was read the article
array:23 [ "pii" => "S1665268122002307" "issn" => "16652681" "doi" => "10.1016/j.aohep.2022.100888" "estado" => "S300" "fechaPublicacion" => "2023-03-01" "aid" => "100888" "copyright" => "Fundación Clínica Médica Sur, A.C." "copyrightAnyo" => "2022" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Ann Hepatol. 2023;28:" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "itemSiguiente" => array:18 [ "pii" => "S1665268122002204" "issn" => "16652681" "doi" => "10.1016/j.aohep.2022.100878" "estado" => "S300" "fechaPublicacion" => "2023-03-01" "aid" => "100878" "copyright" => "Fundación Clínica Médica Sur, A.C." "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Ann Hepatol. 2023;28:" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:11 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Hepatitis E virus superinfection impairs long-term outcome in hospitalized patients with hepatitis B virus-related decompensated liver cirrhosis" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0001" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1082 "Ancho" => 3333 "Tamanyo" => 289016 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0001" "detalle" => "Fig " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara001" class="elsevierStyleSimplePara elsevierViewall"><span class="elsevierStyleBold">Flow chart of study sample selection.</span> A total of 811 HBV cirrhosis patients with or without HEV co-infection were selected, and then propensity score matched with 1:1. <span class="elsevierStyleBold">HBV</span>, hepatitis B virus; <span class="elsevierStyleBold">HCV</span>, hepatitis C virus; <span class="elsevierStyleBold">HEV</span>, hepatitis E virus</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Hong Zhao, Wenyi Ye, Xia Yu, Jianhua Hu, Xuan Zhang, Meifang Yang, Jifang Sheng, Yu Shi" "autores" => array:8 [ 0 => array:2 [ "nombre" => "Hong" "apellidos" => "Zhao" ] 1 => array:2 [ "nombre" => "Wenyi" "apellidos" => "Ye" ] 2 => array:2 [ "nombre" => "Xia" "apellidos" => "Yu" ] 3 => array:2 [ "nombre" => "Jianhua" "apellidos" => "Hu" ] 4 => array:2 [ "nombre" => "Xuan" "apellidos" => "Zhang" ] 5 => array:2 [ "nombre" => "Meifang" "apellidos" => "Yang" ] 6 => array:2 [ "nombre" => "Jifang" "apellidos" => "Sheng" ] 7 => array:2 [ "nombre" => "Yu" "apellidos" => "Shi" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1665268122002204?idApp=UINPBA00004N" "url" => "/16652681/0000002800000002/v2_202305072346/S1665268122002204/v2_202305072346/en/main.assets" ] "itemAnterior" => array:18 [ "pii" => "S1665268122002344" "issn" => "16652681" "doi" => "10.1016/j.aohep.2022.100892" "estado" => "S300" "fechaPublicacion" => "2023-03-01" "aid" => "100892" "copyright" => "Fundación Clínica Médica Sur, A.C." "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Ann Hepatol. 2023;28:" "abierto" => array:3 [ "ES" => true "ES2" => true "LATM" => true ] "gratuito" => true "lecturas" => array:1 [ "total" => 0 ] "en" => array:11 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Blood pressure stratification for predicting liver fibrosis risk in metabolic dysfunction associated fatty liver disease" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => "en" "contieneResumen" => array:1 [ "en" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0001" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 3064 "Ancho" => 2500 "Tamanyo" => 551772 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0001" "detalle" => "Fig " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara001" class="elsevierStyleSimplePara elsevierViewall">Establishment of cross-sectional and longitudinal cohorts. MAFLD, metabolic dysfunction-associated fatty liver disease; BP, blood pressure; T2DM, type 2 diabetes mellitus.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Jing Liu, Haifeng Lv, Jie Wang, Qianru Zhu, Gongying Chen, Yanming Jiang, Ke Zhao, Li Shao, Junping Shi, Xiaoben Pan" "autores" => array:10 [ 0 => array:2 [ "nombre" => "Jing" "apellidos" => "Liu" ] 1 => array:2 [ "nombre" => "Haifeng" "apellidos" => "Lv" ] 2 => array:2 [ "nombre" => "Jie" "apellidos" => "Wang" ] 3 => array:2 [ "nombre" => "Qianru" "apellidos" => "Zhu" ] 4 => array:2 [ "nombre" => "Gongying" "apellidos" => "Chen" ] 5 => array:2 [ "nombre" => "Yanming" "apellidos" => "Jiang" ] 6 => array:2 [ "nombre" => "Ke" "apellidos" => "Zhao" ] 7 => array:2 [ "nombre" => "Li" "apellidos" => "Shao" ] 8 => array:2 [ "nombre" => "Junping" "apellidos" => "Shi" ] 9 => array:2 [ "nombre" => "Xiaoben" "apellidos" => "Pan" ] ] ] ] ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1665268122002344?idApp=UINPBA00004N" "url" => "/16652681/0000002800000002/v2_202305072346/S1665268122002344/v2_202305072346/en/main.assets" ] "en" => array:19 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Validation of the Hepamet fibrosis score in a multi-ethnic Asian population" "tieneTextoCompleto" => true "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "Shi-En Chong, Felicia Chang, Kee-Huat Chuah, Pavai Sthaneshwar, Nik Raihan Nik Mustapha, Sanjiv Mahadeva, Wah-Kheong Chan" "autores" => array:7 [ 0 => array:3 [ "nombre" => "Shi-En" "apellidos" => "Chong" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] ] ] 1 => array:3 [ "nombre" => "Felicia" "apellidos" => "Chang" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] ] ] 2 => array:3 [ "nombre" => "Kee-Huat" "apellidos" => "Chuah" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] ] ] 3 => array:3 [ "nombre" => "Pavai" "apellidos" => "Sthaneshwar" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0002" ] ] ] 4 => array:3 [ "nombre" => "Nik Raihan" "apellidos" => "Nik Mustapha" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0003" ] ] ] 5 => array:3 [ "nombre" => "Sanjiv" "apellidos" => "Mahadeva" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] ] ] 6 => array:4 [ "nombre" => "Wah-Kheong" "apellidos" => "Chan" "email" => array:1 [ 0 => "wahkheong2003@hotmail.com" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0001" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">*</span>" "identificador" => "cor0001" ] ] ] ] "afiliaciones" => array:3 [ 0 => array:3 [ "entidad" => "Gastroenterology and Hepatology Unit, Department of Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia" "etiqueta" => "a" "identificador" => "aff0001" ] 1 => array:3 [ "entidad" => "Clinical Diagnostic Laboratory, Department of Pathology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Federal Territory of Kuala Lumpur, Malaysia" "etiqueta" => "b" "identificador" => "aff0002" ] 2 => array:3 [ "entidad" => "Department of Pathology, Hospital Sultanah Bahiyah, 05460 Alor Setar, Kedah, Malaysia" "etiqueta" => "c" "identificador" => "aff0003" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0001" "etiqueta" => "⁎" "correspondencia" => "Corresponding author." ] ] ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0002" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 3835 "Ancho" => 3000 "Tamanyo" => 488342 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0002" "detalle" => "Fig " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara002" class="elsevierStyleSimplePara elsevierViewall">Distribution of patients in the different diagnostic groups when using the two-step approach for the diagnosis of advanced liver fibrosis.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0001" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">1</span><span class="elsevierStyleSectionTitle" id="cesectitle0008">Introduction</span><p id="para0005" class="elsevierStylePara elsevierViewall">Non-alcoholic fatty liver disease (NAFLD) has emerged as the most common cause of chronic liver disease, affecting an estimated 25% of the global population <a class="elsevierStyleCrossRef" href="#bib0001">[1]</a>. The severity of liver fibrosis has been identified as the single most important predictor of long-term outcome in NAFLD patients with the risk of liver-related mortality and all-cause mortality increasing exponentially with increasing liver fibrosis stage <a class="elsevierStyleCrossRef" href="#bib0002">[2]</a>. As only a small but significant proportion of NAFLD patients have advanced liver fibrosis and NAFLD patients do not have specific symptoms unless they have progressed to decompensated liver disease, identifying NAFLD patients with advanced liver fibrosis for more aggressive management represents an important step in tackling the disease. A two-step approach has been proposed, whereby NAFLD patients identified as being at higher risk of advanced liver fibrosis based on a widely available test are referred for a second test for further risk stratification [<a class="elsevierStyleCrossRef" href="#bib0003">3</a>,<a class="elsevierStyleCrossRef" href="#bib0004">4</a>]. The original work was based on the use of the NAFLD fibrosis score and liver stiffness measurement with 8 kPa and 17 kPa cut-offs <a class="elsevierStyleCrossRef" href="#bib0003">[3]</a>, but this was refined to the use of the Fibrosis-4 score and liver stiffness measurement with 10 kPa and 15 kPa cut-offs <a class="elsevierStyleCrossRef" href="#bib0004">[4]</a>. The Fibrosis-4 score had similar performance to the NAFLD fibrosis score despite requiring less variables for its calculation, and it has therefore emerged as the preferred test. Recently, a novel fibrosis score, called the Hepamet fibrosis score, has been developed for identifying NAFLD patients with advanced liver fibrosis <a class="elsevierStyleCrossRef" href="#bib0005">[5]</a>. The Hepamet fibrosis score has been reported to be superior to the NAFLD fibrosis score and the Fibrosis-4 score. However, there is limited external validation. Furthermore, the performance of the Hepamet fibrosis score in comparison with the NALFD fibrosis score and the Fibrosis-4 score in a two-step approach that is followed by liver stiffness measurement is unknown. Therefore, we aimed to study the performance of the Hepamet fibrosis score when used alone and when used in a two-step approach with liver stiffness measurement for the diagnosis of advanced liver fibrosis, comparing with the use of the NAFLD fibrosis score and the Fibrosis-4 score, in our cohort of biopsy-proven NAFLD patients.</p></span><span id="sec0002" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2</span><span class="elsevierStyleSectionTitle" id="cesectitle0009">Material and Methods</span><p id="para0006" class="elsevierStylePara elsevierViewall">The patients included in this study were patients who were screened for a non-alcoholic steatohepatitis (NASH) clinical trial conducted at the University of Malaya Medical Centre between 2012 and 2015. The full details of the clinical trial can be found elsewhere <a class="elsevierStyleCrossRef" href="#bib0006">[6]</a>. Briefly, consecutive adult NAFLD patients (>18 years old) seen at the Gastroenterology and Hepatology Clinic of the University of Malaya Medical Centre were considered for inclusion into the clinical trial. The diagnosis of NAFLD was based on ultrasonography findings of fatty liver and exclusion of significant alcohol intake, use of medications that can cause hepatic steatosis, viral hepatitis B and C infection, and other causes of chronic liver disease, where indicated <a class="elsevierStyleCrossRef" href="#bib0007">[7]</a>. NAFLD patients with serum alanine aminotransferase (ALT) or aspartate aminotransferase (AST) levels ≥40 IU/L were offered screening for the clinical trial, which included a liver biopsy. Screening was also offered when there were other reasons for NASH to be suspected (e.g., significant liver fibrosis based on liver stiffness measurement, obese patients with metabolic syndrome). Patients who were on insulin therapy were excluded from this study to limit the influence of supra‐physiological results of insulinemia due to insulin therapy.