ2 PðxÞ.

Combining the input−output (x, y, b) and direction vector

g ¼ ðgy;�gbÞ, the following is the definition of the directional output

DDF:

~Do x; y; b; gy;�gb
� �

¼ sup b : yþ bgy; b� bgb
� �

2 P xð Þ
� �

ð2Þ

This DDF manifests that it is feasible to maximise the good output

along the direction vector g ¼ ðgy;�gbÞwhile minimising the bad out-

put under a given production feasibility set P(x).

Fig. 1 illustrates the DDF, revealing that if the producer is at the

boundary of the P(x) set, ~Doðx; y; b; gy;�gbÞ ¼ 0 (i.e. b ¼ 0), this is the

most efficient status. If the producer produces within the P(x) set, ~Doð

x; y; b; gy;�gbÞ>0 (i.e. b>0), this indicates that the output is ineffi-

cient, and there is potential to further expand good output and

reduce bad output. Briefly, a higher b value indicates that production

efficiency is lower.

Furthermore, the DDF has the following translation properties:

~Do x; yþ bgy; b� bgb; gy;�gb
� �

¼ ~Do x; y; b; gy;�gb
� �

� b ð3Þ

Eq. (3) indicates that if the good output rises by bgy and the bad

output simultaneously decreases by bgb, then the producer is more

efficient and the DDF decreases by b.

Shadow prices of bad outputs

The bad output’s shadow price is obtained from the dual relation

of DDF and profit function. Suppose that the price vector of good out-

put is p ¼ ðp1;p2;⋯psÞ2Rþ
S and the price vector of bad output is ¼ ðq1;

q2;⋯qjÞ2Rþ
J .

In addition, because ~Doðx; y; b; gy;�gbÞ�0, the profit function is

defined as follows:

W x0; p; qð Þ ¼ maxy;b py� qb : ~Do x; y; b; gð Þ�0
n o

ð4Þ
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where x0 indicates the prices of inputs. Eq. (4) can be further written

as follows:

W x0; p; qð Þ� py� qbð Þ þ p~Do x; y; b; gð Þgy þ q~Do x; y; b; gð Þgb ð5Þ

The left-hand side of Eq. (5) indicates the maximum possible ben-

efit allowed within the production feasibility set. By contrast, the

right-hand side is the actual benefit plus the benefit from eliminating

inefficiencies by increasing good output while reducing bad output.

When the inefficiencies are eliminated along the direction vector and

reach the output frontier, we obtain the following:

~Do x; y; b; gð Þ ¼ minp;q
W x0;p; qð Þ � py� qbð Þ

pgy þ qgb

� �

ð6Þ

Take the following derivative of good and bad output:

r y~Do x; y; b; gð Þ ¼
�p

pgy þ qgb
�0;

r b~Do x; y; b; gð Þ ¼
q

pgy þ qgb
�0:

8

>

>

<

>

>

:

ð7Þ

Subsequently, the bad output shadowprice can be expressed as follows:

qj ¼ �ps
@~DO x; y; b; gð Þ=@bj

@~DO x; y; b; gð Þ=@ys
j ¼ 1;2;⋯; J; s ¼ 1;2;⋯; S:

8

>

<

>

:

ð8Þ

Parameterised quadratic directivity output distance function

Translog and quadratic forms are often used to parameterise dis-

tance functions. Among the forms, the translog form cannot satisfy

the transfer property of DDF and is generally used in parameterising

the Shepard output distance function (Lee & Zhang, 2012). The qua-

dratic form is a quadratic approximation of the unknown distance

function, which satisfies the character of the directional output dis-

tance function well. Therefore, this study adopts the quadratic form

to parameterise the DDF. We set the directional vector g = (1, �1),

which indicates that for a given input, good output expands by a unit

and bad output decreases by a unit.

