covid
Buscar en
Revista Iberoamericana de Automática e Informática Industrial RIAI
Toda la web
Inicio Revista Iberoamericana de Automática e Informática Industrial RIAI Un método de optimización proximal al problema de anidamiento de piezas irregu...
Información de la revista
Vol. 13. Núm. 2.
Páginas 220-227 (abril - junio 2016)
Compartir
Compartir
Descargar PDF
Más opciones de artículo
Visitas
4185
Vol. 13. Núm. 2.
Páginas 220-227 (abril - junio 2016)
Open Access
Un método de optimización proximal al problema de anidamiento de piezas irregulares utilizando arquitecturas en paralelo
A proximal optimization method to the problem of nesting irregular pieces using parallel architectures
Visitas
4185
Juan P. D’Amatoa,b,
Autor para correspondencia
juan.damato@gmail.com

Autor para correspondencia.
, Matias Mercadoa, Alejandro Heilinga, Virginia Cifuentesa,c
a Universidad Nacional del Centro de la Provincia de Buenos Aires, Instituto PLADEMA, Tandil, Pinto 399, Argentina
b Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Bs. As, Rivadavia 1917, Argentina
c Comisión de Investigaciones Científicas de la Prov. De Buenos Aires, La Plata, calle 26, e/10 y 11, Argentina
Este artículo ha recibido

Under a Creative Commons license
Información del artículo
Resumen
Texto completo
Bibliografía
Descargar PDF
Estadísticas
Resumen

Se presenta un modelo discreto que resuelve el problema bidimensional de corte y ubicación, generalmente llamado nesting (anidamiento), de gran interés en las industrias textiles. El problema consiste en minimizar el remanente o desperdicio de un material a través de la ordenación de moldes geométricamente irregulares. Como solución se propone un algoritmo heurístico polinomial, flexible porque permite evaluar distintas condiciones y restricciones del problema, y paralelizable en arquitecturas de múltiples núcleos de bajo costo. La metodología propuesta se evaluó con casos de estudio de la literatura del área y se comparan los tiempos de cómputo con una herramienta comercial del sector, obteniéndose muy buenos resultados. Además, se logra una aceleración del procesamiento de hasta 4X con respecto a la versión secuencial.

Palabras clave:
Optimización
corte
industria textil
heurística
paralelización
Abstract

In this paper, a discrete model that solves the two-dimensional cutting problem, usually called nesting, of great interest in the textile industries is presented. The problem consists in finding the best position and orientation of irregularly shaped molds on a material without overlapping, in order to minimize the residual or waste. We propose an adaptive heuristic that evaluates various conditions and constraints of the problem, with a polynomial computational complexity that can be accelerated using multi-core architectures. The proposed methodology is evaluated using known cases of the literature of the area and the resolution times are compared with a commercial tool sector, obtaining very good results. Furthermore, it achieves acceleration up to 4X processing respect to its sequential version.