</p><p id="para0007" class="elsevierStylePara elsevierViewall">Demographic, anthropometric and relevant clinical data were obtained using a standard protocol on the day of the liver biopsy procedure. Obesity was defined as body mass index (BMI) ≥25 kg per m<span class="elsevierStyleSup">2</span><a class="elsevierStyleCrossRef" href="#bib0008">[8]</a>. Central obesity was defined as waist circumference >90 cm for men and >80 cm for women <a class="elsevierStyleCrossRef" href="#bib0009">[9]</a>. Hypertension was considered present when there was a self-reported history of hypertension, blood pressure was ≥130/80 mmHg, or when the patient was on anti-hypertensive agent <a class="elsevierStyleCrossRef" href="#bib0010">[10]</a>. Venous blood was drawn after an overnight fast on the day of the liver biopsy procedure for complete blood count, glucose, glycated haemoglobin (HbA1c), insulin, lipid profile, liver profile and tests for viral hepatitis B and C infection. Diabetes mellitus was considered present when there was a self-reported history of diabetes mellitus, fasting glucose was ≥7.0 mmol/L, HbA1c was ≥6.5 %, or when the patient was on anti-diabetic agent. Patients without diabetes mellitus who had fasting glucose ≥ 5.6 mmol/L were considered to have impaired fasting glucose <a class="elsevierStyleCrossRef" href="#bib0011">[11]</a>. Serum triglyceride ≥1.7 mmol/L was considered elevated while serum high-density lipoprotein (HDL) cholesterol <1.0 mmol/L for men or <1.3 mmol/L for women was considered reduced <a class="elsevierStyleCrossRef" href="#bib0012">[12]</a>. Homeostatic model assessment for insulin resistance (HOMA-IR) was calculated using the formula fasting glucose (mmol/L) * fasting insulin (mlU/L) / 22.5.</p><span id="sec0003" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.1</span><span class="elsevierStyleSectionTitle" id="cesectitle0010">Calculation of the Hepamet fibrosis score and other fibrosis scores</span><p id="para0008" class="elsevierStylePara elsevierViewall">The Hepamet fibrosis score was calculated from the formula 1 / (1 + e [5.390 – 0.986 x Age [45-64 years of age] – 1.719 x Age [≥65 years of age] + 0.875 x Male sex – 0.896 x AST [35-69 IU/L] – 2.126 x AST [≥70 IU/L] – 0.027 x Albumin [4-4.49 g/dL] – 0.897 x Albumin [<4 g/dL] – 0.899 x HOMA [2-3.99 with no Diabetes Mellitus] – 1.497 x HOMA [≥4 with no Diabetes Mellitus] – 2.184 x Diabetes Mellitus – 0.882 x platelets x 1.000/µL [155-219] – 2.233 x platelets x 1.000/µL [<155]) <a class="elsevierStyleCrossRef" href="#bib0005">[5]</a>. Previously reported cut-offs of <0.12 and ≥0.47 were used for the diagnosis of the absence and presence of advanced liver fibrosis, respectively; a score of ≥0.12 and <0.47 was considered indeterminate. Fibrosis-4 score was calculated from the formula [age (years) × AST (U/L)] / [platelet count (× 10<span class="elsevierStyleSup">9</span>/L) × ALT (U/L)<span class="elsevierStyleSup">½</span>] <a class="elsevierStyleCrossRef" href="#bib0013">[13]</a>. Previously reported cut-offs of <1.30 and ≥2.67 were used for the diagnosis of the absence and presence of advanced liver fibrosis, respectively; a score of ≥1.30 and <2.67 was considered indeterminate. The NAFLD fibrosis score was calculated from the formula −1.675 + 0.037 × age (years) + 0.094 × BMI (kg per m<span class="elsevierStyleSup">2</span>) + 1.13 × impaired glucose tolerance or diabetes mellitus (yes = 1, no = 0) + 0.99 × AST to ALT ratio − 0.013 × platelet (× 10<span class="elsevierStyleSup">9</span>/L) − 0.66 × albumin (g/dL) <a class="elsevierStyleCrossRef" href="#bib0014">[14]</a>. Previously reported cut-offs of <-1.455 and >0.675 were used for the diagnosis of the absence and presence of advanced liver fibrosis, respectively; a score of ≥-1.455 and ≤0.675 was considered indeterminate.</p></span><span id="sec0004" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.2</span><span class="elsevierStyleSectionTitle" id="cesectitle0011">Liver biopsy and histological assessment</span><p id="para0009" class="elsevierStylePara elsevierViewall">Ultrasonography‐guided percutaneous liver biopsy was performed by either one of two experienced operators (WKC, SM) using 18G Temno® II semi‐automatic biopsy needle (Cardinal Health, Dublin, OH). Liver biopsy specimens were processed using standard laboratory procedures. Liver biopsy slides were stained with haematoxylin and eosin stain and Masson's trichrome stain. Liver biopsy slides were examined by an experienced histopathologist (NRNM) who was blinded to clinical data. NASH was defined as the presence of steatosis, lobular inflammation and ballooning with or without fibrosis. Histopathological findings were reported according to the NASH Clinical Research Network Scoring System <a class="elsevierStyleCrossRef" href="#bib0015">[15]</a>. Fibrosis stages 1a, 1b and 1c were considered stage 1 for the purpose of analysis. Advanced liver fibrosis was defined as fibrosis stages ≥F3. The experienced histopathologist (NRNM) in this study had an almost perfect intra-observer agreement for fibrosis staging with Fleiss' kappa (95% CI) of 0.926 (0.818 - 1.000) as reported in a separate study that looked at intra- and inter-observer variability for fibrosis staging. The inter-observer agreement with the other three pathologists in the study was substantial to almost perfect with weighted kappa (95% CI) of 0.776 (0.601 - 0.950), 0.794 (0.602 - 0.986) and 0.848 (0.692 - 1.000), respectively <a class="elsevierStyleCrossRef" href="#bib0016">[16]</a>.