This study sets labour (x1), capital stock (x2) and energy (x3) as inputs,

and gross industrial output value (y) and CO2 emissions (c) as the good

and bad outputs, respectively (Yang et al., 2021; Tian & Feng, 2022;

Feng et al., 2018, 2024). Notably, the quadratic function includes a

region dummy variable (IDk) and a time dummy variable (Tt) for

capturing the effects of individuals and time. Subsequently, the qua-

dratic DDF for the kth province in year t can be expressed as follows:

~Do xtk; y
t
k; b

t
k;1;�1

� �

¼ a0 þ
X

3

n¼1

anx
t
nk þ b1y

t
k þ g1b

t
k

þ
1

2

X

3

n¼1

X

3

n0¼1

ann0x
t
nkx

t
n0k þ

1

2
b2 ytk

� �2
þ
1

2
g2 btk

� �2

þ
X

3

n¼1

dnxtnkb
t
k þ

X

3

n¼1

enx
t
nky

t
k þmytkb

t
k þ

X

K�1

k¼1

λkIDk

þ
X

T�1

t¼1

ttTt

ð9Þ

This study estimates the parameters of quadratic DDF using the

following linear programming algorithm:

Min
X

T

t¼1

X

K

k¼1

~Do xtk; y
t
k; b

t
k;1;�1

� �

� 0
h i

s:t: ið Þ ~Do xtk; y
t
k; b

t
k;1;�1

� �

�0; k ¼ 1;⋯;K; t ¼ 1;⋯;T:

iið Þ ~Do xtk; y
t
k;0;1;�1

� �

�0; k ¼ 1;⋯;K; t ¼ 1;⋯;T:

iiið Þ
@~Do xtk; y

t
k; b

t
k;1;�1

� �

@b
�0; k ¼ 1;⋯;K; t ¼ 1;⋯;T:

ivð Þ
@~Do xtk; y

t
k; b

t
k;1;�1

� �

@y
�0; k ¼ 1;⋯;K; t ¼ 1;⋯;T:

vð Þ
@~Do xtk; y

t
k; b

t
k;1;�1

� �

@xn
�0;n ¼ 1;2;3; k ¼ 1;⋯;K; t ¼ 1;⋯;T:

við Þ b1 � g1 ¼ �1;b2 ¼ g2 ¼ m; dn � en ¼ 0;n ¼ 1;2;3:

viið Þ ann0 ¼ an0n;n;n
0 ¼ 1;2;3:

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

ð10Þ

After estimating the parameters of DDF (the parameter values are

listed in Appendix Table A.1), the shadow prices of industrial CO2

emissions in province k no year t can be calculated as follows:

q ¼ �p
g1 þ g2bþ

P3
n¼1 dnxn þmy

b1 þ b2yþ
P3

n¼1 enxn þmb
ð11Þ

In the current study, ICE is the unexpected output, and the

expected output is gross industrial output; thus, the economic signifi-

cance of the calculated ICE shadow price is the amount of gross

industrial output to be reduced to reduce one ICE unit, representing

the MAC of ICE.

Fig. 1. Directional output distance function.
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Data

This study is conducted using panel data for the 30 Chinese prov-

inces from 2000 to 2017 and calculating technical efficiency, abate-

ment potential and shadow prices based on various input−output

datasets. Among the datasets, labour force, energy consumption and

capital stock are set as input−output datasets (i.e. x). Conversely,

gross industrial output and industrial CO2 emissions are set as good

output (y) and bad output (b), respectively (Liu & Feng, 2023; Wang

& Feng, 2020, 2021a,b; Zheng et al., 2023). The data sources and proc-

essing are described as follows.

(1) The labour data from 2000 to 2016 are obtained from the Sta-

tistical Yearbook of the Chinese Industry (2001−2017), and the

labour data in 2017 use the average value between 2016 and 2018.

The labour data in 2018 are obtained from the China Economic Cen-

sus Yearbook—2018. (2) We use the ‘perpetual inventory method’ to

calculate capital stock data, processing the relevant data referencing

Chen (2011). (3) Energy consumption data for the industrial sector

are obtained from the China Energy Statistics Yearbook of China

(2001−2018), and we convert the physical quantity of energy con-

sumption data into standard coal equivalent. (4) Gross industrial out-

put value data from 2000 to 2011 are obtained from CISY (2001

−2012), and the data for 2012−2017 are estimated using industrial

sales values and the average production−sales ratio. All currency-

related data (y and k) are converted to constant prices in 2000. (5)

Finally, we calculate CO2 emissions from fossil energy, referencing Mi

et al., (2017), Wang and Feng, (2017) estimating the indirect CO2

emissions induced from electricity using the CO2 coefficient of elec-

tricity, or the CO2 emissions per unit of thermal power generation.

