was read the article
array:24 [ "pii" => "S1665268119302005" "issn" => "16652681" "doi" => "10.5604/01.3001.0011.7389" "estado" => "S300" "fechaPublicacion" => "2018-05-01" "aid" => "70057" "copyright" => "Fundación Clínica Médica Sur, A.C." "copyrightAnyo" => "2018" "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Ann Hepatol. 2018;17:444-60" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 350 "formatos" => array:3 [ "EPUB" => 11 "HTML" => 235 "PDF" => 104 ] ] "itemSiguiente" => array:19 [ "pii" => "S1665268119302017" "issn" => "16652681" "doi" => "10.5604/01.3001.0011.7390" "estado" => "S300" "fechaPublicacion" => "2018-05-01" "aid" => "70058" "copyright" => "Fundación Clínica Médica Sur, A.C." "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Ann Hepatol. 2018;17:461-9" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 172 "formatos" => array:3 [ "EPUB" => 8 "HTML" => 114 "PDF" => 50 ] ] "en" => array:11 [ "idiomaDefecto" => true "titulo" => "Prognostic Significance of The New Criteria for Acute Kidney Injury in Cirrhosis" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "461" "paginaFinal" => "469" ] ] "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "f0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 551 "Ancho" => 512 "Tamanyo" => 45775 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0005" class="elsevierStyleSimplePara elsevierViewall">Ninety-day cumulative survival rate of cirrhotic patients according to the stages of acute kidney injury (AKI). Surviva was significantly lower in the patients with AKI stages 2 and 3 than in those without AKI (P < 0.001, log-rank test). When individuals were compared according to the AKI stage, those with AKI stage 1 had higher survival than those with stage 2 (P = 0.022). No differences were observed between those in stages 2 and 3.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Emilia T.O. Bansho, Pedro Eduardo S. Silva, Bruno S. Colombo, Leticia M. Wildner, Maria Luiza Bazzo, Esther B. Dantas-Corrêa, Leonardo L. Schiavon, Janaína L. Narciso-Schiavon" "autores" => array:8 [ 0 => array:2 [ "nombre" => "Emilia T.O." "apellidos" => "Bansho" ] 1 => array:2 [ "nombre" => "Pedro Eduardo S." "apellidos" => "Silva" ] 2 => array:2 [ "nombre" => "Bruno S." "apellidos" => "Colombo" ] 3 => array:2 [ "nombre" => "Leticia M." "apellidos" => "Wildner" ] 4 => array:2 [ "nombre" => "Maria Luiza" "apellidos" => "Bazzo" ] 5 => array:2 [ "nombre" => "Esther B." "apellidos" => "Dantas-Corrêa" ] 6 => array:2 [ "nombre" => "Leonardo L." "apellidos" => "Schiavon" ] 7 => array:2 [ "nombre" => "Janaína L." "apellidos" => "Narciso-Schiavon" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1665268119302017?idApp=UINPBA00004N" "url" => "/16652681/0000001700000003/v1_201905160920/S1665268119302017/v1_201905160920/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S1665268119301991" "issn" => "16652681" "doi" => "10.5604/01.3001.0011.7388" "estado" => "S300" "fechaPublicacion" => "2018-05-01" "aid" => "70056" "copyright" => "Fundación Clínica Médica Sur, A.C." "documento" => "article" "crossmark" => 0 "licencia" => "http://creativecommons.org/licenses/by-nc-nd/4.0/" "subdocumento" => "fla" "cita" => "Ann Hepatol. 2018;17:437-43" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:2 [ "total" => 189 "formatos" => array:3 [ "EPUB" => 14 "HTML" => 128 "PDF" => 47 ] ] "en" => array:11 [ "idiomaDefecto" => true "titulo" => "Sofosbuvir-Based Therapy in the Pre-Liver Transplant Setting: The Canadian National Experience" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "437" "paginaFinal" => "443" ] ] "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "f0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 399 "Ancho" => 1057 "Tamanyo" => 68744 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0010" class="elsevierStyleSimplePara elsevierViewall">Flowchart of outcomes for non-HCC cohort of treated patients.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Bandar Al-Judaibi, Benson Thomas, Philip Wong, Amine Benmassaoud, Jo-Hua Chen, M. Katherine Dokus, Trana Hussaini, Marc Bilodeau, Kelly W. Burak, Paul Marotta, Eric. M. Yoshida" "autores" => array:11 [ 0 => array:2 [ "nombre" => "Bandar" "apellidos" => "Al-Judaibi" ] 1 => array:2 [ "nombre" => "Benson" "apellidos" => "Thomas" ] 2 => array:2 [ "nombre" => "Philip" "apellidos" => "Wong" ] 3 => array:2 [ "nombre" => "Amine" "apellidos" => "Benmassaoud" ] 4 => array:2 [ "nombre" => "Jo-Hua" "apellidos" => "Chen" ] 5 => array:2 [ "nombre" => "M. Katherine" "apellidos" => "Dokus" ] 6 => array:2 [ "nombre" => "Trana" "apellidos" => "Hussaini" ] 7 => array:2 [ "nombre" => "Marc" "apellidos" => "Bilodeau" ] 8 => array:2 [ "nombre" => "Kelly W." "apellidos" => "Burak" ] 9 => array:2 [ "nombre" => "Paul" "apellidos" => "Marotta" ] 10 => array:2 [ "nombre" => "Eric. M." "apellidos" => "Yoshida" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1665268119301991?idApp=UINPBA00004N" "url" => "/16652681/0000001700000003/v1_201905160920/S1665268119301991/v1_201905160920/en/main.assets" ] "en" => array:17 [ "idiomaDefecto" => true "titulo" => "Antiproliferative Effects of Epigenetic Modifier Drugs through E-cadherin Up-regulation in Liver Cancer Cell Lines" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "444" "paginaFinal" => "460" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Diego Uribe, Andres Cardona, Davide Degli Esposti, Marie-Pierre Cros, Cyrille Cuenin, Zdenko Herceg, Mauricio Camargo, Fabian M. Cortés-Mancera" "autores" => array:8 [ 0 => array:3 [ "nombre" => "Diego" "apellidos" => "Uribe" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">**</span>" "identificador" => "aff0010" ] ] ] 1 => array:3 [ "nombre" => "Andres" "apellidos" => "Cardona" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "aff0005" ] ] ] 2 => array:3 [ "nombre" => "Davide Degli" "apellidos" => "Esposti" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">***</span>" "identificador" => "aff0015" ] ] ] 3 => array:3 [ "nombre" => "Marie-Pierre" "apellidos" => "Cros" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">***</span>" "identificador" => "aff0015" ] ] ] 4 => array:3 [ "nombre" => "Cyrille" "apellidos" => "Cuenin" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">***</span>" "identificador" => "aff0015" ] ] ] 5 => array:3 [ "nombre" => "Zdenko" "apellidos" => "Herceg" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">***</span>" "identificador" => "aff0015" ] ] ] 6 => array:3 [ "nombre" => "Mauricio" "apellidos" => "Camargo" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">**</span>" "identificador" => "aff0010" ] ] ] 7 => array:4 [ "nombre" => "Fabian M." "apellidos" => "Cortés-Mancera" "email" => array:1 [ 0 => "fabiancortes@itm.edu.co" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0005" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "Grupo de Investigación e Innovación Biomédica - GI<span class="elsevierStyleSup">2</span>B, Instituto Tecnológico Metropolitano, ITM. Medellín, Colombia." "etiqueta" => "*" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Grupo Genética, Regeneración y Cáncer - GRC, Sede de Investigación Universitaria, SIU Lab 432, Universidad de Antioquia, UdeA. Medellín, Colombia." "etiqueta" => "**" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Epigenetics Group, International Agency for Research on Cancer, IARC. Lyon, France." "etiqueta" => "***" "identificador" => "aff0015" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "*" "correspondencia" => "Corresponding author." ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "f0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 456 "Ancho" => 1057 "Tamanyo" => 60571 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0020" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">Effect of 5aza-dC and TSA on promoter methylation of the Wnt/β-catenin pathway antagonists. Average methylation levels of</span> DKK3, SFRP1, WIF1, CDH1 <span class="elsevierStyleItalic">gene promoters and LINE-1 sequences in HepG2 cells <span class="elsevierStyleBold">(A)</span> and HuH7 cells <span class="elsevierStyleBold">(B)</span>. Methylation levels of each gene were compared between treated (5aza-dC+TSA) and non-treated (DMSO) cells. NT: non-tretaed and T: treated. The experiments were performed in triplicate and results correspond to means and the comparison of the differences of the means, between treated and non-treated cells, with 95°% confidence intervals ± SD. p < 0.05 denotes statistical significance. *p < 0.05, **p < 0.005, ***p < 0.0005.</span></p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="s0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0015">Introduction</span><p id="p0005" class="elsevierStylePara elsevierViewall">The International Agency for Research on Cancer, estimated that 782,000 new liver cancer cases occurred globally in 2012, being the fifth most common cancer in men and the ninth in women; likewise, is the second cause of cancer related death worldwide. Even of more concern, the prognosis is poor and the relapse of the disease and metastasis are common.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a></p><p id="p0010" class="elsevierStylePara elsevierViewall">The canonical Wnt/β-catenin signaling pathway plays a critical role in liver cancer development.<a class="elsevierStyleCrossRef" href="#bib0005"><span class="elsevierStyleSup">1</span></a>,<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a> This pathway is highly conserved among species and plays pivotal roles in the regulation of cell fate. During embryonic development cooperates in the establishment of cell polarity and also in tissue and organ formation. In adult organs participates in tissue homeostasis regulation, stem cell maintenance, adhesion, proliferation and regeneration.<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> Thus, their deregulation results in developmental defects<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a> and also leads to diverse diseases.<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a></p><p id="p0015" class="elsevierStylePara elsevierViewall">β-catenin is the key component of the canonical Wnt/β-catenin pathway, since it is involved in cell adhesion, linking E-cadherin to the cytoskeleton.<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a> Upon Wnt-mediated signaling, β-catenin translocate to the nucleus where promotes the expression of genes involved in cell proliferation and differentiation, like <span class="elsevierStyleItalic">c-MYC</span> (v-myc avian myelocytomatosis viral oncogene homolog),<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a> in conjunction with Lef/Tcf transcription factors (lymphoid enhancer-binding factor/T cell factor). In absence of Wnt signaling, β-catenin is phosphorylated on serine-threonine residues located in its N-terminal domain by Gsk3β (glycogen synthase kinase 3 beta) and CkIα (casein kinase-alpha), in complex with Apc (adenomatous polyposis coli) and Axin (axis inhibitor), to induce the proteasomal degradation of β-catenin.<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a></p><p id="p0020" class="elsevierStylePara elsevierViewall">Aberrant β-catenin activation occurs by both genetic and epigenetic alterations in different components of the pathway. In hepatocellular carcinoma (HCC), activating mutations in <span class="elsevierStyleItalic">CTNNB1</span> gene (encoding for β-catenin) are present in 8-30% of tumors; additionally, 1%-15% of cases have <span class="elsevierStyleItalic">APC</span> and <span class="elsevierStyleItalic">AXIN</span> mutations. Likewise, <span class="elsevierStyleItalic">FZD7</span> (frizzled class receptor 7) and <span class="elsevierStyleItalic">WNT3A</span> (wingless-type MMTV integration site family, member 3A) overexpression are also frequent in HCC.<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a></p><p id="p0025" class="elsevierStylePara elsevierViewall">DNA methylation and histone modifications are the most widely studied epigenetic alterations. In this context, it is well known that tumor cells present focal hypermethylation of CpG islands located in the promoter of tumor suppressor genes, like the Wnt/β-catenin pathway antagonist <span class="elsevierStyleItalic">CDH1</span> (cadherin-1), <span class="elsevierStyleItalic">DKK3</span> (dickkopf WNT signaling pathway inhibitor-3), <span class="elsevierStyleItalic">SFRP1</span> (secreted frizzledrelated protein-1) and <span class="elsevierStyleItalic">WIF1</span> (WNT inhibitory factor-1), thereby preventing the expression of the corresponding gene.<a class="elsevierStyleCrossRefs" href="#bib0040"><span class="elsevierStyleSup">8</span></a><span class="elsevierStyleSup">–</span><a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a></p><p id="p0030" class="elsevierStylePara elsevierViewall">Given the important contribution of the epigenetic alterations in cancer development, there is an increasing interest to develop epigenetic modifiers drugs that targets specific chromatin regulatory proteins, like DNA-methyltransferases (DNMTs) and histone deacetylases (HDACs). Some of these drugs have been already approved to be tested in clinical trials and in the clinic, for the treatment of cutaneous T cell lymphomas, B cell malignancies, myelodysplastic syndromes and acute myeloid leukemias.<a class="elsevierStyleCrossRefs" href="#bib0055"><span class="elsevierStyleSup">11</span></a><span class="elsevierStyleSup">–</span><a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a></p><p id="p0035" class="elsevierStylePara elsevierViewall">The aim of this study is to evaluate the potential of the combination of 5aza-dC and TSA, to modulate the Wnt/β-catenin pathway in liver cancer cell lines, and determine the effect of this possible regulation over the migratory and survival properties of these cells.</p></span><span id="s0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0020">Material and Methods</span><span id="s0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0025">Cell lines</span><p id="p0040" class="elsevierStylePara elsevierViewall">Human epithelial-derived hepatoma cell lines HepG2 and HuH7 were used. HepG2 has a constitutively active β -catenin isoform, resulting from a deletion in one allele of <span class="elsevierStyleItalic">CTNNB1</span> gene, that results in the lost of amino acids 25-140 of the protein.