</p></span><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.3</span><span class="elsevierStyleSectionTitle" id="cesectitle0012">Transient elastography</span><p id="para0010" class="elsevierStylePara elsevierViewall">Transient elastography was performed by either one of two experienced operators (WKC, SM) using Fibroscan 502 Touch with M probe (EchoSens, Paris, France) on all patients on the same day of the liver biopsy procedure. Adequate pressure of the probe on the skin surface, good layering on TM mode and a straight imaginary line on A mode were ensured for each measurement. An examination was considered successful and reliable when there were at least 10 valid measurements with interquartile range/median for liver stiffness measurement ≤30% <a class="elsevierStyleCrossRef" href="#bib0017">[17]</a>. Liver stiffness measurement <10 kPa and ≥15 kPa were used for the diagnosis of the absence and presence of advanced liver fibrosis, respectively; liver stiffness measurement ≥10 kPa and <15 kPa was considered indeterminate <a class="elsevierStyleCrossRef" href="#bib0004">[4]</a>. In the two-step approach, patients with a Hepamet fibrosis score ≥0.12, Fibrosis-4 score ≥1.30, or NAFLD fibrosis score ≥-1.455 were subjected to liver stiffness measurement for the diagnosis of advanced liver fibrosis.</p></span><span id="sec0006" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.4</span><span class="elsevierStyleSectionTitle" id="cesectitle0013">Statistical analysis</span><p id="para0011" class="elsevierStylePara elsevierViewall">Data were analyzed using standard statistical software, SPSS 27 (IBM, New York, U.S.). Continuous variables were reported as mean ± standard deviation or median (interquartile range) and analyzed using t-test or Mann-Whitney test, as appropriate. Categorical variables were reported as percentages and analyzed using chi-square or Fisher's exact test, as appropriate. The performance of the Hepamet fibrosis score, the Fibrosis-4 score and the NAFLD fibrosis score for the diagnosis of advanced liver fibrosis was determined and compared using the area under the receiver operating characteristics curve (AUROC). AUROC was interpreted as follows: 0.90‐1.00 = excellent, 0.80‐0.90 = good, 0.70‐0.80 = fair and <0.70 = poor. The sensitivity, specificity, positive predictive value, negative predictive value, misclassification rate and indeterminate rate were determined for each of the fibrosis scores when used alone, when used in a two-step approach and when used with liver stiffness measurement for all patients. The Z score calculator for two proportions was used for comparing two proportions. Significance was assumed when p <0.05.</p></span><span id="sec0007" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">2.5</span><span class="elsevierStyleSectionTitle" id="cesectitle0014">Ethical statement</span><p id="para0012" class="elsevierStylePara elsevierViewall">The clinical trial from which the data for this study came conformed to the ethical guidelines of the 1975 Declaration of Helsinki, and approval was obtained from the University of Malaya Research Ethics Committee (UMREC) prior to its commencement (Approval Date: 25 May 2011; Reference No.: 853.1). All patients who participated in the clinical trial provided written informed consent.</p></span></span><span id="sec0008" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">3</span><span class="elsevierStyleSectionTitle" id="cesectitle0015">Results</span><span id="sec0009" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">3.1</span><span class="elsevierStyleSectionTitle" id="cesectitle0016">Patient characteristics</span><p id="para0013" class="elsevierStylePara elsevierViewall">The data for 196 patients were analyzed. Patient characteristics are presented in <a class="elsevierStyleCrossRef" href="#tbl0001">Table 1</a>. The mean age of the study population was 50 ± 11 years old, and the study population consisted of an equal proportion of male and female patients. The majority of patients were obese (86.2%), centrally obese (93.4%) and had metabolic syndrome (88.8%). The proportion of patients with diabetes mellitus, hypertension and dyslipidemia was 45.9%, 57.7% and 79.6%, respectively. The mean length of the liver biopsy specimen was 15 ± 4 mm, while the mean number of portal tracts was 8 ± 3. The proportion of patients with NASH was 67.9%, while the proportion of patients with advanced liver fibrosis was 15.8%.</p><elsevierMultimedia ident="tbl0001"></elsevierMultimedia></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">3.2</span><span class="elsevierStyleSectionTitle" id="cesectitle0017">Hepamet fibrosis score</span><p id="para0014" class="elsevierStylePara elsevierViewall">The Hepamet fibrosis score was significantly higher among patients with advanced liver fibrosis compared with patients without advanced liver fibrosis [0.35 (0.21 – 0.48) vs. 0.13 (0.03 – 0.20), p <0.001]. The Hepamet fibrosis score had good diagnostic accuracy for advanced liver fibrosis with AUROC of 0.85 (95% CI, 0.80 – 0.91) (<a class="elsevierStyleCrossRef" href="#fig0001">Fig. 1</a>). The distribution of patients in the different diagnostic groups using the Hepamet fibrosis score, the Fibrosis-4 score and the NAFLD fibrosis score are shown in <a class="elsevierStyleCrossRef" href="#tbl0002">Table 2</a>. The Hepamet fibrosis score had a sensitivity, specificity, positive predictive value and negative predictive value of 81.8%, 91.8%, 47.4% and 98.2%, respectively. The proportion of patients in the indeterminate range was 32.1%. The misclassification rate was 6.1%. The proportion of patients with low Hepamet fibrosis score who had advanced liver fibrosis was 1.8%, while the proportion of patients with high Hepamet fibrosis score who did not have advanced liver fibrosis was 52.6%.