Furthermore, to examine the differences between regions with

different characteristics, this study groups the 30 provinces into dif-

ferent regions according to geographical location, carbon intensity

and per capita gross industrial output value (see Table 1). In terms of

carbon intensity and per capita gross industrial output value, the top

10 provinces with high carbon intensity and per capita gross indus-

trial output are set as ‘high carbon intensity’ and ‘high industrial out-

put’, the lower 10 provinces are set as ‘low carbon intensity’ and ‘low

industrial output’ and the middle 10 provinces are set as ‘middle car-

bon intensity’ and ‘middle industrial output’.

Empirical results and discussion

Technical efficiency

Technical efficiency measures the degree to which the optimal out-

put is achieved with a given input, expressing the level of technology

use in a production process. In the present study, technical efficiency is

reflected by DDF. If the value of DDF equals 1, production is at its most

efficient. Conversely, if the value of DDF is greater than 1, a distance to

reach its most efficient point is evident, wherein a greater DDF value

indicates lower technical efficiency. As this study includes good output

(gross industrial output value) and bad output (ICE), DDF can also reflect

production efficiency and potential emission reduction efficiency. Fig. 2

presents the technical efficiency level via DDF.

From a national perspective (see Fig. 2A), the average values of

national DDF overall present an ascending tendency from 2000 to 2017,

suggesting that technical efficiency in China’s industry has gradually

decreased since 2000. Fig. 2B shows the average DDF variations of the

eastern, central and western regions in the same time period. First, the

DDF in the eastern region first exhibited growth, which declined in 2009

as a turning point, presenting an invertedU-shaped change trend suggest-

ing that the technical efficiency in the eastern region decreased from 2000

to 2009 and has increased since 2009. Furthermore, the DDF in the central

region rose from 2000 to 2012 and gently dropped from 2012 to 2016,

then sharply increased tomore than 0.8 in 2017. This result indicates that

the central region’s technical efficiency decreased from 2000 to 2012, had

a slight increase from 2012 to 2016, but significantly decreased in 2017.

In contrast to the central and eastern regions, the DDF of the western

region exhibited an increasing tendency in the whole sample period, but

its growth rate has been extremely minimal since 2014, suggesting that

the western region’s technical efficiency decreased in all study years.

Compared to the DDF values in the other three regions, we find that the

eastern region had the highest inefficiency level from 2000 to 2012, fol-

lowed by the central and western regions. Nevertheless, since the rise of

the eastern region’s technical efficiency and the decrease of the western

region’s technical efficiency, the DDF value of the western region has

gradually exceeded that of the eastern region since 2013. From 2013 to

2017, the eastern region’s technical efficiency was the highest, whereas it

was the lowest in thewestern region except for 2017.

Fig. 2C shows the disparity of DDF change trends in regions with

different carbon intensity levels. The results demonstrate that the

trajectory of technical efficiency in regions with low carbon

intensity first decreased and then increased in 2008 as a turning

point, and the technical efficiency in regions with middle carbon

intensity also exhibited a similar change trajectory. However, the

technical efficiency in regions with high carbon intensity exhib-

ited a decreasing trend from 2000 to 2017. Together with the

increase in technical efficiency in low-carbon regions and the

decrease in technical efficiency in carbon-intensive regions, low

carbon intensity regions have gradually had the highest technical

efficiency since 2011, followed by middle and high carbon inten-

sity regions. Fig. 2D compares the disparity of technical efficiency

change in regions with different industrial outputs. The results

reveal that the technical efficiency of high industrial output

regions decreased from 2000 to 2008 and increased from 2008 to

2017. In addition, the technical efficiency in middle industrial

output regions decreased from 2000 to 2014, exhibiting a soft

increase since 2014; however, the technical efficiency in low

industrial output regions showed an overall decreasing trend in

the study period. In conclusion, the regions with lower carbon

intensity and higher industrial output gradually came closer to

the optimal frontier for technology use.

Table 1

Group divisions and associated provinces.