<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">14</span></a> HuH7 is β-catenin wild type, but harbors a mutation in the DNA binding domain of <span class="elsevierStyleItalic">TP53</span> gene, that promotes β-catenin accumulation.<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">14</span></a> Cell lines were cultured in DMEM medium (Gibco, Carlsbad, United-States), supplemented with 10% FBS, 1% penicillin-streptomycin, 1% L-glutamine and 1% sodium pyruvate (all from Life Technologies, Carlsbad, United-States). Cells were maintained in a humidified incubator at 37 °C and 5% of CO<span class="elsevierStyleInf">2</span>.</p></span><span id="s0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0030">Combined treatments</span><p id="p0045" class="elsevierStylePara elsevierViewall">Different concentrations of 5aza-dC and TSA (both from Sigma-Aldrich, St. Louis-United States) were tested according to previous literature reports,<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">9</span></a>,<a class="elsevierStyleCrossRefs" href="#bib0075"><span class="elsevierStyleSup">15</span></a><span class="elsevierStyleSup">–</span><a class="elsevierStyleCrossRef" href="#bib0085"><span class="elsevierStyleSup">17</span></a> treating 6 x 10<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> cells during 96 h with 5aza-dC, adding TSA for the last 24 h (<a class="elsevierStyleCrossRef" href="#f0005">Figure 1</a>A). However, it is well known that high drugs concentrations, greatly reduces cell proliferation, viability and induces apoptosis.<a class="elsevierStyleCrossRef" href="#bib0090"><span class="elsevierStyleSup">18</span></a>,<a class="elsevierStyleCrossRef" href="#bib0095"><span class="elsevierStyleSup">19</span></a> For these reasons, concentrations of 5aza-dC (1 <span class="elsevierStyleItalic">μ</span>M) and TSA (100 nM) were selected to maintain viability ~80% in the cell lines, when compared to untreated cells (<a class="elsevierStyleCrossRef" href="#f0005">Figure 1</a>B). Control cultures (untreated cells) received 0.1% of drug vehicle (DMSO). In independent experiments, and to determine the influence of treatments on cell proliferation, 6 × 10<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> cells were treated during 96 h with 1 of 5aza-dC alone, or adding 100 nM of TSA for the last 24 h of the 96 h 5aza-dC treatment. At 24 h, 48 h, 72 h and 96 h of treatments, MTT (Sigma-Aldrich) was added to each well and cells incubated for 4 h in the dark at 37 °C, previous to measure the absorbance at 560 nm using the microplate reader Glomax multidetection system (Promega, Madison-United States). As shown in <a class="elsevierStyleCrossRef" href="#f0010">figure 2</a>, cells grew exponentially in presence of 5aza-dC alone; but by adding TSA, an important inhibition of cell proliferation was observed. Freshly prepared medium containing drugs for treated cells or DMSO for untreated cells was changed on a daily basis. All treatments were carried out using exponentially growing cultures.</p><elsevierMultimedia ident="f0005"></elsevierMultimedia><elsevierMultimedia ident="f0010"></elsevierMultimedia></span><span id="s0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0035">Cell cycle analysis by flow cytometry</span><p id="p0050" class="elsevierStylePara elsevierViewall">5 × 10<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a> cells were seeded into 12-wells plates and treated with 5aza-dC 1 <span class="elsevierStyleItalic">μ</span>M and TSA 100TM. Thereafter, cells were detached, fixed with ethanol and kept at 4 °C for 24 h. For the analysis of the SubG1 fraction, RNAse A (Sigma-Aldrich) and propidium iodide (Sigma-Aldrich) were added to cell suspensions. Cells were then incubated for 30 min at 37 °C in the dark and the distribution of cell cycle phases measured in a Coulter EPICS XL flow cytometer (Beckman Coulter, Miami-United States), and the data analyzed with FlowJo software (FlowJo, Ashland-United States).</p></span><span id="s0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0040">Cell viability, cytotoxicity and caspase activity</span><p id="p0055" class="elsevierStylePara elsevierViewall">To determine simultaneously processes related with cellular death in a single well, the ApoTox-Glo™ Triplex Assay Kit (Promega) was used, following the manufacturer instructions. All measurements were performed using the microplate reader Glomax multidetection system (Promega). 6 × 10<a class="elsevierStyleCrossRef" href="#bib0015"><span class="elsevierStyleSup">3</span></a> cells were seeded into 96-well plates and treated with 5aza-dC 1 <span class="elsevierStyleItalic">μ</span>M and TSA 100 nM.</p></span><span id="s0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0045">Bisulfite modification and pyrosequencing</span><p id="p0060" class="elsevierStylePara elsevierViewall">DNA was extracted using the Allprep DNA/RNA mini kit (Qiagen, Hilden-Germany). For the quantitative measurement of DNA methylation levels in individual CpG sites in the promoter region of <span class="elsevierStyleItalic">DKK3</span> (8 CpGs), <span class="elsevierStyleItalic">SFRP1</span> (7 CpGs), <span class="elsevierStyleItalic">WIF1</span> (5 CpGs) and <span class="elsevierStyleItalic">CDH1</span> (7 CpGs) genes and LINE-1 sequences (5 CpGs) (<a class="elsevierStyleCrossRef" href="#t0005">Table 1</a>), we performed sodium bisulfite modification on 500 ng of DNA using the EZ DNA Methylation-Gold Kit (Zymo Research, Irvine-United States). Pyrosequencing was performed as previously described using the PyroMark Q96 ID pyrosequencing system (Qiagen).<a class="elsevierStyleCrossRef" href="#bib0100"><span class="elsevierStyleSup">20</span></a> The methylation levels at the target CpGs were evaluated by converting the resulting pyrograms to numerical values for peak heights and expressed as the average of all CpG sites analyzed at a given gene promoter.</p><elsevierMultimedia ident="t0005"></elsevierMultimedia></span><span id="s0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0050">Quantitative real-time PCR (qRT-PCR)</span><p id="p0065" class="elsevierStylePara elsevierViewall">RNA was extracted using the Allprep DNA/RNA mini kit (Qiagen). Five hundred ng of total RNA were used to generate cDNA, using the M-MLV reverse transcriptase (Life Technologies) and random hexamer primers. qRT-PCRs were performed to determine mRNA levels of <span class="elsevierStyleItalic">DKK3, SRP1, WIF1, CDH1</span> and <span class="elsevierStyleItalic">c-MYC. GAPDH</span> was used as reference gene (<a class="elsevierStyleCrossRef" href="#t0010">Table 2</a>). The assays were performed using MESA GREEN qPCR MasterMix Plus (eu-rogentec, Liege-Belgium) and a CFX96 Real-Time PCR Detection System (Biorad, Hercules-United States). Relative fold-changes in mRNA levels compared to controls, were measured using the 2-<span class="elsevierStyleSup">AACt</span> calculations (ΔΔCt=ΔCt<span class="elsevierStyleSup">treated</span>−ΔCt<span class="elsevierStyleSup">contr</span>°<span class="elsevierStyleSup">l</span>). In independent experiments, cells were treated with 100 nM of TSA alone for 48 h to evaluate the effect of the HDAC inhibitor in <span class="elsevierStyleItalic">CDH1</span> expression.</p><elsevierMultimedia ident="t0010"></elsevierMultimedia></span><span id="s0045" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0055">Confocal microscopy</span><p id="p0070" class="elsevierStylePara elsevierViewall">In order to describe the subcellular localization of E-Cadherin and β -catenin, 5 × 10<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a> cells were grown and treated with 5aza-dC 1 and TSA 100 nM in cover slips, and fixed with 4% formaldehyde for 20 min, then washed and stained with primary antibodies against E-Cadherin (NB110-56937, Novus Biologicals, Minneapolis-United States) by O/N incubation and β-catenin (610154, BD Transduction Laboratories, San Jose-United States) by 1 h incubation. Alexa Fluor 488 and Alexa Fluor 555 (Life Technologies) were used as secondary antibodies, and then counterstained with TO-PRO-3-iodide (Life Technologies) for nuclear staining and mounted with VECTASHIELDs Mounting Medium (Vector Laboratories, Burlingame-United States). An Axiovert LSM 510 confocal microscope (Zeiss, Oberkochen-Germany) was used for image collection. Images were analyzed using LSM image browser software (Zeiss).</p></span><span id="s0050" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0060"><span class="elsevierStyleItalic">CDH1</span> knock-down</span><p id="p0075" class="elsevierStylePara elsevierViewall">Cells were treated with 5aza-dC 1 <span class="elsevierStyleItalic">μ</span>M and TSA 100 nM. After TSA addition, a mixture of 4 siRNAs against <span class="elsevierStyleItalic">CDH1</span> or 1 non-targeting siRNA (Dharmacon, Lafayette-United States) were transfected at a final concentration of 15 nM using FuGENE HD transfection reagent (Promega). After 12 h of transfection, cells were washed and medium was replaced and total RNA was collected after 72 h of transfection, in order to look for <span class="elsevierStyleItalic">CDH1</span> and <span class="elsevierStyleItalic">c-MYC</span> expression.</p></span><span id="s0055" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0065">Colony formation assay</span><p id="p0080" class="elsevierStylePara elsevierViewall">Clonogenic assays were performed to determine the capability of the cells to form colonies. After treatments with 5aza-dC 1 <span class="elsevierStyleItalic">μ</span>M and TSA 100 nM, 40,000 cells were cultured in 6-well plates over a semisolid agar (0.6% of standard agarose) for 4 weeks, changing the medium two times per week. Then, the cells were fixed and stained with 0.01% (w/v) crystal violet. In independent experiments, cells were treated with 100 nM of TSA alone for 48 h. The colonies were automatically quantified with Image J, using the plugin Colony Area.<a class="elsevierStyleCrossRef" href="#bib0105"><span class="elsevierStyleSup">21</span></a></p></span><span id="s0060" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0070">Wound healing assay</span><p id="p0085" class="elsevierStylePara elsevierViewall">To explore if treatments with 5aza-dC 1 <span class="elsevierStyleItalic">μ</span>M and TSA 100 nM could influence the migration of the cell lines after an injury stimulus, 5 × 10<a class="elsevierStyleCrossRef" href="#bib0020"><span class="elsevierStyleSup">4</span></a> cells were seeded in 12-well plates and cultured without FBS. Upon reaching appropriate confluence, treatments were initiated and 24 h later the cell layer was scratched with a sterile plastic tip, washed twice with medium to remove the debris and cultured until the end of treatments. At least 3 fields from each well were photographed every 12 h under a microscope using a Nikon DsFi1c digital camera with 10x magnification (Nikon, Tokyo-Japan). In independent experiments, 1x10<a class="elsevierStyleCrossRef" href="#bib0025"><span class="elsevierStyleSup">5</span></a> cells were treated with 100 nM of TSA alone for 48 h, scratching the cell layer from the beginning of the assay. The images were analyzed using Bio-EdIP, an automatic approach for in vitro cell confluence images quantification, developed by <span class="elsevierStyleItalic">Grupo de Investigación e Innovación Biomédica-ITM.</span><a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">22</span></a></p></span><span id="s0065" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0075">Statistical analysis</span><p id="p0090" class="elsevierStylePara elsevierViewall">Means and the comparison of the differences of the means, between treated and non-treated cells, with 95% confidence intervals ± SD were obtained using GraphPad Prism<span class="elsevierStyleSup">®</span> 6.0 (GraphPad Software Inc., La Jolla-United States). Two-tailed student t test was used for unpaired analysis to compare the results between treated and non-treated cells, assuming the normality of the data; p < 0.05 values were considered statistically significant. All experiments were carried out at least in triplicate.</p></span></span><span id="s0070" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0080">Results</span><span id="s0075" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0085">Cell death and cytotoxicity analyses</span><p id="p0095" class="elsevierStylePara elsevierViewall">To be sure that the outcome of the treatments is given by a biological effect induced by the epigenetic-acting drugs and not by extensive cell death and/or high cytotoxicity, the influence of the combined regimen on these mechanisms were assessed at the selected concentrations. As shown in <a class="elsevierStyleCrossRef" href="#f0015">figures 3</a>A-B, treated cells displayed slightly higher sub-G1 populations compared with non-treated cells (HepG2 non-treated 0.83% <span class="elsevierStyleItalic">vs.</span> treated 2.21%, p = 0.3652; and HuH7 non-treated 0.68% <span class="elsevierStyleItalic">vs.</span> treated 6.93%, p = 0.0105). As shown above (<a class="elsevierStyleCrossRef" href="#f0005">Figure 1</a>B), treated cells displayed lower viability than non-treated cells (<a class="elsevierStyleCrossRef" href="#f0015">Figures 3</a>C-D). However, cytotoxicity levels and caspase activity were similar between treated and non-treated cells (<a class="elsevierStyleCrossRef" href="#f0015">Figures 3</a>C-D), being cytotoxicity considerably higher in HuH7 cell line, compared to HepG2 cells.</p><elsevierMultimedia ident="f0015"></elsevierMultimedia><p id="p0100" class="elsevierStylePara elsevierViewall">These results corroborate our observations that treatments with 5aza-dC 1 <span class="elsevierStyleItalic">μ</span>M and TSA 100 nM are sub-toxic to the liver cancer cell lines.</p></span><span id="s0080" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0090">Effect of 5aza-dC and TSA on gene promoter methylation</span><p id="p0105" class="elsevierStylePara elsevierViewall">The canonical Wnt/β-catenin signaling pathway plays a critical role in HCC development, being activated in 40-70% of the cases.<a class="elsevierStyleCrossRef" href="#bib0010"><span class="elsevierStyleSup">2</span></a>,<a class="elsevierStyleCrossRef" href="#bib0115"><span class="elsevierStyleSup">23</span></a> Therefore, to analyze the potential of the combination of the demethylating agent and HDAC inhibitor used to modulate the epigenetic alterations of different Wnt/β-catenin pathway antagonists, we evaluated the promoter DNA methylation status near to the transcriptional start site of the genes <span class="elsevierStyleItalic">DKK3, SFRP1, WIF1, CDH1</span> (codes for E-cadherin) and LINE-1 sequences.