</p><elsevierMultimedia ident="fig0001"></elsevierMultimedia><elsevierMultimedia ident="tbl0002"></elsevierMultimedia></span><span id="sec0011" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">3.3</span><span class="elsevierStyleSectionTitle" id="cesectitle0018">Comparing the Hepamet fibrosis score and other scores for advanced liver fibrosis</span><p id="para0015" class="elsevierStylePara elsevierViewall">The Hepamet fibrosis score did not perform better than the Fibrosis-4 score or the NAFLD fibrosis score for the diagnosis of advanced liver fibrosis, with the AUROC of the Fibrosis-4 score and the NAFLD fibrosis score being 0.89 (95% CI, 0.83 – 0.95, p = 0.223) and 0.85 (95% CI, 0.79 – 0.92, p = 0.946), respectively (<a class="elsevierStyleCrossRef" href="#fig0001">Fig. 1</a>). The proportion of patients in the indeterminate range was lower for the Fibrosis-4 score compared with the Hepamet fibrosis score (23% vs. 32.1%, p <0.05). The proportion of patients in the indeterminate range was not significantly different between the NAFLD fibrosis score and the Hepamet fibrosis score (26% vs. 32.1%, p = 0.184). The misclassification rates for the Fibrosis-4 score (5.1%) and the NAFLD fibrosis score (4.6%) were not significantly different from the Hepamet fibrosis score (6.1%) (p = 0.660 and p = 0.503, respectively). However, the sensitivity of the Hepamet fibrosis score (81.8%) was significantly higher compared with the Fibrosis-4 score (11.1%) and the NAFLD fibrosis score (20%) (p <0.05 for both comparisons). The proportion of patients with low Fibrosis-4 scores who had advanced liver fibrosis was 5.4%, while the proportion of patients with high Fibrosis-4 scores who did not have advanced liver fibrosis was 66.7%. These values were 5.6% and 33.3%, respectively, for the NAFLD fibrosis score.</p></span><span id="sec0012" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">3.4</span><span class="elsevierStyleSectionTitle" id="cesectitle0019">Combining the Hepamet fibrosis score and liver stiffness measurement for assessment of advanced liver fibrosis</span><p id="para0016" class="elsevierStylePara elsevierViewall">Three of the 196 patients were excluded from this analysis due to failed or unreliable liver stiffness measurement. Using the two-step approach reduced the proportion of patients with indeterminate results (from 32.1% to 16.1%) and the misclassification rate (from 6.1% to 3.6%) (<a class="elsevierStyleCrossRef" href="#tbl0003">Table 3</a> and <a class="elsevierStyleCrossRef" href="#fig0002">Fig. 2</a>). Using the Fibrosis-4 score and the NAFLD fibrosis score to select patients for liver stiffness measurement similarly reduced the proportion of patients with indeterminate results (from 23% to 9.3% for the Fibrosis-4 score and from 30.6% to 11.9% for the NAFLD fibrosis score) and the misclassification rate for the Fibrosis-4 score (from 5.1% to 4.1%), but not for the NAFLD fibrosis score (from 4.6% to 6.2%) (<a class="elsevierStyleCrossRef" href="#tbl0003">Table 3</a>, Supplementary Fig. S1, and Supplementary Fig. S2). In contrast, using both Hepamet fibrosis score and liver stiffness measurement in all patients resulted in a greater proportion of patients with indeterminate results (25.9%) due to discordant results among those with low Hepamet fibrosis scores (<a class="elsevierStyleCrossRef" href="#tbl0003">Table 3</a> and <a class="elsevierStyleCrossRef" href="#fig0003">Fig. 3</a>). This was similarly observed for the Fibrosis-4 score and the NAFLD fibrosis score, with indeterminate results at 24.4% and 24.9%, respectively (<a class="elsevierStyleCrossRef" href="#tbl0003">Table 3</a>, Supplementary Fig. S3 and Supplementary Fig. S4).</p><elsevierMultimedia ident="tbl0003"></elsevierMultimedia><elsevierMultimedia ident="fig0002"></elsevierMultimedia><elsevierMultimedia ident="fig0003"></elsevierMultimedia></span></span><span id="sec0013" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">4</span><span class="elsevierStyleSectionTitle" id="cesectitle0020">Discussion</span><p id="para0017" class="elsevierStylePara elsevierViewall">In this study on 196 patients with biopsy-proven NAFLD, we found the Hepamet fibrosis score to have good accuracy for the diagnosis of advanced liver fibrosis. This is consistent with the original training and validation study by Ampuero and colleagues <a class="elsevierStyleCrossRef" href="#bib0005">[5]</a>. However, in contrast, the Hepamet fibrosis score was not found to be superior to the Fibrosis-4 score and the NAFLD fibrosis score in our study. Although the Hepamet fibrosis score had significantly higher AUROC compared with the Fibrosis-4 score and the NAFLD fibrosis score in both the training and validation cohorts in the study by Ampuero and colleagues, there was significant overlap in the 95% CI of the AUROCs of the different fibrosis scores from each of the participating centres. In the only other external validation study, Higuera‑de‑la‑Tijera and colleagues similarly did not find a significant difference in the accuracy of the Hepamet fibrosis score for the diagnosis of advanced liver fibrosis compared with the Fibrosis-4 score and the NAFLD fibrosis <a class="elsevierStyleCrossRef" href="#bib0018">[18]</a>. The magnitude of difference in the performance of the Hepamet fibrosis score for the diagnosis of advanced liver fibrosis compared with other fibrosis scores is an important consideration because it requires HOMA, which is not routinely performed and requires additional