Group division Associated provinces

Geographical proximity

East Beijing, Tianjin, Hebei, Liaoning, Shanghai, Jiangsu, Zhejiang, Fujian, Shandong, Guangdong, Hainan

Central Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, Hunan, Shanxi

West Inner Mongolia, Chongqing, Sichuan, Guizhou, Yunnan, Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang, Guangxi

Carbon intensity

Low carbon intensity Guangdong, Shanghai, Beijing, Tianjin, Jiangsu, Zhejiang, Shandong, Fujian, Jilin, Hainan

Middle carbon intensity Liaoning, Jiangxi, Henan, Hubei, Sichuan, Chongqing, Hunan, Shaanxi, Anhui, Heilongjiang

High carbon intensity Guangxi, Hebei, Yunnan, Gansu, Inner Mongolia, Xinjiang, Guizhou, Qinghai, Shanxi, Ningxia

Per capita gross industrial output value

High industrial output Tianjin, Shanghai, Jiangsu, Zhejiang, Guangdong, Shandong, Beijing, Fujian, Liaoning, Jilin

Middle industrial output Inner Mongolia, Chongqing, Hubei, Hebei, Henan, Anhui, Ningxia, Jiangxi, Sichuan, Hunan

Low industrial output Shaanxi, Qinghai, Shanxi, Guangxi, Heilongjiang, Hainan, Xinjiang, Gansu, Yunnan, Guizhou
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Abatement potential of industrial CO2 emissions

Section “Technical efficiency” reflects the production effi-

ciency and potential efficiency of reducing emissions by DDF;

thus, DDF is employed to determine the upper limit of good out-

put expansion and the potential reduction in bad output. For

example, the national average DDF from 2000 to 2017 was

0.3112, and the national average ICE in the same time period

was 5284.97 Mt, suggesting that the national average ICE could

be reduced to 5284.97 Mt £ 0.3112 = 1644.46 Mt. Fig. 3 illus-

trates the average PCR in the whole nation and different regional

groups in the study period.

Fig. 2. Average DDF in all of China and different regional groups.

Fig. 3. Average potential carbon reduction in the whole nation and different regional groups.
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As demonstrated in Fig. 3A, the industrial average PCR increased

from less than 300 Mt in 2000 to approximately 4400 Mt in 2017.

This result is partially attributable to rising technical inefficiency and

partially attributable to increasing ICE. Fig. 3B indicates that the PCR

in the eastern region maintained an increasing trend from 2000 to

2011 and then decreased after 2011. The eastern region’s PCR was

the highest in most years until 2015. The central region with the sec-

ond-largest PCR exhibited an upwards trend in almost all study years.

In 2017, the central region’s PCR exceeded the eastern and western

regions and had the largest PCR. Additionally, the western region had

the lowest (but rising) PCR in most years. Since 2015, the PCR in the

western region has exceeded that of the eastern area.

Fig. 3C shows the PCR change disparity between regions with dif-

ferent carbon intensities, revealing that the PCR change of low carbon

intensity regions exhibited an inverted U-shaped curve during the

study period and had the lowest PCR since 2011. Combined with the

results in Fig. 2C, we can assert that the decrease in the low carbon

intensity region’s PCR was attributable to an improvement in techni-

cal efficiency. From 2000 to 2011, the PCR in middle and high carbon

intensity regions were almost similar; however, since 2011, the PCR

in middle carbon intensity regions has gradually decreased, becom-

ing the region with the lowest PCR. By contrast, the PCR in high car-

bon intensity regions significantly increased, becoming the region

with the largest PCR. Fig. 3D shows the disparities in PCR change

between regions with different industrial outputs. From 2000 to

2010, the PCR of the high industrial output regions exhibited an

increasing trend and had the largest PCR, decreasing since 2010 and

becoming the region with the lowest PCR since 2015. The PCR in mid-

dle and low industrial output regions all exhibited an overall increas-

ing trend throughout the study period. Some notable differences are

evident. The growth ratio of PCR in the middle industrial output

regions was relatively larger prior to 2011 and then became smooth

from 2011 to 2017; however, the growth ratio of PCR in the low

industrial output regions was relatively soft before 2016 and became

sharp from 2016 to 2017.

Table 2 presents the average PCR of the 30 Chinese provinces from

2000 to 2017. Hebei Province had the largest emission reduction

potential, with an average annual PCR of 388.23 Mt, suggesting that

the province has the potential to further reduce CO2 emissions by

approximately 388.23 Mt if it reaches the frontier of technology use.