</p><p id="p0110" class="elsevierStylePara elsevierViewall">It was found that global methylation levels, measured by LINE-1 sequences analysis, decreased after treatments in both cell lines (<a class="elsevierStyleCrossRef" href="#f0020">Figures 4</a>A-B), being 62.8% <span class="elsevierStyleItalic">vs.</span> 53.6% in HepG2 non-treated <span class="elsevierStyleItalic">vs.</span> treated (p = 0.0037) and 62.7% <span class="elsevierStyleItalic">vs.</span> 43.3% in HuH7 non-treated <span class="elsevierStyleItalic">vs.</span> treated (p = 0.0014).</p><elsevierMultimedia ident="f0020"></elsevierMultimedia><p id="p0115" class="elsevierStylePara elsevierViewall">Regarding the pathway antagonists, the results revealed differentially methylation patterns between the cell lines, being <span class="elsevierStyleItalic">WIF1</span> (96.5%, p ≤ 0.0001) and <span class="elsevierStyleItalic">SFRP1</span> (84.3%, p ≤ 0.0001) hypermethylated in HepG2 and HuH7 cells, respectively, when compared to LINE-1 methylation levels. In the case of <span class="elsevierStyleItalic">CDH1</span>, the gene is essentially unmethylated in both cell lines (<a class="elsevierStyleCrossRef" href="#f0020">Figures 4</a>A-B).</p><p id="p0120" class="elsevierStylePara elsevierViewall">In HepG2 cells, changes in methylation levels after treatments were statistically significant for <span class="elsevierStyleItalic">DKK3</span> (34.1% <span class="elsevierStyleItalic">vs.</span> 29.9%; p = 0.0137), <span class="elsevierStyleItalic">SFRP1</span> (60.9% <span class="elsevierStyleItalic">vs.</span> 55.9%; p = 0.0435) and <span class="elsevierStyleItalic">WIF1</span> (96.5% vs. 94.5%; p = 0.0463) for non-treated <span class="elsevierStyleItalic">vs.</span> treated cells, respectively (<a class="elsevierStyleCrossRef" href="#f0020">Figure 4</a>A). Likewise, in HuH7 cells the treatments induced significant changes in <span class="elsevierStyleItalic">CDH1</span> (non-treated 4.2% <span class="elsevierStyleItalic">vs.</span> treated 3.4%; p = 0.0141) and <span class="elsevierStyleItalic">WIF1</span> (non-treated 16.1% <span class="elsevierStyleItalic">vs.</span> treated 13.1%; p = 0.0435) (<a class="elsevierStyleCrossRef" href="#f0020">Figure 4</a>B). Interestingly, for the hypermethylated genes, changes in methylation levels after treatments were negligible compared to changes in global methylation levels, in both cell lines (<a class="elsevierStyleCrossRef" href="#f0020">Figure 4</a>).</p><p id="p0125" class="elsevierStylePara elsevierViewall">These results show that the demethylation effect of the combined treatments did not induce a strong change in the methylation levels of the hypermethylated genes at the doses used, but have the potential to reduce focal and global methylation levels in both cell lines.</p></span><span id="s0085" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0095">Effect of combined treatments on gene expression</span><p id="p0130" class="elsevierStylePara elsevierViewall">In order to determine the role of epigenetic alterations on the regulation of the expression of the Wnt/β-catenin pathway antagonists, mRNA levels of these genes were analyzed by qRT-PCR.</p><p id="p0135" class="elsevierStylePara elsevierViewall">There was a statistically significant up-regulation of <span class="elsevierStyleItalic">DKK3, SFRP1</span> and <span class="elsevierStyleItalic">WIF1</span> expression after treatments (<a class="elsevierStyleCrossRef" href="#f0025">Figure 5</a>), regardless of gene methylation levels, except for <span class="elsevierStyleItalic">DKK3</span> in HuH7 cell line (<a class="elsevierStyleCrossRef" href="#f0025">Figure 5</a>B). This behavior was also observed for the hypermethylated gene <span class="elsevierStyleItalic">WIF1</span> in HepG2 cells (2-fold increase p = 0.0006) and <span class="elsevierStyleItalic">SFRP1</span> in HuH7 cells (1.4-fold increase p = 0.0024) (<a class="elsevierStyleCrossRef" href="#f0025">Figure 5</a>). <span class="elsevierStyleItalic">CDH1</span> expression revealed a very interesting pattern; it was substantially up-regulated after the combined treatments (HepG2 18.4-fold and HuH7 5.6-fold), even though the gene was essentially unmethylated. These observations drive us to hypothesize that other epigenetic alterations, like histone acetylation, could be also involved in the control of the Wnt/β-catenin pathway antagonist expression, in particular in the case of <span class="elsevierStyleItalic">CDH1</span> gene. For these reasons, experiments treating the cells with TSA alone were performed (<a class="elsevierStyleCrossRef" href="#f0025">Figure 5</a>C), where we observed up-regulation of <span class="elsevierStyleItalic">CDH1</span> expression but a lower level than with the combined regimen.</p><elsevierMultimedia ident="f0025"></elsevierMultimedia><p id="p0140" class="elsevierStylePara elsevierViewall">The results suggest that even in the absence of a strong demethylating effect, the epigenetic modifier drugs are able to induce a significant expression of the pathway antagonists.</p></span><span id="s0090" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0100">Effects of the epigenetic modifiers drugs on pathway activity</span><p id="p0145" class="elsevierStylePara elsevierViewall">To establish the effect of the up-regulation of the pathway antagonists, it was looked at the expression of the Wnt/β-catenin target gene <span class="elsevierStyleItalic">c-MYC</span> by qRT-PCR.</p><p id="p0150" class="elsevierStylePara elsevierViewall">As shown in <a class="elsevierStyleCrossRef" href="#f0030">figure 6</a>, treatments induced a significant reduction of <span class="elsevierStyleItalic">c-MYC</span> mRNA levels (HepG2 0.259 fold-decrease, p = 0.0272 and HuH7 0.122 fold-decrease, p = 0.0425). These results suggest that treatments with 5aza-dC and TSA reduced the transcriptional activity of the pathway.</p><elsevierMultimedia ident="f0030"></elsevierMultimedia></span><span id="s0095" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0105">Effects of combined treatments on β-catenin and E-cadherin expression and sub-cellular localization</span><p id="p0155" class="elsevierStylePara elsevierViewall">As shown above, <span class="elsevierStyleItalic">CDH1</span> expression after treatments is strongly up-regulated (<a class="elsevierStyleCrossRef" href="#f0025">Figure 5</a>); then, in order to describe the expression and subcellular localization of E-cadherin and β-catenin proteins, confocal microscopy experiments were performed. As shown in <a class="elsevierStyleCrossRef" href="#f0035">figure 7</a>A, in HepG2 cells there is a strong re-localization of β-catenin from the cytoplasmic and nuclear compartments to the cytoplasmic membrane, as well as a reduction in the expression of the protein. Regarding E-cadherin, it was observed a strong up-regulation in the expression of the protein (<a class="elsevierStyleCrossRef" href="#f0035">Figure 7</a>A), which agrees with the qRT-PCR results (<a class="elsevierStyleCrossRef" href="#f0025">Figure 5</a>A). In HuH7 cells, there is colocalization of β-catenin and E-cadherin in the cytoplasmic membrane of the non-treated cells (<a class="elsevierStyleCrossRef" href="#f0035">Figure 7</a>B). After those treatments, upregulation of E-cadherin and down-regulation of β-catenin is observed; likewise, the intensity of the colocalization (yellow staining) was reduced in treated cells, confirming the reduction of β-catenin expression (<a class="elsevierStyleCrossRef" href="#f0035">Figure 7</a>B).</p><elsevierMultimedia ident="f0035"></elsevierMultimedia><p id="p0160" class="elsevierStylePara elsevierViewall">These results suggest that combined treatments induce the decrease of β-catenin levels and increase of E-cadherin expression.</p></span><span id="s0100" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0110"><span class="elsevierStyleItalic">CDH1</span>knock-down counteracts the effects of combined treatments in the modulation of the Wnt/β-catenin pathway transcriptional activity</span><p id="p0165" class="elsevierStylePara elsevierViewall">As shown above, both <span class="elsevierStyleItalic">CDH1</span> expression levels and E-cadherin protein levels are up-regulated after treatments. Then, in order to demonstrate the functional relevance of the control of E-cadherin to the overall regulation of the Wnt/β-catenin pathway, the expression of <span class="elsevierStyleItalic">c-MYC</span> was evaluated after knock-down of <span class="elsevierStyleItalic">CDH1</span> (codes for E-cadherin) expression by siRNA. First, we confirmed the knockdown of <span class="elsevierStyleItalic">CDH1</span> in 5aza-dC and TSA treated (HepG2 0.42 fold-decrease, p = 0.0377 and HuH7 0.8 fold-decrease, p = 0.0005) and non-treated cells (HepG2 0.41 folddecrease, p = 0.0236 and HuH7 0.52 fold-decrease, p = 0.0262) (<a class="elsevierStyleCrossRef" href="#f0040">Figures 8</a>A-B). Secondly, the expression of <span class="elsevierStyleItalic">c-MYC</span> in knocked-down <span class="elsevierStyleItalic">CDH1</span> cells was measured. As shown, in <a class="elsevierStyleCrossRef" href="#f0040">figures 8</a>C-D, the overall gene expression levels of <span class="elsevierStyleItalic">c-MYC</span> is higher in <span class="elsevierStyleItalic">CDH1</span> siRNA cells, compared to cells transfected with non-target siRNA, both in HepG2 (non-treated 1.16 fold-increase, p = 0.0006 and treated 1.08 fold-increase, p = 0.088) and HuH7 (non-treated 1.19 fold-increase, p = 0.0543 and treated 1.18 fold-increase, p = 0.2759).</p><elsevierMultimedia ident="f0040"></elsevierMultimedia><p id="p0170" class="elsevierStylePara elsevierViewall">These results suggest that E-cadherin is an important regulator of the Wnt/β-catenin pathway transcriptional activity.</p></span><span id="s0105" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0115">Antitumoral effects of 5aza-dC and TSA</span><p id="p0175" class="elsevierStylePara elsevierViewall">To evaluate the antitumoral properties of the treatments with 5aza-dC and TSA, cells were treated at the selected concentrations to perform two tests with different experimental approaches.</p><p id="p0180" class="elsevierStylePara elsevierViewall">First, clonogenic assays were performed to determine the capability of the cells to form colonies. As shown in <a class="elsevierStyleCrossRef" href="#f0045">figures 9</a>A-B, the combined treatments induced a significant 2 to 3-fold decrease in the ability of forming colonies (HepG2 p = 0.0412 and HuH7 p = 0.0025). Similar results were obtained with TSA alone (HepG2 p = 0.0461 and HuH7 p = 0.0018) (<a class="elsevierStyleCrossRef" href="#f0045">Figures 9</a>C-D).</p><elsevierMultimedia ident="f0045"></elsevierMultimedia><p id="p0185" class="elsevierStylePara elsevierViewall">On the other hand, wound-healing were done to explore if treatments could influence the migration of the cell lines after an injury stimulus. In the case of HepG2 (<a class="elsevierStyleCrossRef" href="#f0050">Figure 10</a>A), treated and non-treated cells showed significant migration differences (open area, non-treated <span class="elsevierStyleItalic">vs.</span> treated: 61.8% <span class="elsevierStyleItalic">vs.</span> 69%, p = 0.0209). Likewise, HuH7 non-treated cells migrated into the wound faster than treated cells (<a class="elsevierStyleCrossRef" href="#f0050">Figure 10</a>B), leading to wound closure in non-treated cells (open area, non-treated vs treated: 0.7% <span class="elsevierStyleItalic">vs.</span> 10.8%, p = 0.0006). Similar results were obtained with TSA alone in HepG2 (open area, non-treated <span class="elsevierStyleItalic">vs.</span> TSA treated: 76.8% <span class="elsevierStyleItalic">vs.</span> 81.3%, p = 0.0461) and HuH7 cells (open area, non-treated vs. treated: 0% <span class="elsevierStyleItalic">vs.</span> 17.6%, p ≤ 0.0001) (<a class="elsevierStyleCrossRef" href="#f0050">Figures 10</a>C-D).</p><elsevierMultimedia ident="f0050"></elsevierMultimedia><p id="p0190" class="elsevierStylePara elsevierViewall">All together, these results suggest that the combination of the epigenetic modifier drugs, reduce the tumoral properties of the cell lines independent of their genetic and epigenetic backgrounds.</p></span></span><span id="s0110" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0120">Discussion</span><p id="p0195" class="elsevierStylePara elsevierViewall">Like genetic lesions, epigenetic alterations play major roles in cancer development. They may be involved not only in progression, but may also be constituted as the initial mechanism in the carcinogenesis process, favoring the emergence and establishment of genetic alterations, that promotes cell transformation mechanisms.<a class="elsevierStyleCrossRef" href="#bib0120"><span class="elsevierStyleSup">24</span></a>,<a class="elsevierStyleCrossRef" href="#bib0125"><span class="elsevierStyleSup">25</span></a></p><p id="p0200" class="elsevierStylePara elsevierViewall">5aza-dC and TSA combination have been previously used to test its antitumoral properties, showing an important induction of apoptosis and cell proliferation inhibition;<a class="elsevierStyleCrossRef" href="#bib0130"><span class="elsevierStyleSup">26</span></a>,<a class="elsevierStyleCrossRef" href="#bib0135"><span class="elsevierStyleSup">27</span></a> however, higher drugs concentrations were used, when compared with our treatment outline. This is important because low-dose treatment is more similar to the clinical situation, in order to avoid high cytotoxicity rates. Tsai, <span class="elsevierStyleItalic">et al.</span> (2012), shown that demethylating agents at low non-acute toxic doses, decreases DNA methylation of both CpG island and non-CpG island-containing genes, changing gene expression patterns that impact key cellular regulatory pathways.<a class="elsevierStyleCrossRef" href="#bib0140"><span class="elsevierStyleSup">28</span></a> But the effects of HDAC inhibitors when used as monotherapy against solid tumors has been disappointing,<a class="elsevierStyleCrossRef" href="#bib0065"><span class="elsevierStyleSup">13</span></a> suggesting the need of combinatorial therapies with other epigenetic modifiers drugs and/or chemotherapeutic agents.