cost, in its calculation. A similar consideration has favored the Fibrosis-4 score over the NAFLD fibrosis score for the diagnosis of advanced liver fibrosis as the former requires a smaller number of variables that are more readily available and performs as well as, if not better, compared with the latter <a class="elsevierStyleCrossRef" href="#bib0004">[4]</a>. In a previous study, we found the MACK-3 [combination of HOMA, AST and cytokeratin-18 (CK18)] to be a marker of active NASH and hypothesized that it would perform better as a marker of fibrotic NASH in populations with a greater proportion of patients with both active NASH and significant liver fibrosis <a class="elsevierStyleCrossRef" href="#bib0019">[19]</a>. This may similarly underlie the difference in the performance of the Hepamet fibrosis score in the different study populations, which have a different proportion of patients with both active NASH and advanced liver fibrosis. Another possible explanation is an ethnic difference in HOMA <a class="elsevierStyleCrossRef" href="#bib0020">[20]</a>, as our study population consisted of 72.4% of patients of Malay or Indian ethnicity, which are completely unrepresented in both earlier studies.</p><p id="para0018" class="elsevierStylePara elsevierViewall">The high negative predictive value of the lower cut-off of fibrosis scores has positioned them as an important screening tool since there is a high prevalence of NAFLD in the general population but only a small yet significant proportion of patients with advanced liver fibrosis. However, the low positive predictive value of the lower cut-off necessitates additional tests, such as liver stiffness measurement, to improve the diagnosis of advanced liver fibrosis. While this approach has been tested with the Fibrosis-4 score and the NAFLD fibrosis score previously [<a class="elsevierStyleCrossRef" href="#bib0003">3</a>,<a class="elsevierStyleCrossRef" href="#bib0004">4</a>], it has not been tested for the Hepamet fibrosis score. In the current study, we found the use of the Hepamet fibrosis score in a two-step approach with liver stiffness measurement to be feasible, similar to the Fibrosis-4 score and the NAFLD fibrosis score. Although the use of the Hepamet fibrosis score in the two-step approach was associated with the highest proportion of patients with indeterminate results at 16.1%, it had the lowest misclassification rate at 3.6%. A lower misclassification rate may be arguably more important than the proportion of indeterminate results (within acceptable limits) as patients with indeterminate results may be considered as having increased risk and be followed, whereby those with disease progression over time would be eventually diagnosed. On the other hand, misclassification may lead to a false sense of security and missed opportunity for intervention on one end and anxiety and unnecessary downstream management on the other.</p><p id="para0019" class="elsevierStylePara elsevierViewall">Despite our best effort, this study has several limitations. First, the use of liver biopsy as a reference test is inherently limited by sampling variability <a class="elsevierStyleCrossRef" href="#bib0021">[21]</a> and observer variability [<a class="elsevierStyleCrossRef" href="#bib0016">16</a>,<a class="elsevierStyleCrossRef" href="#bib0022">22</a>]. The fibrosis stage has been shown to differ by 1-2 stages between two liver biopsies taken from the same patient in 45.1% of cases <a class="elsevierStyleCrossRef" href="#bib0021">[21]</a>. On the other hand, there is only moderate agreement in fibrosis staging between two independent pathologists, with a discrepancy rate of 68.7% <a class="elsevierStyleCrossRef" href="#bib0022">[22]</a>. The discrepancy rate in fibrosis staging was 40.8% in another study that included four independent pathologists <a class="elsevierStyleCrossRef" href="#bib0016">[16]</a>. Nevertheless, liver biopsy remains the reference test for the evaluation of a diagnostic test for liver fibrosis. Although none of the liver biopsy specimens were deemed inadequate for assessment by our pathologist, the mean length of the liver biopsy specimen and the number of portal tracts in our study did fall short of the recommended international standards, which may have affected the interpretation of diagnostic accuracy in our study <a class="elsevierStyleCrossRef" href="#bib0023">[23]</a>. Secondly, the patients included in this study, as in most studies on a diagnostic test for NAFLD, were NAFLD patients in a tertiary centre who underwent a liver biopsy. Therefore, the patients are likely to have more severe liver disease and the findings of this study may not be representative of NAFLD patients in the general population. However, it is likely that the fibrosis scores will have even better negative predictive value for advanced liver fibrosis for NAFLD patients in the general population. Lastly, the term metabolic dysfunction-associated fatty liver disease (MAFLD) was not yet introduced at the time data for this study was collected and has therefore not been included. However, all patients in this study fulfilled the criteria for MAFLD.</p></span><span id="sec0014" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleLabel">5</span><span class="elsevierStyleSectionTitle" id="cesectitle0021">Conclusions</span><p id="para0020" class="elsevierStylePara elsevierViewall">In conclusion, our study provides further external validation of the good diagnostic performance of the Hepamet fibrosis score in a population that was largely unrepresented in earlier work. Although the Hepamet fibrosis score was not found to be better than the Fibrosis-4 score and the NAFLD fibrosis score, we demonstrated its high negative predictive value and utility in a two-step approach with liver stiffness measurement for the diagnosis of advanced liver fibrosis. Furthermore, the Hepamet fibrosis score had the lowest misclassification rate when used in a two-step approach with liver stiffness measurement compared with the Fibrosis-4 score and the NAFLD fibrosis score.