Table 2 indicates that the reasons that led to Hebei having the largest

PCR are attributable to its high level of technical inefficiency and the

high CO2 emissions, particularly the former. The average DDF in

Hebei was as high as 0.9096, suggesting that inefficient production

accounted for 90.96 % of total production in Hebei, and the emission

reduction potential ratio also reached 90.96 %; therefore, Hebei

Province may be related to a serious problem of inefficient produc-

tion. Additionally, Hebei Province was a considerable carbon

emitter (i.e. average CO2 emissions were 426.81 Mt). These two

circumstances led to high PCR in Hebei Province. Shandong Prov-

ince followed Hebei with an average of 259.04 Mt. As shown in

Table 2, the main reason for Shandong’s high PCR was its consid-

erable CO2 emissions. In addition, Shanxi, Guangdong, Jiangsu,

Henan and Inner Mongolia exhibited a relatively high average

PCR, with average DDF values that were all greater than 0.5, sug-

gesting that these provinces may all benefit from technical ineffi-

ciency to different degrees.

In contrast, Hainan exhibited the smallest reduction potential, and

its average annual PCR was only 0.47 Mt, which indicates that Hainan

may be able to further reduce its CO2 emissions by approximately

0.47 Mt if the province produces at the frontier of technology use.

The emission reduction space of Hainan is extremely small and has

primarily benefitted from its high technical efficiency and low CO2

emissions. As reported in Table 2, the DDF in Hainan was 0.0301, sug-

gesting that there was only 3.01 % inefficient industrial production in

Hainan. The average annual CO2 emissions in Hainan were only 15.61

Mt. Beijing, Qinghai, Chongqing and Jilin also exhibited low average

PCR, which was primarily attributable to relatively high technical

efficiency and low CO2 emissions.

Shadow prices of industrial CO2 emissions

Shadow price in the whole nation and different groups

As noted in Section “Introduction”, the MAC is represented by

the shadow price of ICE in this study. Fig. 4A illustrates the aver-

age shadow price of ICE between 2000 and 2017. Compared to

previous research, the results of this study appear to be reason-

able. The shadow price presents three distinct stages. First, from

2000 to 2011, a significant downwards trend in the shadow price

is shown, decreasing from 2.45 (104 yuan per ton) in 2000 to 2.1

(104 yuan per ton) in 2011, suggesting that the reduced cost

decreased during this period, with some apparent fluctuations.

The second stage occurred from 2011 to 2016, when the shadow

price of ICE exhibited an upwards trend with a relatively large

growth rate, suggesting that controlling ICE became expensive in

this period. Finally, in the third stage (2016−2017), the shadow

price decreased from more than 2.3 (104 yuan per ton) to approx-

imately 2.2 (104 yuan per ton).

Fig. 4B−D shows the shadow prices of ICE in each region. Compar-

ing the three figures reveals that the shadow price change trajecto-

ries in the eastern region, low carbon intensity regions and high

industrial output regions were similar, achieving a sharp, fluctuating

Table 2

Average annual potential CO2 emission reduction across provinces (Mt).

Provinces Average DDF Average emissions Average PCR Provinces Average DDF Average emissions Average PCR

Hebei 0.9096 426.81 388.23 Fujian 0.1662 146.61 24.37

Shandong 0.5550 466.71 259.04 Anhui 0.1485 162.59 24.15

Shanxi 0.7803 317.57 247.79 Guangxi 0.2046 115.86 23.71

Guangdong 0.6969 333.27 232.26 Guizhou 0.2001 105.88 21.18

Jiangsu 0.5615 391.92 220.06 Shanghai 0.1598 116.09 18.55

Henan 0.5879 304.38 178.94 Gansu 0.1826 88.00 16.07

Inner Mongolia 0.6004 213.64 128.26 Jiangxi 0.1633 96.43 15.74

Sichuan 0.3931 207.96 81.75 Heilongjiang 0.1250 108.44 13.55

Liaoning 0.2999 255.13 76.52 Ningxia 0.1628 78.85 12.84

Zhejiang 0.2798 238.67 66.78 Tianjin 0.1595 79.19 12.63

Hubei 0.2502 202.94 50.77 Jilin 0.1131 100.10 11.32

Xinjiang 0.4085 123.99 50.64 Chongqing 0.0942 92.40 8.70

Hunan 0.2804 159.79 44.81 Qinghai 0.1156 45.81 5.30

Yunnan 0.3100 127.15 39.42 Beijing 0.1025 47.30 4.85

Shaanxi 0.2933 115.90 33.99 Hainan 0.0301 15.61 0.47
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decrease from 2000 to 2011 as the regions with the lowest shadow

price. Since 2011, the change rate of the shadow price has become

milder, presenting a rising trend. The results indicate that the cost of

reducing ICE gradually became more costly as the study period pro-

gressed. Additionally, the shadow price change trajectory in the cen-

tral region, middle carbon intensity regions and middle industrial

output regions presented an inverted U shape. Furthermore, as

shown in Fig. 4B, the shadow price in the western region first

exhibited a steady and mild decrease from 2000 to 2011, main-

taining a significant rise after 2011. In recent years, the western

region has become the region with the highest ICE shadow price.