</p><p id="p0205" class="elsevierStylePara elsevierViewall">In our analysis, it was observed a clear methylation pattern, being <span class="elsevierStyleItalic">WIF1</span> and <span class="elsevierStyleItalic">SFRP1</span> hypermethylated in HepG2 and HuH7 cells, respectively. Interestingly, for these genes, the changes in methylation levels after treatments were negligible compared to changes in global methylation levels (<a class="elsevierStyleCrossRef" href="#f0020">Figure 4</a>). The association of Polycomb complexes and/or basic Helix-Loop-Helix transcription factors to <span class="elsevierStyleItalic">WIF1</span> and <span class="elsevierStyleItalic">SFRP1</span> promoters, which has been previously involved as negative regulators of drug-induced DNA demethylation,<a class="elsevierStyleCrossRef" href="#bib0145"><span class="elsevierStyleSup">29</span></a> could explain these observations.</p><p id="p0210" class="elsevierStylePara elsevierViewall">Remarkably, we observed a significant up-regulation of <span class="elsevierStyleItalic">DKK3, SFRP1</span> and <span class="elsevierStyleItalic">WIF1</span> mRNA levels after treatments (<a class="elsevierStyleCrossRef" href="#f0025">Figure 5</a>). Moreover, <span class="elsevierStyleItalic">CDH1</span> expression was substantially up-regulated, even though the methylation level of the gene prior to treatments was less than 5%. These observations are supported by previous works, showing a stronger effect on the re-expression of the antagonists, with 5aza-dC and TSA combination.<a class="elsevierStyleCrossRefs" href="#bib0150"><span class="elsevierStyleSup">30</span></a><span class="elsevierStyleSup">–</span><a class="elsevierStyleCrossRef" href="#bib0160"><span class="elsevierStyleSup">32</span></a> Additionally, recent evidence has pointing out the involvement of 5aza-dC and TSA in the generation of 5-hydroxymethylcytosine,<a class="elsevierStyleCrossRef" href="#bib0165"><span class="elsevierStyleSup">33</span></a>,<a class="elsevierStyleCrossRef" href="#bib0170"><span class="elsevierStyleSup">34</span></a> which has been correlated with increased gene expression levels in the liver.<a class="elsevierStyleCrossRef" href="#bib0175"><span class="elsevierStyleSup">35</span></a></p><p id="p0215" class="elsevierStylePara elsevierViewall">Our results drive us to hypothesize that other epigenetic alterations could be also involved in the control of the Wnt/β-catenin pathway antagonist expression in liver cancer cells, particularly in the case of <span class="elsevierStyleItalic">CDH1</span> gene. To test this hypothesis, we performed experiments treating the cells with TSA alone (<a class="elsevierStyleCrossRef" href="#f0025">Figure 5</a>C), where we observed upregulation of <span class="elsevierStyleItalic">CDH1</span> expression but a lower level than with combined treatments. In the specific context of <span class="elsevierStyleItalic">CDH1</span>, it is known that Snail mediates the down-regulation of E-cadherin expression by the recruitment of the mSin3A/HDAC1/HDAC2 complex to <span class="elsevierStyleItalic">CDH1</span> gene promoter.<a class="elsevierStyleCrossRef" href="#bib0180"><span class="elsevierStyleSup">36</span></a> Arzumanyan, <span class="elsevierStyleItalic">et al.</span>, 2012 showed the recruitment of mSin3A and HDAC1 to <span class="elsevierStyleItalic">CDH1</span> gene promoter in HepG2 cells. Likewise, they treat the cells with TSA and observed the restoration of histone H3 acetylation and E-cadherin overexpression.<a class="elsevierStyleCrossRef" href="#bib0185"><span class="elsevierStyleSup">37</span></a> On the other hand, E-cadherin expression has been shown to be up-regulated by miR-373 in liver cancer.<a class="elsevierStyleCrossRef" href="#bib0185"><span class="elsevierStyleSup">37</span></a> Moreover, miR-373 expression has been shown to be controlled by DNA methylation and to be restored by treatment with 5aza-dC along or in combination with TSA.<a class="elsevierStyleCrossRef" href="#bib0190"><span class="elsevierStyleSup">38</span></a> These observations, together with our results, support our hypothesis that other epigenetic mechanisms, like histone deacetylation and/or miRNA regulation, are also involved in the control of Wnt/β-catenin pathway antagonist expression.</p><p id="p0220" class="elsevierStylePara elsevierViewall">We report that treatments with 5aza-dC and TSA induce the reduction and/or re-localization of β-catenin and increase of E-cadherin levels (<a class="elsevierStyleCrossRef" href="#f0035">Figure 7</a>). Reduced β-catenin expression following epigenetic modifier drugs treatment,<a class="elsevierStyleCrossRefs" href="#bib0195"><span class="elsevierStyleSup">39</span></a><span class="elsevierStyleSup">–</span><a class="elsevierStyleCrossRef" href="#bib0205"><span class="elsevierStyleSup">41</span></a> or by ectopic reconstitution of pathway antagonist proteins<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a>,<a class="elsevierStyleCrossRef" href="#bib0210"><span class="elsevierStyleSup">42</span></a> has been reported; as well as β-catenin re-localization from the nuclear compartment to the cytoplasmic membrane.<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a>,<a class="elsevierStyleCrossRef" href="#bib0205"><span class="elsevierStyleSup">41</span></a>,<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">43</span></a> In an interesting paper recently published by Huels, <span class="elsevierStyleItalic">et al.</span> (2015), the authors demonstrated in an <span class="elsevierStyleItalic">in vivo</span> model, that E-cadherin levels in the cell determines the threshold that β-catenin must exceed in order to cause transformation,<a class="elsevierStyleCrossRef" href="#bib0220"><span class="elsevierStyleSup">44</span></a> confirming why E-cadherin overexpression interferes with Wnt-dependent gene expression.<a class="elsevierStyleCrossRef" href="#bib0225"><span class="elsevierStyleSup">45</span></a></p><p id="p0225" class="elsevierStylePara elsevierViewall">Additionally, it was measured the expression of <span class="elsevierStyleItalic">c-MYC</span>, which has been used as marker of pathway activation in liver cancer.<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a>,<a class="elsevierStyleCrossRef" href="#bib0210"><span class="elsevierStyleSup">42</span></a>,<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">46</span></a> As shown in <a class="elsevierStyleCrossRef" href="#f0030">figure 6</a>, <span class="elsevierStyleItalic">c-MYC</span> expression is significantly reduced in cells after treatments. These results agree with previous reports of lower expression of <span class="elsevierStyleItalic">c-MYC</span> in the presence of Wnt/β-catenin pathway antagonists independent of the cancer model.<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a>,<a class="elsevierStyleCrossRef" href="#bib0195"><span class="elsevierStyleSup">39</span></a>,<a class="elsevierStyleCrossRef" href="#bib0200"><span class="elsevierStyleSup">40</span></a>,<a class="elsevierStyleCrossRef" href="#bib0210"><span class="elsevierStyleSup">42</span></a>,<a class="elsevierStyleCrossRef" href="#bib0230"><span class="elsevierStyleSup">46</span></a> Importantly, our results suggest that pathway regulation is mediated by the re-expression of antagonist proteins, like E-cadherin, even in the context of mutations like <span class="elsevierStyleItalic">CTNNB1</span> gene deletion in HepG2 cells or <span class="elsevierStyleItalic">TP53</span> point mutations in HuH7 cells, that has been implicated in β -catenin accumulation and Wnt/β-catenin pathway transcriptional activation.<a class="elsevierStyleCrossRef" href="#bib0070"><span class="elsevierStyleSup">14</span></a>,<a class="elsevierStyleCrossRef" href="#bib0235"><span class="elsevierStyleSup">47</span></a> These observations agree with previous reports, which had set out the Wnt/β-catenin pathway regulation when the antagonists are present, even in a pathway activation background;<a class="elsevierStyleCrossRef" href="#bib0200"><span class="elsevierStyleSup">40</span></a>,<a class="elsevierStyleCrossRef" href="#bib0210"><span class="elsevierStyleSup">42</span></a>,<a class="elsevierStyleCrossRef" href="#bib0220"><span class="elsevierStyleSup">44</span></a>,<a class="elsevierStyleCrossRef" href="#bib0240"><span class="elsevierStyleSup">48</span></a> these findings can be explained by the fact that E-cadherin has the ability to sequester both wild-type and mutant β-catenin, whereby homozygous loss of function of <span class="elsevierStyleItalic">APC</span> and/or homozygous activating mutations in <span class="elsevierStyleItalic">CTNNB1</span> gene are needed to overcome the threshold established by E-cadherin, in order to drive pathway activation.<a class="elsevierStyleCrossRef" href="#bib0220"><span class="elsevierStyleSup">44</span></a></p><p id="p0230" class="elsevierStylePara elsevierViewall">As shown above, E-cadherin expression after treatments is strongly up-regulated, both at mRNA (<a class="elsevierStyleCrossRef" href="#f0025">Figure 5</a>) and protein levels (<a class="elsevierStyleCrossRef" href="#f0035">Figure 7</a>). Then, to demonstrate the relevance of E-cadherin in pathway regulation, we looked at the expression of <span class="elsevierStyleItalic">c-MYC</span>, after knocking-down <span class="elsevierStyleItalic">CDH1</span> expression. Our results suggest that E-cadherin is an important regulator of the Wnt/β-catenin pathway transcriptional activity, since in cells exposed to <span class="elsevierStyleItalic">CDH1</span> siRNA, <span class="elsevierStyleItalic">c-MYC</span> expression is higher (<a class="elsevierStyleCrossRef" href="#f0040">Figure 8</a>). Several reports support these observations, confirming the key role of E-cadherin in pathway regulation.<a class="elsevierStyleCrossRef" href="#bib0215"><span class="elsevierStyleSup">43</span></a>,<a class="elsevierStyleCrossRef" href="#bib0225"><span class="elsevierStyleSup">45</span></a>,<a class="elsevierStyleCrossRef" href="#bib0245"><span class="elsevierStyleSup">49</span></a> In the specific context of liver cancer, E-cadherin repression has been suggested as a critical event during cancer development, since it has been observed the silencing of <span class="elsevierStyleItalic">CDH1</span> expression by epigenetic mechanisms mediated by hepatitis B and hepatitis C virus.<a class="elsevierStyleCrossRef" href="#bib0185"><span class="elsevierStyleSup">37</span></a>,<a class="elsevierStyleCrossRef" href="#bib0250"><span class="elsevierStyleSup">50</span></a> Likewise, in HCC it has been reported a significant negative correlation of E-cadherin with several Wnt target genes,<a class="elsevierStyleCrossRef" href="#bib0220"><span class="elsevierStyleSup">44</span></a> highlighting that not only β-catenin alterations, but also E-cadherin alterations, are critical for Wnt/β-catenin pathway activation and tumor transformation.</p><p id="p0235" class="elsevierStylePara elsevierViewall">Finally, to explore the functional effects of the Wnt/β-catenin pathway regulation by 5aza-dC and TSA, clonogenic and wound healing assays were performed. As shown in <a class="elsevierStyleCrossRef" href="#f0045">figures 9</a> and <a class="elsevierStyleCrossRef" href="#f0050"><span class="elsevierStyleSup">10</span></a>, the migratory and clonogenic capabilities of the cells were reduced with treatments. These observations, supports the potential of 5aza-dC and TSA to reduce the tumoral properties of the cells, through the up-regulation of E-cadherin that leads to the modulation of the canonical Wnt/β-catenin pathway in liver cancer cell lines with different genetic and epigenetic backgrounds.</p></span><span id="s0115" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0125">Conclusions</span><p id="p0240" class="elsevierStylePara elsevierViewall">The development of epigenetic modifiers drugs, like 5aza-dC and TSA, that target specific chromatin regulator proteins involved in the establishment of epigenetic alterations, has become a principal concern in cancer research. In our study, we showed the potential of the combination of these epigenetic modifier drugs to modulate the canonical Wnt/β-catenin pathway in epithelial-derived hepatoma cell lines with different genetic and epigenetic backgrounds through the up-regulation of E-cadherin, reducing the tumoral properties of the cells. These observations are important because we were able to modulate pathway activity, without ectopic expression of antagonist proteins and/or the use of specific pathway inhibitors, even in a pathway activation background. However, further research needs to be conducted, particularly in preclinical <span class="elsevierStyleItalic">in vivo</span> models to determine the potential of this treatment regimen for the management of liver cancer.</p></span><span id="s0120" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0130">Abbreviations</span><p id="p0245" class="elsevierStylePara elsevierViewall"><ul class="elsevierStyleList" id="l0005"><li class="elsevierStyleListItem" id="u0005"><span class="elsevierStyleLabel">•</span><p id="p0250" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">5aza-dC:</span> 5-aza-2’-deoxycytidine.</p></li><li class="elsevierStyleListItem" id="u0010"><span class="elsevierStyleLabel">•</span><p id="p0255" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold"><span class="elsevierStyleItalic">CDH1:</span></span> cadherin-1.</p></li><li class="elsevierStyleListItem" id="u0015"><span class="elsevierStyleLabel">•</span><p id="p0260" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold"><span class="elsevierStyleItalic">c-MYC:</span></span> v-myc avian myelocytomatosis viral oncogene homolog.</p></li><li class="elsevierStyleListItem" id="u0020"><span class="elsevierStyleLabel">•</span><p id="p0265" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold"><span class="elsevierStyleItalic">CTNNB1:</span></span> catenin, cadherin-associated protein, beta 1.</p></li><li class="elsevierStyleListItem" id="u0025"><span class="elsevierStyleLabel">•</span><p id="p0270" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold"><span class="elsevierStyleItalic">DKK3:</span></span> dickkopfWNT signaling pathway inhibitor-3.</p></li><li class="elsevierStyleListItem" id="u0030"><span class="elsevierStyleLabel">•</span><p id="p0275" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">DMSO:</span> dimethyl sulfoxide.