Keywords:
Optimization
nesting
textile industry
heuristics
parallelization
Referencias
[Abbasi and Sahir, 2010]
Abbasi, J., Sahir, M. Development of Optimal Cutting Plan using Linear Programming Tools and MATLAB Algorithm – Int. J. of Innovation, Management and Technology, Vol. 1, No. 5, pp.483-492, 2010.
[Alba and Tomassini, 2002]
E. Alba, M. Tomassini.
Parallelism and evolutionary algorithms.
IEEE Transaction on Evolutionary Computation, 6 (2002), pp. 443-462
[Albano, 1977]
A. Albano.
A Method to Improve Two-Dimensional Layout.
Computer Aided Design, 9 (1977),
[Asns, 2013]
ASNS - Nesting Software For Optimum Use Of Materials, LLC Technos, 2013.
[Bąk et al., 2011]
S. Bąk, J. Błażewicz, G. Pawlak, M. Płaza, E. Burke, G. Kendall.
A Parallel Branch-and-Bound Approach to the Rectangular Guillotine Strip Cutting Problem.
Journal on Computing Winter, 23 (2011),
[Baker and Coffman, 1980]
B. Baker, E. Coffman Jr., R. Rivest.
Orthogonal packing in two dimensions.
SIAM Journal on Computing, 9 (1980), pp. 846-855
[Burke et al., 2009]
E. Burke, K. Kendall, G. Whitwell.
A Simulated Annealing Enhancement of the Best-Fit Heuristic for the Orthogonal Stock-Cutting Problem.
Journal on Computing, 21 (2009), pp. 505-516
[Chazelle, 1983]
B. Chazelle.
The botton-left bin-packing heuristic: An efficient implementation.
IEEE Transactions on Computers, 32 (1983), pp. 697-707
[Cheng et al., 1994]
C.H. Cheng, B.R. Feiring, T.C.E. Cheng.
The Cutting Stock Problem – A Survey.
Int. J. of Production Economics, 36 (1994), pp. 291-305
[Cheng and Rao, 2000]
S.K. Cheng, K.P. Rao.
Large-scale Nesting of Irregular Patterns Using Compact Neighborhood Algorithm.
Journal of Materials Processing Technology, 103 (2000), pp. 135-140
[Chu et al., 2007]
C. Chu, S. Kim, Y. Lin, Y. Yu, G. Bradski, A. Ng, A. Olukotun.
Map-Reduce for machine learning on multicore.
Neural Information Processing Systems, (2007),
[Cui et al., 2006]
Y. Cui, D. He, X. Song.
Generating Optimal Two-Sectional Cutting Patterns for Rectangular Blanks.
Journal of Computers & Operations Research, 2006, 33 (2006), pp. 1505-1520
[Dagli, 2002]
Dagli,C. Cutting Stock Problem: Combined Use of Heuristics and Optimization Methods, Recent Developments in Production Research Amsterdam, pp. 500-506, 1988. Dowsland, K.A., Vaid, S., Dowsland, W.B. An Algorithm for Polygon Placement Using a Bottom-left Strategy, European Journal of Operational Research, 141:371-381, 2002.
[Dyckho and Finke, 1992]
H. Dyckho, U. Finke.
Cutting and Parking in Production and Distribution.
Physica-Verlag, (1992),
[Elkeran, 2013]
E. Elkeran.
A New Approach for Sheet Nesting Problem Using Guided Cuckoo Search and Pairwise Clustering.
European Journal of Operational Research, 231 (2013), pp. 757-769
[Gilmore and Gomory, 1965]
G. Gilmore, R. Gomory.
Multistage cutting stock problems of two and more dimensions.
European J. of Op. Research, 14 (1965), pp. 94-120
[Hifi, 2001]
M. Hifi.
Exact algorithms for large-scale unconstrained two and three staged cutting problems.
Computational Optimization and Applications, 18 (2001), pp. 63-88
[Hopper and Turton, 1999]
E. Hopper, B. Turton.
A genetic algorithm for a 2D industrial packing problem.
Computers & Industrial Engineering, 37 (1999), pp. 375-378
[Hopper and Turton, 2001]
E. Hopper, B. Turton.
An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem.
European Journal of Operational Research, 128 (2001), pp. 34-57
[Jakobs, 1996]
S. Jakobs.
On genetic algorithms for the packing of polygons.
European Journal of Operational Research, 88 (1996), pp. 165-181
[Junior et al., 2013]
Junior, B.A., Pinheiro, P.R., Saraiva, R.D. A Hybrid Methodology for Nesting Irregular Shape: Case Study on a Textile Industry, 6th IFAC Conference on M. and Control of Production and Logistics (Brazil), pp.15-20, 2013.
[Lai and Chan, 1997]
K. Lai, J. Chan.
Developing a simulated annealing algorithm for the cutting stock problem.
Journal of Computers ind. Engng, 32 (1997), pp. 115-127
[Lee and Ma, 2008]
W.-C. Lee, H. Ma.
Heuristic for Nesting Problems of Irregular Shapes.
Computer-Aided Design, 40 (2008), pp. 625-633
[Lesh et al., 2005]
N. Lesh, H. Marks, Mc. Mahon, A.M. Mitzenmacher.
New heuristic and interactive approaches to 2D rectangular strip packing.
ACM Journal of Experimental Algorithmics, 10 (2005), pp. 1-18
[Lesh and Mitzenmacher, 2006]
N. Lesh, M. Mitzenmacher.
Bubble search: a simple heuristic for improving priority-based greedy algorithms.
Information Processing Letters, 97 (2006), pp. 161-169
[Liton, 1997]
C. Liton.
A frecuency approach to the one dimensional cutting problem for carpet rolls.
Operation Research Quartelly, 28 (1997), pp. 927-938
[Liu and Teng, 1999]
D. Liu, H. Teng.
An improved BL-algorithm for genetic algorithm of the orthogonal packing of rectangles.
European Journal of Operational Research, 112 (1999), pp. 413-420
[Mollá et al., 1992]
R. Mollá, R. Quirós, R. Vivó.
Fixed Point Digital Differential Analyzer Proceedings of Compugraphics¿92, (1992), pp. 1-5
[Ofa, 2016]
OFA - Optimizer For Anyshape - Samtec Solutions - Website http://www.samtecsolutions.com/.
[Parada et al., 1995]
V. Parada, A. Gómes, De Diego.
J. Exact solutions for constrained two-dimensional cutting stock problems.
European Journal of Operation Research, 84 (1995), pp. 633-644
[Rodrigo et al., 2012]
Rodrigo, W., Daundasekera, W. and Perera A. Pattern Generation for Two Dimensional Cutting Stock Problem - International Journal of Mathematics Trends and Technology, 3(2), pp.54-62, 2012.
[Ross et al., 2002]
Ross, P., Schulenburg, S., Marín-Blázquez, J.G., & Hart, E. Hyper-heuristics: learning to combine simple heuristics in bin-packing problems. In LNCS. Conference on genetic and evolutionary computation, pp. 942-948, 2002.
[Rui Liu et al., 2002]
Liu Rui, Xianlong Hong, Sheqin Dong, Yici Cai, Jun Gu, Cheng Chung-Kuan.
Module placement with boundary constraints using o-tree representation..
IEEE Int. Symposium on Circuits and Systems (ISCAS2002), 2 (2002), pp. 871-874
[Savio et al., 2012]
Savio, G., Menneghello, R., Conceri, G. A Heuristic Approach for Nesting of 2D Shapes, in: Proceedings of the 37th Int. MATADOR Conference (Springer), pp.49-53, 2012.
[Siasos and Vosniakos, 2014]
A. Siasos, G. Vosniakos.
Optimal directional nesting of planar profiles on fabric bands for composites manufacturing.
CIRP Journal of Manufacturing Science and Technology, 7 (2014), pp. 283-297
[Tay et al., 2002]
F. Tay, F. Chong, F. Lee.
Pattern nesting on irregular-shaped stock using Genetic Algorithms.
Engineering Applications of Artificial Intelligence, 15 (2002), pp. 551-558
[Weng and Kuo, 2011]
W.-C. Weng, H.-C. Kuo.
Irregular Stock Cutting System Based on AutoCAD.
Advances in Engineering Software, 42 (2011), pp. 634-643
Descargar PDF
Opciones de artículo