The shadow price in the high carbon intensity regions also pre-

sented a U-shaped variation, with 2011 as the turning point.

Since 2010, the middle carbon intensity region has had the larg-

est shadow price, followed by the high and low carbon intensity

regions. For regions with different industrial output, since 2004,

low industrial output regions have had the costliest MAC,

whereas high industrial output regions have had the smallest

MAC (see Fig. 4D).

Shadow price discrepancies across provinces

Fig. 5 illustrates the industrial carbon shadow prices across the

30 Chinese provinces. From Fig. 5A, the four provinces with the

lowest average shadow price were Hebei, Shandong, Jiangsu and

Guangdong, with prices of 1.7120, 1.7598, 1.8848 and 1.9775,

respectively (104 yuan per ton). This result suggests that these

four provinces have a relatively low marginal cost for further

reducing ICE and should be China’s preferred choice for industrial

carbon reduction. In contrast, Shaanxi, Heilongjiang and Beijing

exhibited the highest average shadow price, at 2.6855, 2.6000

and 2.4953, respectively (104 yuan per ton). This result indicates

that these three provinces have a relatively high marginal cost

for further reducing their ICE.

Fig. 5B presents the changing trend of industrial carbon shadow

prices from 2000 to 2017. The 30 provinces can be classified into four

groups according to their features. The first group represents provin-

ces with ICE shadow prices that showed an overall increasing trend

during the study period, which includes Beijing, Heilongjiang,

Yunnan, Shaanxi and Xinjiang. For these five provinces, the cost of

further reducing ICE became increasingly expensive. The second

group represents provinces with ICE shadow prices that exhibited a

U-shaped change trend, which includes Liaoning, Jilin, Shanghai,

Henan, Hubei, Hunan, Sichuan, Guizhou and Gansu. The third group

represents provinces with ICE shadow prices that showed an overall

downwards trend, which includes Tianjin, Hebei, Shanxi, Inner Mon-

golia, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong and Guang-

dong. For these 11 provinces, the cost of further reducing ICE

gradually decreased. The fourth group represents provinces with ICE

shadow prices that were steady and did not change considerably dur-

ing this study.

Actually, there are large differences in the estimations of the

MACs of ICE in China in the previous literature. For example, Chen et

al. (2013) and Wu et al. (2020) all applied non-parametric DDF to

estimate the MAC of China’s industrial sectors. The former study

forecasted the MACs of ICE at 2731 and 4012 yuan per ton of car-

bon emissions during the 12th and 13th Five-Year Plans, respec-

tively. By contrast, the latter study found that the average MAC

of the top five industrial sectors with the highest carbon intensity

is 373.92 yuan/ton, and the top five sectors with the lowest car-

bon intensity are 50,254.54 yuan/ton. We find that both studies

are based on China’s industrial sector data and used a similar

estimation approach; however, the calculated MAC results are

quite different. This may be attributed to the fact that non-

parametric methods have a defect in estimating ICE results that

are not unique. Considering this, this study adopted a parametric

DDF model to estimate the MAC of ICE and then discussed the

MACs according to the characteristic clustering groups of differ-

ent provinces, which may provide more detailed references for

local government to formulate emission reduction measures tar-

geted to each province’s actual situation.

Fig. 4. Average industrial carbon shadow price in the whole nation and different regional groups. (Unit: 104 yuan RMB per ton).
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Conclusions and policy implications

This study used a quadratic directional output distance function to

analyse the efficiency of technology, potential emission reduction

and shadow prices of China’s industrial carbon emissions. We draw

three notable conclusions from the empirical results.

(1). From 2000 to 2017, the technical efficiency of China’s industry

exhibited a gradual decline, with some fluctuations in 2015 and

2016. The technical inefficiencies of the eastern and central

regions formed an inverted U-shaped trend, with 2009 and 2012

as the respective turning points. By contrast, the western region’s

technical inefficiency exhibited an overall upwards trend. Com-

paratively, since 2013, the eastern region has had the highest

technical efficiency, whereas the western region has had the

lowest technical efficiency.