</p></li><li class="elsevierStyleListItem" id="u0035"><span class="elsevierStyleLabel">•</span><p id="p0280" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">DNMTs:</span> DNA methyltransferases.</p></li><li class="elsevierStyleListItem" id="u0040"><span class="elsevierStyleLabel">•</span><p id="p0285" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">HCC:</span> hepatocellular carcinoma.</p></li><li class="elsevierStyleListItem" id="u0045"><span class="elsevierStyleLabel">•</span><p id="p0290" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">HDACs:</span> histone deacetylases.</p></li><li class="elsevierStyleListItem" id="u0050"><span class="elsevierStyleLabel">•</span><p id="p0295" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">mRNA:</span> messenger RNA.</p></li><li class="elsevierStyleListItem" id="u0055"><span class="elsevierStyleLabel">•</span><p id="p0300" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">qRT-PCR:</span> quantitative real-time PCR.</p></li><li class="elsevierStyleListItem" id="u0060"><span class="elsevierStyleLabel">•</span><p id="p0305" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold"><span class="elsevierStyleItalic">SFRP1:</span></span> secreted frizzled-related protein-1.</p></li><li class="elsevierStyleListItem" id="u0065"><span class="elsevierStyleLabel">•</span><p id="p0310" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">TP53:</span> tumor protein p53.</p></li><li class="elsevierStyleListItem" id="u0070"><span class="elsevierStyleLabel">•</span><p id="p0315" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold">TSA:</span> trichostatin A.</p></li><li class="elsevierStyleListItem" id="u0075"><span class="elsevierStyleLabel">•</span><p id="p0320" class="elsevierStylePara elsevierViewall"><span class="elsevierStyleBold"><span class="elsevierStyleItalic">WIF1</span> :</span> WNT inhibitory factor-1.</p></li></ul></p></span><span id="s0125" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="st0135">Grants and Financial Support</span><p id="p0325" class="elsevierStylePara elsevierViewall">This work was supported by grant P10242 from “Dirección de Investigaciones, Instituto Tecnológico Metropolitano”, grant E1740 from “Estrategia para la Sostenibilidad 2013-2014, Universidad de Antioquia.” D. Uribe received a doctorate scholarship from the Colombian Government “Departamento Administrativo de Ciencia, Tecnología e Innovación-Colciencias” and from the International Agency for Research on Cancer (IARC), during an internship in the Epigenetics Group of the IARC (Lyon-France).</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:10 [ 0 => array:3 [ "identificador" => "xres1190765" "titulo" => "Abstract" "secciones" => array:1 [ 0 => array:1 [ "identificador" => "abs0010" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1110042" "titulo" => "Key words" ] 2 => array:2 [ "identificador" => "s0005" "titulo" => "Introduction" ] 3 => array:3 [ "identificador" => "s0010" "titulo" => "Material and Methods" "secciones" => array:11 [ 0 => array:2 [ "identificador" => "s0015" "titulo" => "Cell lines" ] 1 => array:2 [ "identificador" => "s0020" "titulo" => "Combined treatments" ] 2 => array:2 [ "identificador" => "s0025" "titulo" => "Cell cycle analysis by flow cytometry" ] 3 => array:2 [ "identificador" => "s0030" "titulo" => "Cell viability, cytotoxicity and caspase activity" ] 4 => array:2 [ "identificador" => "s0035" "titulo" => "Bisulfite modification and pyrosequencing" ] 5 => array:2 [ "identificador" => "s0040" "titulo" => "Quantitative real-time PCR (qRT-PCR)" ] 6 => array:2 [ "identificador" => "s0045" "titulo" => "Confocal microscopy" ] 7 => array:2 [ "identificador" => "s0050" "titulo" => "CDH1 knock-down" ] 8 => array:2 [ "identificador" => "s0055" "titulo" => "Colony formation assay" ] 9 => array:2 [ "identificador" => "s0060" "titulo" => "Wound healing assay" ] 10 => array:2 [ "identificador" => "s0065" "titulo" => "Statistical analysis" ] ] ] 4 => array:3 [ "identificador" => "s0070" "titulo" => "Results" "secciones" => array:7 [ 0 => array:2 [ "identificador" => "s0075" "titulo" => "Cell death and cytotoxicity analyses" ] 1 => array:2 [ "identificador" => "s0080" "titulo" => "Effect of 5aza-dC and TSA on gene promoter methylation" ] 2 => array:2 [ "identificador" => "s0085" "titulo" => "Effect of combined treatments on gene expression" ] 3 => array:2 [ "identificador" => "s0090" "titulo" => "Effects of the epigenetic modifiers drugs on pathway activity" ] 4 => array:2 [ "identificador" => "s0095" "titulo" => "Effects of combined treatments on β-catenin and E-cadherin expression and sub-cellular localization" ] 5 => array:2 [ "identificador" => "s0100" "titulo" => "CDH1knock-down counteracts the effects of combined treatments in the modulation of the Wnt/β-catenin pathway transcriptional activity" ] 6 => array:2 [ "identificador" => "s0105" "titulo" => "Antitumoral effects of 5aza-dC and TSA" ] ] ] 5 => array:2 [ "identificador" => "s0110" "titulo" => "Discussion" ] 6 => array:2 [ "identificador" => "s0115" "titulo" => "Conclusions" ] 7 => array:2 [ "identificador" => "s0120" "titulo" => "Abbreviations" ] 8 => array:2 [ "identificador" => "s0125" "titulo" => "Grants and Financial Support" ] 9 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2017-02-27" "fechaAceptado" => "2017-06-07" "PalabrasClave" => array:1 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Key words" "identificador" => "xpalclavsec1110042" "palabras" => array:6 [ 0 => "Liver cancer" 1 => "DNA methylation" 2 => "E-cadherin" 3 => "5aza-dC" 4 => "TSA" 5 => "Wnt pathway" ] ] ] ] "tieneResumen" => true "resumen" => array:1 [ "en" => array:2 [ "titulo" => "Abstract" "resumen" => "<span id="abs0010" class="elsevierStyleSection elsevierViewall"><p id="sp0065" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleBold">Introduction and aim.</span> Epigenetic alterations play an essential role in cancer onset and progression, thus studies of drugs targeting the epigenetic machinery are a principal concern for cancer treatment. Here, we evaluated the potential of the DNA methyltransferase inhibitor 5-aza-2’-deoxycytidine (5aza-dC) and the pan-deacetylase inhibitor Trichostatin A (TSA), at low cytotoxic concentrations, to modulate the canonical Wnt/β-catenin pathway in liver cancer cells.</p><p id="sp0070" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleBold">Material and methods.</span> Pyrosequencing was used for DNA methylation analyses of LINE-1 sequences and the Wnt/β-catenin pathway antagonist <span class="elsevierStyleItalic">DKK3, SFRP1, WIF1 and CDH1.</span> qRT-PCR was employed to verify the expression of the antagonist. Pathway regulation were evaluated looking at the expression of β-catenin and E-cadherin by confocal microscopy and the antitumoral effects of the drugs was studied by wound healing and clonogenic assays.</p><p id="sp0075" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleBold">Results.</span> Our result suggest that 5aza-dC and TSA treatments were enough to induce a significant expression of the pathway antagonists, decrease of β-catenin protein levels, re-localization of the protein to the plasma membrane, and pathway transcriptional activity reduction. These important effects exerted an antitumoral outcome shown by the reduction of the migration and clonogenic capabilities of the cells.</p><p id="sp0080" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleBold">Conclusion.</span> We were able to demonstrate Wnt/ β-catenin pathway modulation through E-cadherin up-regulation induced by 5aza-dC and TSA treatments, under an activation-pathway background, like <span class="elsevierStyleItalic">CTNNB1</span> and <span class="elsevierStyleItalic">TP53</span> mutations. These findings provide evidences of the potential effect of epigenetic modifier drugs for liver cancer treatment. However, further research needs to be conducted, to determine the <span class="elsevierStyleItalic">in vivo</span> potential of this treatment regimen for the management of liver cancer.</p></span>" ] ] "multimedia" => array:12 [ 0 => array:7 [ "identificador" => "f0005" "etiqueta" => "Figure 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 498 "Ancho" => 1057 "Tamanyo" => 110918 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0005" class="elsevierStyleSimplePara elsevierViewall">Treatment outline determination. Different combinations of 5aza-dC and TSA were tested according to what previously reported in the literature. <span class="elsevierStyleBold">A.</span> Cells were treated with 5aza-dC, adding TSA for the last 24 h of treatment. <span class="elsevierStyleBold">B.</span> Cells were treated with 1 µΜ of 5aza-dC, adding 100 nM of TSA for the last 24 h of treatment. The experiments were performed in triplicate and results correspond to means and the comparison of the means, between treated and non-treated cells (DMSO), with 95% confidence intervals ± SD. p < 0.05 denotes statistical significance. *p < 0.05. **p < 0.005. ***p < 0.0005. ****p < 0.0001.</p>" ] ] 1 => array:7 [ "identificador" => "f0010" "etiqueta" => "Figure 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 830 "Ancho" => 1057 "Tamanyo" => 87810 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0010" class="elsevierStyleSimplePara elsevierViewall">Growth of HepG2 and HuH7 cell lines. <span class="elsevierStyleBold">A.</span> HepG2 and HuH7 cell lines treated with 5aza-dC alone for 96 h. <span class="elsevierStyleBold">B.</span> HepG2 and HuH7 cell lines treated with 5aza-dC (measures at 24 h, 48 h and 72 h), adding TSA for the last 24 h of treatment (measure at 96 h). Absorbance is directly proportional to cell density in the well. The experiments were performed in triplicate and results correspond to means and the comparison of the differences of the means, between treated and non-treated cells, with 95% confidence intervals ± SD. p < 0.05 denotes statistical significance. *p < 0.05, **p < 0.005, ***p < 0.0005, ****p < 0.0001.</p>" ] ] 2 => array:7 [ "identificador" => "f0015" "etiqueta" => "Figure 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 1225 "Ancho" => 1057 "Tamanyo" => 161412 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0015" class="elsevierStyleSimplePara elsevierViewall">Cell death and cytotoxicity analysis. Propidium iodide were used to measure the DNA content in HepG2 <span class="elsevierStyleBold">(A)</span> and HuH7 <span class="elsevierStyleBold">(B)</span> cell lines, non-treated (DMSO) and treated with 5aza-dC and TSA. Cell viability, cytotoxicity and apoptosis of HepG2 <span class="elsevierStyleBold">(C)</span> and HuH7 <span class="elsevierStyleBold">(D)</span> cell lines after treatments. The results are presented as relative fluorescence units (RFU) and as relative luminescence units (RLU), compared to non-treated controls. The experiments were performed in triplicate and results correspond to means and the comparison of the differences of the means, between treated and non-treated cells, with 95%% confidence intervals ± SD. p < 0.05 denotes statistical significance. *p < 0.05.</p>" ] ] 3 => array:7 [ "identificador" => "f0020" "etiqueta" => "Figure 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 456 "Ancho" => 1057 "Tamanyo" => 60571 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0020" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">Effect of 5aza-dC and TSA on promoter methylation of the Wnt/β-catenin pathway antagonists. Average methylation levels of</span> DKK3, SFRP1, WIF1, CDH1 <span class="elsevierStyleItalic">gene promoters and LINE-1 sequences in HepG2 cells <span class="elsevierStyleBold">(A)</span> and HuH7 cells <span class="elsevierStyleBold">(B)</span>. Methylation levels of each gene were compared between treated (5aza-dC+TSA) and non-treated (DMSO) cells. NT: non-tretaed and T: treated. The experiments were performed in triplicate and results correspond to means and the comparison of the differences of the means, between treated and non-treated cells, with 95°% confidence intervals ± SD. p < 0.05 denotes statistical significance. *p < 0.05, **p < 0.005, ***p < 0.0005.</span></p>" ] ] 4 => array:7 [ "identificador" => "f0025" "etiqueta" => "Figure 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 1078 "Ancho" => 510 "Tamanyo" => 82925 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0025" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">Gene expression levels of the Wnt/β-catenin pathway antagonists after combined treatments with 5aza-dC and TSA. Quantitative analysis of</span> DKK3, SFRP1, WIF1 <span class="elsevierStyleItalic">and</span> CDH1 <span class="elsevierStyleItalic">mRNA levels in HepG2 cells <span class="elsevierStyleBold">(A)</span> and HuH7 cells <span class="elsevierStyleBold">(B)</span>, treated with 5aza-dC and TSA. Quantitative analysis of</span> CDH1 <span class="elsevierStyleItalic">mRNA levels in cells treated with TSA alone <span class="elsevierStyleBold">(C)</span>. mRNA level of each gene were compared between treated (5aza-dC+TSA) and non-treated (DMSO) cells and normalized against</span> GAPDH. <span class="elsevierStyleItalic">NT: non-treated and T: treated. The experiments were performed in triplicate and results correspond to means and the comparison of the differences of the means, between treated and non-treated cells, with 95%% confidence intervals ± SD. p < 0.05 denotes statistical significance. * p < 0.05, ** p < 0.005, *** p < 0.0005, ****p < 0.0001.</span></p>" ] ] 5 => array:7 [ "identificador" => "f0030" "etiqueta" => "Figure 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 390 "Ancho" => 433 "Tamanyo" => 27184 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0030" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleItalic">Effects of the epigenetic modifiers drugs on Wnt/β-catenin pathway activity. Quantitative analysis of the Wnt/β-catenin pathway target gene</span> c-MYC <span class="elsevierStyleItalic">mRNA levels in the liver cancer cell lines. mRNA levels of</span> c-MYC <span class="elsevierStyleItalic">gene were compared between treated (5aza-dC+TSA) and nontreated (DMSO) cells and normalized against</span> GAPDH<span class="elsevierStyleItalic">. NT: non-treated and T: treated. The experiments were performed in triplicate and results correspond to means and the comparison of the differences of the means, between treated and non-treated cells, with 95%% confidence intervals ± SD. p < 0.05 denotes statistica significance. *p < 0.05.