</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0022">Author contributions</span><p id="para0021" class="elsevierStylePara elsevierViewall">WKC conceptualized the study. KHC, PS, NRNM, SM and WKC contributed to the data. SEC and FC performed data analysis and drafted the manuscript. All authors reviewed the draft manuscript, contributed to important intellectual content, and approved the final manuscript.</p></span><span id="sec0016" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0023">Data availability statement</span><p id="para0022" class="elsevierStylePara elsevierViewall">Data of this study will be available to all investigators of this study. Data sharing to colleagues outside the study group may be considered upon reasonable request and has to be approved by all investigators of this study.</p></span><span id="sec0016a" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0024">Declaration of interest</span><p id="para0027" class="elsevierStylePara elsevierViewall">WKC has served as a consultant for Abbvie, Boehringer Ingelheim and Novo Nordisk; and a speaker for Viatris and Hisky Medical. The other authors have no conflict of interest to declare.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:12 [ 0 => array:3 [ "identificador" => "xres1894982" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abss0001" "titulo" => "Introduction and Objectives" ] 1 => array:2 [ "identificador" => "abss0002" "titulo" => "Material and Methods" ] 2 => array:2 [ "identificador" => "abss0003" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abss0004" "titulo" => "Conclusions" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1639690" "titulo" => "Keywords" ] 2 => array:2 [ "identificador" => "xpalclavsec1639689" "titulo" => "Abbreviations" ] 3 => array:2 [ "identificador" => "sec0001" "titulo" => "Introduction" ] 4 => array:3 [ "identificador" => "sec0002" "titulo" => "Material and Methods" "secciones" => array:5 [ 0 => array:2 [ "identificador" => "sec0003" "titulo" => "Calculation of the Hepamet fibrosis score and other fibrosis scores" ] 1 => array:2 [ "identificador" => "sec0004" "titulo" => "Liver biopsy and histological assessment" ] 2 => array:2 [ "identificador" => "sec0005" "titulo" => "Transient elastography" ] 3 => array:2 [ "identificador" => "sec0006" "titulo" => "Statistical analysis" ] 4 => array:2 [ "identificador" => "sec0007" "titulo" => "Ethical statement" ] ] ] 5 => array:3 [ "identificador" => "sec0008" "titulo" => "Results" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "sec0009" "titulo" => "Patient characteristics" ] 1 => array:2 [ "identificador" => "sec0010" "titulo" => "Hepamet fibrosis score" ] 2 => array:2 [ "identificador" => "sec0011" "titulo" => "Comparing the Hepamet fibrosis score and other scores for advanced liver fibrosis" ] 3 => array:2 [ "identificador" => "sec0012" "titulo" => "Combining the Hepamet fibrosis score and liver stiffness measurement for assessment of advanced liver fibrosis" ] ] ] 6 => array:2 [ "identificador" => "sec0013" "titulo" => "Discussion" ] 7 => array:2 [ "identificador" => "sec0014" "titulo" => "Conclusions" ] 8 => array:2 [ "identificador" => "sec0015" "titulo" => "Author contributions" ] 9 => array:2 [ "identificador" => "sec0016" "titulo" => "Data availability statement" ] 10 => array:2 [ "identificador" => "sec0016a" "titulo" => "Declaration of interest" ] 11 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2022-09-20" "fechaAceptado" => "2022-11-24" "PalabrasClave" => array:1 [ "en" => array:2 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1639690" "palabras" => array:3 [ 0 => "Non-alcoholic fatty liver disease" 1 => "Metabolic dysfunction-associated fatty liver disease" 2 => "Advanced liver fibrosis" ] ] 1 => array:4 [ "clase" => "abr" "titulo" => "Abbreviations" "identificador" => "xpalclavsec1639689" "palabras" => array:14 [ 0 => "ALT" 1 => "AST" 2 => "AUROC" 3 => "BMI" 4 => "CK18" 5 => "FIB-4" 6 => "HbA1c" 7 => "HDL" 8 => "HFS" 9 => "HOMA-IR" 10 => "MAFLD" 11 => "NAFLD" 12 => "NASH" 13 => "NFS" ] ] ] ] "tieneResumen" => true "resumen" => array:1 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abss0001" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0002">Introduction and Objectives</span><p id="spara008" class="elsevierStyleSimplePara elsevierViewall">The Hepamet fibrosis score was introduced for the diagnosis of advanced liver fibrosis in patients with non-alcoholic fatty liver disease (NAFLD). To date, external validation is limited, and its utility in combination with liver stiffness measurement (LSM) has not been explored.</p></span> <span id="abss0002" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0003">Material and Methods</span><p id="spara009" class="elsevierStyleSimplePara elsevierViewall">This is a cross-sectional study on NAFLD patients who had a liver biopsy and LSM on the same day. The diagnostic performance of the Hepamet fibrosis score was evaluated using the area under the receiver operating characteristic curve (AUROC).