(2). Due to rising technical inefficiency and ICE, industrial average

PCR also exhibited an upwards trend. The eastern region’s PCR

was the highest in most years until 2015. The central region,

with the second highest PCR, exhibited an upwards trend in

almost all study years. The western region had the lowest (but

rising) PCR in most years. Hebei presented the largest reduction

potential and can further reduce its ICE by approximately 388.23

Mt if it produces at the frontier of technology use. In contrast,

Hainan exhibited the smallest reduction potential.

(3). The MAC of ICE presented a U-shaped change trend, with 2011 as

the turning point. Generally, as time progressed in the study

period, regions with lower carbon intensity and higher industrial

output regions had relatively expensive MACs of ICE. Hebei,

Shandong, Jiangsu and Guangdong exhibited the lowest average

MAC. In contrast, Shaanxi, Heilongjiang and Beijing showed the

highest average MAC.

The empirical findings of this study further supplement existing

studies and are significant for implementing ICE reduction policies.

First, this study reveals an increasing trend in the overall MAC of Chi-

na’s ICE, which implies that the unit output loss due to ICE reduction

efforts has increased. Consequently, it is essential to further augment

support for clean technologies, carbon capture and storage while fos-

tering interregional exchanges and diffusion of low-carbon technolo-

gies to enhance carbon reduction efficiency. Second, the empirical

results reveal the technical efficiency, PCR and MAC of ICE in different

regions, revealing that the principle of ‘easy before difficult’ can be

followed to promote ICE reduction. Emission reduction should start

in regions with lower MAC or high PCR. Under the premise that the

shadow price is lower than MAC, regions with high MAC can employ

the carbon trading mechanism to purchase emissions permits from

regions with low MAC to achieve emission reduction targets. Third,

for provinces with low technical efficiency, local governments should

prioritise improving technical efficiency through establishing tech-

nology exchanges with developed regions (Zhou et al., 2020). In fact,

the MAC of ICE is not only affected by carbon intensity and industrial

output per capita but is also affected by the influence of industrial

development stage, energy structure, population density, technology

research and development support and other factors. Previous

research has also indicated that the clean development mechanism

(CDM) can promote emission reduction that is lower than the original

Fig. 5. Industrial carbon shadow prices across 30 Chinese provinces. (Unit: 104 yuan RMB per ton).
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cost, and developed countries can cooperate with less developed

countries to advance the CDM. Limited by space restrictions, we do

not discuss the influence factors and changing reasons (such as emer-

gencies and government policies) for technical efficiency, abatement

potential and carbon shadow prices (Ray et al., 2022), which is an

investigation that we will pursue in the future.
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Appendix

Table A.1

Estimated parameter values.

Parameters Values Parameters Values Parameters Values

a0 �0.1546 g1 0.7200 d1 0.0326

a1 0.0015 g2 �0.0665 d2 0.0815

a2 0.2108 b1 �0.2800 d3 0.0000

a3 0.0000 b2 �0.0665 e1 0.0326

a11 �0.0158 a12 �0.0245 e2 0.0815

a22 �0.1595 a13 0.0000 e3 0.0000

a33 0.0000 a23 0.0000 m �0.0665

Time dummy variable (take 2017 as the benchmark)

t1 0.0072 t7 �0.0356 t13 �0.0728

t2 0.0099 t8 �0.0417 t14 �0.0319

t3 0.0036 t9 �0.0456 t15 �0.0091

t4 0.0059 t10 �0.0464 t16 �0.0092

t5 0.0002 t11 �0.0503 t17 0.0039

t6 �0.0332 t12 �0.0729

Region dummy variable (take Xinjiang as the benchmark)

λ1 0.1468 λ11 �0.2120 λ21 0.1430

λ2 0.1461 λ12 �0.2607 λ22 �0.0519

λ3 �0.5330 λ13 �0.0505 λ23 �0.2226

λ4 �0.3238 λ14 �0.0126 λ24 �0.0723

λ5 �0.1201 λ15 �0.5047 λ25 �0.0594

λ6 �0.5103 λ16 �0.3454 λ26 �0.0401

λ7 �0.0853 λ17 �0.3286 λ27 �0.0354

λ8 �0.1937 λ18 �0.1248 λ28 0.0789

λ9 0.0447 λ19 0.2357 λ29 �0.0015

λ10 �0.0940 λ20 �0.0751
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