</span></p>" ] ] 6 => array:7 [ "identificador" => "f0035" "etiqueta" => "Figure 7" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr7.jpeg" "Alto" => 1028 "Ancho" => 1057 "Tamanyo" => 306319 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0035" class="elsevierStyleSimplePara elsevierViewall">Effects of combined treatments on β-catenin and E-cadherin expression and sub-cellular localization. Representative images of immunofluorescence detection of β-catenin and E-cadherin proteins in HepG2 <span class="elsevierStyleBold">(A)</span> and HuH7 <span class="elsevierStyleBold">(B)</span> cell lines. Alexa fluor 555-labeled β-catenin in red, Alexa fluor 488-labeled E-cadherin in green, TO-PRO-3-iodide nuclear staining in blue and the merge between β-catenin and E-cadherin in yellow. The experiments were performed in triplicate.</p>" ] ] 7 => array:7 [ "identificador" => "f0040" "etiqueta" => "Figure 8" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr8.jpeg" "Alto" => 837 "Ancho" => 1057 "Tamanyo" => 126834 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0040" class="elsevierStyleSimplePara elsevierViewall">CDH1 <span class="elsevierStyleItalic">silencing counteracts the effects of the treatment in the regulation of pathway transcriptional activity. Quantitative analysis of</span> CDH1 <span class="elsevierStyleItalic">mRNA levels in HepG2 <span class="elsevierStyleBold">(A)</span> and HuH7 <span class="elsevierStyleBold">(B)</span> cell lines, after treatment with 15nM of siRNA non-targeting (siNT) or pool siRNAs against</span> CDH1 <span class="elsevierStyleItalic">(siCDH1). mRNA level of</span> CDH1 <span class="elsevierStyleItalic">gene were compared between treated (5aza-dC+TSA) and non-treated (DMSO) cells and normalized against</span> GAPDH. <span class="elsevierStyleItalic">Quantitative analysis of c-MYC mRNA levels in HepG2 <span class="elsevierStyleBold">(C)</span> and HuH7 <span class="elsevierStyleBold">(D)</span> cell lines, after treatment with 15nM of siRNA non-targeting (siNT) or pool siRNAs against</span> CDH1 <span class="elsevierStyleItalic">(siCDH1). mRNA level of</span> c-MYC <span class="elsevierStyleItalic">gene were compared between treated (5aza-dC+TSA) and non-treated (DMSO) cells and normalized against</span> GAPDH. <span class="elsevierStyleItalic">ns: non statistically significant. The experiments were performed in triplicate and results correspond to means and the comparison of the differences of the means, between treated and non-treated cells, with 95°% confidence intervals ± SD. p < 0.05 denotes statistica signifcance. *p < 0.05, **p < 0.005, ***p < 0.0005.</span></p>" ] ] 8 => array:7 [ "identificador" => "f0045" "etiqueta" => "Figure 9" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr9.jpeg" "Alto" => 1225 "Ancho" => 1057 "Tamanyo" => 141219 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0045" class="elsevierStyleSimplePara elsevierViewall">Effects of treatments over the clonogenic properties of the liver cancer cell lines. Colony formation of treated (5aza-dC+TSA) and untreated (DMSO) HepG2 <span class="elsevierStyleBold">(A)</span>, and HuH7 <span class="elsevierStyleBold">(B)</span> cell lines. Colony formation of treated (TSA) and untreated (DMSO) HepG2 <span class="elsevierStyleBold">(C)</span>, and HuH7 <span class="elsevierStyleBold">(D)</span> cell lines. The images were analyzed to quantify the colony area with ImageJ, using the plugin Colony Area.<a class="elsevierStyleCrossRef" href="#bib0105"><span class="elsevierStyleSup">21</span></a> The experments were performed in triplicate and results correspond to means and the comparison of the differences of the means, between treated and non-treated cells, with 95%% confidence intervals ± SD. p < 0.05 denotes statistical significance. *p < 0.05, **p < 0.005, ***p < 0.0005.</p>" ] ] 9 => array:7 [ "identificador" => "f0050" "etiqueta" => "Figure 10" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr10.jpeg" "Alto" => 1225 "Ancho" => 1057 "Tamanyo" => 158076 ] ] "descripcion" => array:1 [ "en" => "<p id="sp0050" class="elsevierStyleSimplePara elsevierViewall">Effects of treatments over the migratory properties of the liver cancer cells. Cell migration behavior of treated (5aza-dC+TSA) and untreated (DMSO) HepG2 <span class="elsevierStyleBold">(A)</span>, HuH7 <span class="elsevierStyleBold">(B)</span> cell lines. Cell migration behavior of treated (TSA) and untreated (DMSO) HepG2 <span class="elsevierStyleBold">(C)</span>, HuH7 <span class="elsevierStyleBold">(D)</span> cell lines. The images were analyzed to quantify the wound area (expressed as open area), using an approach of automatic segmentation based on region growing algorithm.<a class="elsevierStyleCrossRef" href="#bib0110"><span class="elsevierStyleSup">22</span></a> The experiments were performed in triplicate and results correspond to means and the comparison of the differences of the means, between treated and non-treated cells, with 95%% confidence intervals ± SD. p < 0.05 denotes statistical significance. *p < 0.05, **p < 0.005, ***p < 0.0005.</p>" ] ] 10 => array:7 [ "identificador" => "t0005" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">Gene \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " colspan="2" align="left" valign="top" scope="col" style="border-bottom: 2px solid black">Pyrosequencing primers</th></tr><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col">Amplification Primer (5’-3’) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col">Sequencing primer (5’-3’)G \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">LINE-1 F \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Biotin-TAGGGAGTGTTAGATAGTGG \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">CAAATAAAACAATACCTC \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">LINE-1 R \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AACTCCCTAACCCCTTAC \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">DKK3 F</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GAATATTTTATTGAGGGTGG \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GGTTTGATTGGAGT \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">DKK3 R</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Biotin-AAACCACCCTACTATACCTA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">SFRP1 F</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">ATATTTGGGATAGATTAGA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GGTTTTTAGTTTTTAGTA \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">SFRP1 R</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Biotin-AAAACTACCTCCTCCCA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">WIF1 F</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">AGGATGTTTTAGAGTTAG \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">GTTGTTTAGGATTTTT \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">WIF1 R</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Biotin-AAAACAACCCTAACTAAA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">CDH1 F</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TTTGATTTTAGGTTTTAGTGAGT \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">TAGTAATTTTAGGTTAGAGG \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">CDH1 R</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t">Biotin-ACCACAACCAATCAACAA \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t"> \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2031842.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="sp0055" class="elsevierStyleSimplePara elsevierViewall">Pyrosequencing primers. Primer sequences used for methylation analysis. All the primers were designed at the Epigenetics group of the International Agency for Research on Cancer.</p>" ] ] 11 => array:7 [ "identificador" => "t0010" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black">qRT-PCR primers \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr><tr title="table-row"><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col">Gene \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t" scope="col">Primer (5’-3’) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">DKK3</span> F \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="top">TGATGCAGCGGCTTGGGGCC</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">DKK3 R</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="top">CCTGGTCCAGATCTAAATCTCT</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">SFRP1 F</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="top">GCTACAAGAAGATGGTGCTG</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">SFRP1 R</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="top">TCAGCAAGTACTGGCTCTTC</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">WIF1 F</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="top">AGGACTAGAGGGAGAGCAGT</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">WIF1 R</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="top">CGTTTCAGATGTCGGAGTTC</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">CDH1 F</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="top">TCCTGGGCAGAGTGAAMMG</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">CDH1 R</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="top">CTGTAATCACACCATCTGTGC</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">c-MYC F</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="top">GCTGCTTAGACGCTGGATTT</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">c-MYC R</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="top">TAACGTTGAGGGGCATCG</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">GAPDHF</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="top">AACGGGAAGCTTGTCATCAA</td></tr><tr title="table-row"><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="left" valign="\n \t\t\t\t\ttop\n \t\t\t\t"><span class="elsevierStyleItalic">GAPDHR</span> \t\t\t\t\t\t\n \t\t\t\t</td><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " colspan="2" align="left" valign="top">TGGACTCCACGACGTACTCA</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab2031843.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="sp0060" class="elsevierStyleSimplePara elsevierViewall">qRT-PCR primers. Primer sequences used for gene expression analysis. All the primers were designed at the Epigenetics group of the International Agency for Research on Cancer.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bs0010" "bibliografiaReferencia" => array:50 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1." "referencia" => array:1 [ 0 => array:1 [ "referenciaCompleta" => "Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, et al. GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11 [Internet]. Lyon, France: International Agency for Research on Cancer; 2013. Available from: http://globocan.iarc.fr [accessed on 11/06/2015]." ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Pez F." 1 => "Lopez A." 2 => "Kim M." 3 => "Wands J.R." 4 => "Caron de Fromentel C." 5 => "Merle P." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jhep.2013.07.001" "Revista" => array:6 [ "tituloSerie" => "J Hepatol" "fecha" => "2013" "volumen" => "59" "paginaInicial" => "1107" "paginaFinal" => "1117" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23835194" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The many faces and functions of b-catenin" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Valenta T." 1 => "Hausmann G." 2 => "Basler K." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/emboj.2012.150" "Revista" => array:6 [ "tituloSerie" => "EMBO J" "fecha" => "2012" "volumen" => "31" "paginaInicial" => "2714" "paginaFinal" => "2736" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22617422" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Towards an integrated view of Wnt signaling in development" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "van Amerongen R." 1 => "Nusse R." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1242/dev.033910" "Revista" => array:6 [ "tituloSerie" => "Development" "fecha" => "2009" "volumen" => "136" "paginaInicial" => "3205" "paginaFinal" => "3214" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19736321" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Wnt/β-catenin signaling: Components, mechanisms, and diseases" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "MacDonald B.T." 1 => "Tamai K." 2 => "He X." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.devcel.2009.06.016" "Revista" => array:6 [ "tituloSerie" => "Dev Cell" "fecha" => "2009" "volumen" => "17" "paginaInicial" => "9" "paginaFinal" => "26" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19619488" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Balancing cell adhesion and Wnt signaling, the key role of beta-catenin" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Brembeck F.H." 1 => "Rosário M." 2 => "Birchmeier W." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.gde.2005.12.007" "Revista" => array:6 [ "tituloSerie" => "Curr Opin Genet Dev" "fecha" => "2006" "volumen" => "16" "paginaInicial" => "51" "paginaFinal" => "59" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16377174" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Identification of <span class="elsevierStyleItalic">c-MYC</span> as a target of the APC pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "He T.C." 1 => "Sparks A.B." 2 => "Rago C." 3 => "Hermeking H." 4 => "Zawel L." 5 => "da Costa L.T." 6 => "Morin P.J." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Science" "fecha" => "1998" "volumen" => "281" "paginaInicial" => "1509" "paginaFinal" => "1512" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/9727977" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Gene methylation in gastric cancer" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Qu Y." 1 => "Dang S." 2 => "Hou P." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cca.2013.05.002" "Revista" => array:6 [ "tituloSerie" => "Clin Chim Acta" "fecha" => "2013" "volumen" => "424" "paginaInicial" => "53" "paginaFinal" => "65" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23669186" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Frequent epigenetic inactivation of Wnt inhibitory factor-1 in human gastrointestinal cancers" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Taniguchi H." 1 => "Yamamoto H." 2 => "Hirata Y." 3 => "Miyamoto N." 4 => "Oki M." 5 => "Nosho K." 6 => "Adachi Y." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/sj.onc.1208910" "Revista" => array:6 [ "tituloSerie" => "Oncogene" "fecha" => "2005" "volumen" => "24" "paginaInicial" => "7946" "paginaFinal" => "7952" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16007117" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Epigenetic silencing of sFRP1 activates the canonical Wnt pathway and contributes to increased cell growth and proliferation in hepatocellular carcinoma" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "Kaur P." 1 => "Mani S." 2 => "Cros M.P." 3 => "Scoazec J.Y." 4 => "Chemin I." 5 => "Hainaut P." 6 => "Herceg Z." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s13277-012-0331-5" "Revista" => array:6 [ "tituloSerie" => "Tumour Biol" "fecha" => "2012" "volumen" => "33" "paginaInicial" => "325" "paginaFinal" => "336" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22351518" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0055" "etiqueta" => "11." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Development and classes of epigenetic drugs for cancer" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Dhanak D." 1 => "Jackson P." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.bbrc.2014.07.006" "Revista" => array:6 [ "tituloSerie" => "Biochem Biophys Res Commun" "fecha" => "2014" "volumen" => "455" "paginaInicial" => "58" "paginaFinal" => "69" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25016182" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0060" "etiqueta" => "12." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Epigenetic therapy of cancer stem and progenitor cells by targeting DNA methylation machineries" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Wongtrakoongate P." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.4252/wjsc.v7.i1.137" "Revista" => array:6 [ "tituloSerie" => "World J Stem Cells" "fecha" => "2015" "volumen" => "7" "paginaInicial" => "137" "paginaFinal" => "148" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25621113" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0065" "etiqueta" => "13." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "New and emerging HDAC inhibitors for cancer treatment" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "West A.C." 1 => "Johnstone R.W." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1172/JCI69738" "Revista" => array:6 [ "tituloSerie" => "J Clin Invest" "fecha" => "2014" "volumen" => "124" "paginaInicial" => "30" "paginaFinal" => "39" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24382387" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0070" "etiqueta" => "14." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "P53 mutation as a source of aberrant beta-catenin accumulation in cancer cells" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Cagatay T." 1 => "Ozturk M." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/sj.onc.1205919" "Revista" => array:6 [ "tituloSerie" => "Oncogene" "fecha" => "2002" "volumen" => "21" "paginaInicial" => "7971" "paginaFinal" => "7980" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/12439747" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0075" "etiqueta" => "15." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "HDAC inhibitors act with 5-aza-2’-deoxycytidine to inhibit cell proliferation by suppressing removal of incorporated abases in lung cancer cells" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Chai G." 1 => "Li L." 2 => "Zhou W." 3 => "Wu L." 4 => "Zhao Y." 5 => "Wang D." 6 => "Lu S." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0002445" "Revista" => array:5 [ "tituloSerie" => "PLoS One" "fecha" => "2008" "volumen" => "3" "paginaInicial" => "e2445" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18560576" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0080" "etiqueta" => "16." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Pharmacological unmasking microarray approach-based discovery of novel DNA methylation markers for hepatocellular carcinoma" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Jung N." 1 => "Won J.K." 2 => "Kim B.H." 3 => "Suh K.S." 4 => "Jang J.J." 5 => "Kang G.H." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3346/jkms.2012.27.6.594" "Revista" => array:6 [ "tituloSerie" => "J Korean Med Sci" "fecha" => "2012" "volumen" => "27" "paginaInicial" => "594" "paginaFinal" => "604" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22690089" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0085" "etiqueta" => "17." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Identification of epigenetically inactivated genes in human hepatocellular carcinoma by integrative analyses of methylation profiling and pharmacological unmasking" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Nishida N." 1 => "Chishina H." 2 => "Arizumi T." 3 => "Takita M." 4 => "Kitai S." 5 => "Yada N." 6 => "Hagiwara S." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1159/000368015" "Revista" => array:6 [ "tituloSerie" => "Dig Dis" "fecha" => "2014" "volumen" => "32" "paginaInicial" => "740" "paginaFinal" => "746" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25376292" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0090" "etiqueta" => "18." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Demethylation by 5-aza-2’-deoxycytidine in colorectal cancer cells targets genomic DNA whilst promoter CpG island methylation persists" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Mossman D." 1 => "Kim K.T." 2 => "Scott R.J." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/1471-2407-10-366" "Revista" => array:5 [ "tituloSerie" => "BMC Cancer" "fecha" => "2010" "volumen" => "10" "paginaInicial" => "366" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20618997" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0095" "etiqueta" => "19." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Anticancer activities of histone deacetylase inhibitors" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Bolden J.E." 1 => "Peart M.J." 2 => "Johnstone R.W." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrd2133" "Revista" => array:6 [ "tituloSerie" => "Nat Rev Drug Discov" "fecha" => "2006" "volumen" => "5" "paginaInicial" => "769" "paginaFinal" => "784" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16955068" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0100" "etiqueta" => "20." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hepatocellular carcinoma displays distinct DNA methylation signatures with potential as clinical predictors" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Hernandez-Vargas H." 1 => "Lambert M.P." 2 => "Le Calvez-Kelm F." 3 => "Gouysse G." 4 => "McKay-Chopin S." 5 => "Tavtigian S.V." 6 => "Scoazec J.Y." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0009749" "Revista" => array:5 [ "tituloSerie" => "PLoS One" "fecha" => "2010" "volumen" => "5" "paginaInicial" => "e9749" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/20305825" "web" => "Medline" ] ] ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0105" "etiqueta" => "21." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Colony Area: an Image J plugin to automatically quantify colony formation in clonogenic assays" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Guzmán C." 1 => "Bagga M." 2 => "Kaur A." 3 => "Westermarck J." 4 => "Abankwa D." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0092444" "Revista" => array:5 [ "tituloSerie" => "PLoS One" "fecha" => "2014" "volumen" => "9" "paginaInicial" => "e92444" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24647355" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0110" "etiqueta" => "22." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Bio-EdIP: An automatic approach for in vitro cell confluence images quantification" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Cardona A." 1 => "Ariza-Jiménez L." 2 => "Uribe D." 3 => "Arroyave J.C." 4 => "Galeano J." 5 => "Cortés-Mancera F.M." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cmpb.2017.03.026" "Revista" => array:6 [ "tituloSerie" => "Comput Methods Programs Biomed" "fecha" => "2017" "volumen" => "145" "paginaInicial" => "23" "paginaFinal" => "33" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28552123" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0115" "etiqueta" => "23." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Wnt/beta-catenin signaling pathway in hepatocellular carcinomas cases from Colombia" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Suarez I.M." 1 => "Uribe D." 2 => "Jaramillo C.M." 3 => "Osorio G." 4 => "Perez J.C." 5 => "Lopez R." 6 => "Hoyos S." ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:6 [ "tituloSerie" => "Ann Hepatol" "fecha" => "2015" "volumen" => "14" "paginaInicial" => "64" "paginaFinal" => "74" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25536643" "web" => "Medline" ] ] ] ] ] ] ] ] 23 => array:3 [ "identificador" => "bib0120" "etiqueta" => "24." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cancer genetics and epigenetics: two sides of the same coin" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "You J.S." 1 => "Jones P.A." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ccr.2012.06.008" "Revista" => array:6 [ "tituloSerie" => "Cancer Cell" "fecha" => "2012" "volumen" => "22" "paginaInicial" => "9" "paginaFinal" => "20" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22789535" "web" => "Medline" ] ] ] ] ] ] ] ] 24 => array:3 [ "identificador" => "bib0125" "etiqueta" => "25." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Cancer as a dysregulated epigenome allowing cellular growth advantage at the expense of the host" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Timp W." 1 => "Feinberg A.P." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/nrc3486" "Revista" => array:6 [ "tituloSerie" => "Nat Rev Cancer" "fecha" => "2013" "volumen" => "13" "paginaInicial" => "497" "paginaFinal" => "510" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23760024" "web" => "Medline" ] ] ] ] ] ] ] ] 25 => array:3 [ "identificador" => "bib0130" "etiqueta" => "26." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Synergistic effect of trichostatin A and 5-aza-2’-deoxycytidine on growth inhibition of pancreatic endocrine tumour cell lines: a proteomic study" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Cecconi D." 1 => "Donadelli M." 2 => "Dalla Pozza E." 3 => "Rinalducci S." 4 => "Zolla L." 5 => "Scupoli M.T." 6 => "Righetti P.G." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/pmic.200701089" "Revista" => array:6 [ "tituloSerie" => "Proteomics" "fecha" => "2009" "volumen" => "9" "paginaInicial" => "1952" "paginaFinal" => "1966" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19294695" "web" => "Medline" ] ] ] ] ] ] ] ] 26 => array:3 [ "identificador" => "bib0135" "etiqueta" => "27." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Breast cancer cells are arrested at different phases of the cell cycle following the re-expression of ARHI" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Zuo X." 1 => "Qin Y." 2 => "Zhang X." 3 => "Ning Q." 4 => "Shao S." 5 => "Luo M." 6 => "Yuan M." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3892/or.2014.3107" "Revista" => array:6 [ "tituloSerie" => "Oncol Rep" "fecha" => "2014" "volumen" => "31" "paginaInicial" => "2358" "paginaFinal" => "2364" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24676336" "web" => "Medline" ] ] ] ] ] ] ] ] 27 => array:3 [ "identificador" => "bib0140" "etiqueta" => "28." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Tsai H.C." 1 => "Li H." 2 => "Van Neste L." 3 => "Cai Y." 4 => "Robert C." 5 => "Rassool F.V." 6 => "Shin J.J." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ccr.2011.12.029" "Revista" => array:6 [ "tituloSerie" => "Cancer Cell" "fecha" => "2012" "volumen" => "21" "paginaInicial" => "430" "paginaFinal" => "446" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22439938" "web" => "Medline" ] ] ] ] ] ] ] ] 28 => array:3 [ "identificador" => "bib0145" "etiqueta" => "29." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Hagemann S." 1 => "Heil O." 2 => "Lyko F." 3 => "Brueckner B." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0017388" "Revista" => array:5 [ "tituloSerie" => "PLoS One" "fecha" => "2011" "volumen" => "6" "paginaInicial" => "e17388" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21408221" "web" => "Medline" ] ] ] ] ] ] ] ] 29 => array:3 [ "identificador" => "bib0150" "etiqueta" => "30." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Frequent promoter hypermethylation of Wnt pathway inhibitor genes in malignant astrocytic gliomas" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Götze S." 1 => "Wolter M." 2 => "Reifenberger G." 3 => "Müller O." 4 => "Sievers S." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/ijc.24981" "Revista" => array:6 [ "tituloSerie" => "Int J Cancer" "fecha" => "2010" "volumen" => "126" "paginaInicial" => "2584" "paginaFinal" => "2593" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19847810" "web" => "Medline" ] ] ] ] ] ] ] ] 30 => array:3 [ "identificador" => "bib0155" "etiqueta" => "31." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "DNA methylation and histone modifications cause silencing of Wnt antagonist gene in human renal cell carcinoma cell lines" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Kawamoto K." 1 => "Hirata H." 2 => "Kikuno N." 3 => "Tanaka Y." 4 => "Nakagawa M." 5 => "Dahiya R." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/ijc.23514" "Revista" => array:6 [ "tituloSerie" => "Int J Cancer" "fecha" => "2008" "volumen" => "123" "paginaInicial" => "535" "paginaFinal" => "542" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18404682" "web" => "Medline" ] ] ] ] ] ] ] ] 31 => array:3 [ "identificador" => "bib0160" "etiqueta" => "32." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Wnt signalling in human breast cancer: expression of the putative Wnt inhibitor Dickkopf-3 (DKK3) is frequently suppressed by promoter hypermethylation in mammary tumours" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "Veeck J." 1 => "Bektas N." 2 => "Hartmann A." 3 => "Kristiansen G." 4 => "Heindrichs U." 5 => "Knüchel R." 6 => "Dahl E." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/bcr2151" "Revista" => array:5 [ "tituloSerie" => "Breast Cancer Res" "fecha" => "2008" "volumen" => "10" "paginaInicial" => "R82" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18826564" "web" => "Medline" ] ] ] ] ] ] ] ] 32 => array:3 [ "identificador" => "bib0165" "etiqueta" => "33." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The hypomethylating agent Decitabine causes a paradoxical increase in 5-hydroxymeth-ylcytosine in human leukemia cells" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Chowdhury B." 1 => "McGovern A." 2 => "Cui Y." 3 => "Choudhury S.R." 4 => "Cho I.H." 5 => "Cooper B." 6 => "Chevassut T." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/srep09281" "Revista" => array:5 [ "tituloSerie" => "Sci Rep" "fecha" => "2015" "volumen" => "5" "paginaInicial" => "9281" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25901663" "web" => "Medline" ] ] ] ] ] ] ] ] 33 => array:3 [ "identificador" => "bib0170" "etiqueta" => "34." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Epigenetic effects of chromatin remodeling agents on organotypic cultures" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Sirchia S.M." 1 => "Faversani A." 2 => "Rovina D." 3 => "Russo M.V." 4 => "Paganini L." 5 => "Savi F." 6 => "Augello C." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2217/epi.15.111" "Revista" => array:6 [ "tituloSerie" => "Epigenomics" "fecha" => "2016" "volumen" => "8" "paginaInicial" => "341" "paginaFinal" => "358" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26949823" "web" => "Medline" ] ] ] ] ] ] ] ] 34 => array:3 [ "identificador" => "bib0175" "etiqueta" => "35." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Single base resolution analysis of 5-hydroxymethylcytosine in 188 human genes: implications for hepatic gene expression" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Ivanov M." 1 => "Kals M." 2 => "Lauschke V." 3 => "Barragan I." 4 => "Ewels P." 5 => "Kaller M." 6 => "Axelsson T." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/nar/gkw316" "Revista" => array:6 [ "tituloSerie" => "Nucleic Acids Res" "fecha" => "2016" "volumen" => "44" "paginaInicial" => "6756" "paginaFinal" => "6769" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/27131363" "web" => "Medline" ] ] ] ] ] ] ] ] 35 => array:3 [ "identificador" => "bib0180" "etiqueta" => "36." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1(HDAC1)/HDAC2 complex" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Peinado H." 1 => "Ballestar E." 2 => "Esteller M." 3 => "Cano A." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1128/mcb.24.1.306-319.2004" "Revista" => array:6 [ "tituloSerie" => "Mol Cell Biol" "fecha" => "2004" "volumen" => "24" "paginaInicial" => "306" "paginaFinal" => "319" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14673164" "web" => "Medline" ] ] ] ] ] ] ] ] 36 => array:3 [ "identificador" => "bib0185" "etiqueta" => "37." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Epigenetic repression of E-cadherin expression by hepatitis B virus x antigen in liver cancer" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Arzumanyan A." 1 => "Friedman T." 2 => "Kotei E." 3 => "Ng I.O." 4 => "Lian Z." 5 => "Feitelson M.A." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/onc.2011.255" "Revista" => array:6 [ "tituloSerie" => "Oncogene" "fecha" => "2012" "volumen" => "31" "paginaInicial" => "563" "paginaFinal" => "572" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21706058" "web" => "Medline" ] ] ] ] ] ] ] ] 37 => array:3 [ "identificador" => "bib0190" "etiqueta" => "38." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Mutual regulation between microRNA-373 and methyl-CpG-binding domain protein 2 in hilar cholangiocarcinoma" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Chen Y.J." 1 => "Luo J." 2 => "Yang G.Y." 3 => "Yang K." 4 => "Wen S.Q." 5 => "Zou S.Q." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3748/wjg.v18.i29.3849" "Revista" => array:6 [ "tituloSerie" => "World J Gastroenterol" "fecha" => "2012" "volumen" => "18" "paginaInicial" => "3849" "paginaFinal" => "3861" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22876037" "web" => "Medline" ] ] ] ] ] ] ] ] 38 => array:3 [ "identificador" => "bib0195" "etiqueta" => "39." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "5-aza-2’-deoxycytidine enhances susceptibility of renal cell carcinoma to paclitaxel by decreasing LEF1/phospho-β-catenin expression" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "Shang D." 1 => "Liu Y." 2 => "Xu X." 3 => "Han T." 4 => "Tian Y." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.canlet.2011.08.012" "Revista" => array:6 [ "tituloSerie" => "Cancer Lett" "fecha" => "2011" "volumen" => "311" "paginaInicial" => "230" "paginaFinal" => "236" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/21880414" "web" => "Medline" ] ] ] ] ] ] ] ] 39 => array:3 [ "identificador" => "bib0200" "etiqueta" => "40." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Deregulation of Wnt/β-catenin signaling through genetic or epigenetic alterations in human neuroendocrine tumors" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Kim J.T." 1 => "Li J." 2 => "Jang E.R." 3 => "Gulhati P." 4 => "Rychahou P.G." 5 => "Napier D.L." 6 => "Wang C." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1093/carcin/bgt018" "Revista" => array:6 [ "tituloSerie" => "Carcinogenesis" "fecha" => "2013" "volumen" => "34" "paginaInicial" => "953" "paginaFinal" => "961" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23354304" "web" => "Medline" ] ] ] ] ] ] ] ] 40 => array:3 [ "identificador" => "bib0205" "etiqueta" => "41." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Change in gene expression profiles of secreted frizzled-related proteins (SFRPs) by sodium butyrate in gastric cancers: induction of promoter demethylation and histone modification causing inhibition of Wnt signaling" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "Shin H." 1 => "Kim J.H." 2 => "Lee Y.S." 3 => "Lee Y.C." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3892/ijo.2012.1327" "Revista" => array:6 [ "tituloSerie" => "Int J Oncol" "fecha" => "2012" "volumen" => "40" "paginaInicial" => "1533" "paginaFinal" => "1542" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22246241" "web" => "Medline" ] ] ] ] ] ] ] ] 41 => array:3 [ "identificador" => "bib0210" "etiqueta" => "42." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Blockade of Wnt signaling inhibits angiogenesis and tumor growth in hepatocellular carcinoma" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Hu J." 1 => "Dong A." 2 => "Fernandez-Ruiz V." 3 => "Shan J." 4 => "Kawa M." 5 => "Martínez-Ansó E." 6 => "Prieto J." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1158/0008-5472.CAN-09-0541" "Revista" => array:6 [ "tituloSerie" => "Cancer Res" "fecha" => "2009" "volumen" => "69" "paginaInicial" => "6951" "paginaFinal" => "6959" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19690140" "web" => "Medline" ] ] ] ] ] ] ] ] 42 => array:3 [ "identificador" => "bib0215" "etiqueta" => "43." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Histone deacetylase inhibition modulates E-cadherin expression and suppresses migration and invasion of anaplastic thyroid cancer cells" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Catalano M.G." 1 => "Fortunati N." 2 => "Pugliese M." 3 => "Marano F." 4 => "Ortoleva L." 5 => "Poli R." 6 => "Asioli S." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1210/jc.2011-2970" "Revista" => array:6 [ "tituloSerie" => "J Clin Endocrinol Metab" "fecha" => "2012" "volumen" => "97" "paginaInicial" => "E1150" "paginaFinal" => "9" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22563106" "web" => "Medline" ] ] ] ] ] ] ] ] 43 => array:3 [ "identificador" => "bib0220" "etiqueta" => "44." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "E-cadherin can limit the transforming properties of activating β-catenin mutations" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Huels D.J." 1 => "Ridgway R.A." 2 => "Radulescu S." 3 => "Leushacke M." 4 => "Campbell A.D." 5 => "Biswas S." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.15252/embj.201591739" "Revista" => array:6 [ "tituloSerie" => "EMBO J" "fecha" => "2015" "volumen" => "34" "paginaInicial" => "2321" "paginaFinal" => "2333" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26240067" "web" => "Medline" ] ] ] ] ] ] ] ] 44 => array:3 [ "identificador" => "bib0225" "etiqueta" => "45." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "E-cadherin modulates Wnt-dependent transcription in colorectal cancer cells but does not alter Wnt-independent gene expression in fibroblasts" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Kuphal F." 1 => "Behrens J." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.yexcr.2005.11.007" "Revista" => array:6 [ "tituloSerie" => "Exp Cell Res" "fecha" => "2006" "volumen" => "312" "paginaInicial" => "457" "paginaFinal" => "467" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16368435" "web" => "Medline" ] ] ] ] ] ] ] ] 45 => array:3 [ "identificador" => "bib0230" "etiqueta" => "46." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "SFRP1 suppressed hepatoma cells growth through Wnt canonical signaling pathway" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "Shih Y.L." 1 => "Hsieh C.B." 2 => "Lai H.C." 3 => "Yan M.D." 4 => "Hsieh T.Y." 5 => "Chao Y.C." 6 => "Lin Y.W." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/ijc.22750" "Revista" => array:6 [ "tituloSerie" => "Int J Cancer" "fecha" => "2007" "volumen" => "121" "paginaInicial" => "1028" "paginaFinal" => "1035" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17443492" "web" => "Medline" ] ] ] ] ] ] ] ] 46 => array:3 [ "identificador" => "bib0235" "etiqueta" => "47." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Integrative analysis of aberrant Wnt signaling in hepatitis B virus-related hepatocellular carcinoma" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "Ding S.L." 1 => "Yang Z.W." 2 => "Wang J." 3 => "Zhang X.L." 4 => "Chen X.M." 5 => "Lu F.M." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3748/wjg.v21.i20.6317" "Revista" => array:6 [ "tituloSerie" => "World J Gastroenterol" "fecha" => "2015" "volumen" => "21" "paginaInicial" => "6317" "paginaFinal" => "6328" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26034368" "web" => "Medline" ] ] ] ] ] ] ] ] 47 => array:3 [ "identificador" => "bib0240" "etiqueta" => "48." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Epigenetic inactivation of SFRP genes allows constitutive WNT signaling in colorectal cancer" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "Suzuki H." 1 => "Watkins D.N." 2 => "Jair K.W." 3 => "Schuebel K.E." 4 => "Markowitz S.D." 5 => "Chen W.D." 6 => "Pretlow T.P." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1038/ng1330" "Revista" => array:6 [ "tituloSerie" => "Nat Genet" "fecha" => "2004" "volumen" => "36" "paginaInicial" => "417" "paginaFinal" => "422" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15034581" "web" => "Medline" ] ] ] ] ] ] ] ] 48 => array:3 [ "identificador" => "bib0245" "etiqueta" => "49." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "E-cadherin gene re-expression in chronic lymphocytic leukemia cells by HDAC inhibitors" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "Jordaan G." 1 => "Liao W." 2 => "Sharma S." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/1471-2407-13-88" "Revista" => array:5 [ "tituloSerie" => "BMC Cancer" "fecha" => "2013" "volumen" => "13" "paginaInicial" => "88" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23432814" "web" => "Medline" ] ] ] ] ] ] ] ] 49 => array:3 [ "identificador" => "bib0250" "etiqueta" => "50." "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hepatitis C virus represses E-cadherin expression via DNA methylation to induce epithelial to mesenchymal transition in human hepatocytes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "Park J." 1 => "Jang K.L." ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.bbrc.2014.03.009" "Revista" => array:6 [ "tituloSerie" => "Biochem Biophys Res Commun" "fecha" => "2014" "volumen" => "446" "paginaInicial" => "561" "paginaFinal" => "567" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/24631688" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/16652681/0000001700000003/v1_201905160920/S1665268119302005/v1_201905160920/en/main.assets" "Apartado" => array:4 [ "identificador" => "77721" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original Article" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/16652681/0000001700000003/v1_201905160920/S1665268119302005/v1_201905160920/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1665268119302005?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 4 | 0 | 4 |
2024 October | 21 | 4 | 25 |
2024 September | 36 | 3 | 39 |
2024 August | 32 | 9 | 41 |
2024 July | 42 | 2 | 44 |
2024 June | 33 | 1 | 34 |
2024 May | 51 | 2 | 53 |
2024 April | 44 | 3 | 47 |
2024 March | 66 | 5 | 71 |
2024 February | 31 | 3 | 34 |
2024 January | 32 | 5 | 37 |
2023 December | 25 | 3 | 28 |
2023 November | 27 | 6 | 33 |
2023 October | 23 | 8 | 31 |
2023 September | 25 | 3 | 28 |
2023 August | 23 | 5 | 28 |
2023 July | 42 | 7 | 49 |
2023 June | 58 | 5 | 63 |
2023 May | 63 | 2 | 65 |
2023 April | 82 | 2 | 84 |
2023 March | 78 | 4 | 82 |
2023 February | 45 | 0 | 45 |
2023 January | 27 | 5 | 32 |
2022 December | 27 | 4 | 31 |
2022 November | 23 | 7 | 30 |
2022 October | 19 | 10 | 29 |
2022 September | 25 | 22 | 47 |
2022 August | 20 | 7 | 27 |
2022 July | 18 | 8 | 26 |
2022 June | 32 | 8 | 40 |
2022 May | 30 | 7 | 37 |
2022 April | 44 | 8 | 52 |
2022 March | 48 | 8 | 56 |
2022 February | 31 | 8 | 39 |
2022 January | 46 | 3 | 49 |
2021 December | 21 | 5 | 26 |
2021 November | 36 | 11 | 47 |
2021 October | 44 | 14 | 58 |
2021 September | 44 | 9 | 53 |
2021 August | 65 | 8 | 73 |
2021 July | 23 | 11 | 34 |
2021 June | 9 | 6 | 15 |
2021 May | 22 | 9 | 31 |
2021 April | 61 | 15 | 76 |
2021 March | 61 | 3 | 64 |
2021 February | 52 | 6 | 58 |
2021 January | 45 | 20 | 65 |
2020 December | 49 | 8 | 57 |
2020 November | 48 | 7 | 55 |
2020 October | 40 | 11 | 51 |
2020 September | 27 | 15 | 42 |
2020 August | 34 | 11 | 45 |
2020 July | 51 | 11 | 62 |
2020 June | 27 | 5 | 32 |
2020 May | 29 | 13 | 42 |
2020 April | 11 | 3 | 14 |
2020 March | 24 | 5 | 29 |
2020 February | 35 | 12 | 47 |
2020 January | 25 | 4 | 29 |
2019 December | 22 | 13 | 35 |
2019 November | 16 | 7 | 23 |
2019 October | 41 | 9 | 50 |
2019 September | 27 | 1 | 28 |
2019 August | 20 | 10 | 30 |
2019 July | 16 | 12 | 28 |
2019 June | 23 | 28 | 51 |
2019 May | 25 | 15 | 40 |