</p></span> <span id="abss0003" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0004">Results</span><p id="spara010" class="elsevierStyleSimplePara elsevierViewall">The data for 196 patients were analyzed (mean age 50 ± 11 years old, 50% men, 56.6% Malay, 27.6% Chinese, 15.8% Indian, 67.9% NASH, 15.8% advanced liver fibrosis). The AUROC of Hepamet fibrosis score for the diagnosis of advanced liver fibrosis was 0.85 (95% CI, 0.80 – 0.91). Using the <0.12 and ≥0.47 cut-offs from the original study, the sensitivity, specificity, positive predictive value, negative predictive value, the proportion of indeterminate results and misclassification rate were 81.8%, 91.8%, 47.4%, 98.2%, 32.1% and 6.1%, respectively. Using LSM <10 kPa and ≥15 kPa for the diagnosis of absence and presence of advanced liver fibrosis, respectively, in patients with Hepamet fibrosis score ≥0.47 (i.e., the two-step approach) reduced indeterminate results and misclassification to 16.1% and 3.6%, respectively.</p></span> <span id="abss0004" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="cesectitle0005">Conclusions</span><p id="spara011" class="elsevierStyleSimplePara elsevierViewall">We found the Hepamet fibrosis score to have good diagnostic accuracy in a population that was largely unrepresented in earlier work and demonstrated its utility in a two-step approach with LSM for the diagnosis of advanced liver fibrosis.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abss0001" "titulo" => "Introduction and Objectives" ] 1 => array:2 [ "identificador" => "abss0002" "titulo" => "Material and Methods" ] 2 => array:2 [ "identificador" => "abss0003" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abss0004" "titulo" => "Conclusions" ] ] ] ] "apendice" => array:1 [ 0 => array:1 [ "seccion" => array:1 [ 0 => array:4 [ "apendice" => "<p id="para0023a" class="elsevierStylePara elsevierViewall"><elsevierMultimedia ident="ecom0001"></elsevierMultimedia><elsevierMultimedia ident="ecom0002"></elsevierMultimedia><elsevierMultimedia ident="ecom0003"></elsevierMultimedia><elsevierMultimedia ident="ecom0004"></elsevierMultimedia></p>" "etiqueta" => "Appendix" "titulo" => "Supplementary materials" "identificador" => "sec0020" ] ] ] ] "multimedia" => array:10 [ 0 => array:8 [ "identificador" => "fig0001" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1489 "Ancho" => 1500 "Tamanyo" => 84112 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0001" "detalle" => "Fig " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara001" class="elsevierStyleSimplePara elsevierViewall">The receiver operating characteristics curve of the Hepamet fibrosis score, Fibrosis-4 score and NAFLD fibrosis score for the diagnosis of advanced liver fibrosis.</p>" ] ] 1 => array:8 [ "identificador" => "fig0002" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 3835 "Ancho" => 3000 "Tamanyo" => 488342 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0002" "detalle" => "Fig " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara002" class="elsevierStyleSimplePara elsevierViewall">Distribution of patients in the different diagnostic groups when using the two-step approach for the diagnosis of advanced liver fibrosis.</p>" ] ] 2 => array:8 [ "identificador" => "fig0003" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 3713 "Ancho" => 3000 "Tamanyo" => 485861 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0003" "detalle" => "Fig " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spara003" class="elsevierStyleSimplePara elsevierViewall">Distribution of patients in the different diagnostic groups when using the Hepamet fibrosis score and liver stiffness measurement for all patients for the diagnosis of advanced liver fibrosis.</p>" ] ] 3 => array:8 [ "identificador" => "tbl0001" "etiqueta" => "Table 1" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0004" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><a name="en0001"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0002"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Overall population, n = 196 \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0003"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">With advanced fibrosis, n = 31 \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0004"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Without advanced fibrosis, n = 165 \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0005"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">p value \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><a name="en0006"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Age \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0007"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">50 ± 11 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0008"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">58 ± 6 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0009"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">48 ± 11 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0010"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0011"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Male, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0012"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">98 (50) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0013"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">12 (38.7) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0014"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">86 (52.1) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0015"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.171 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0016"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Ethnicity \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0017"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0018"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0019"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0020"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0021"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top"><span class="elsevierStyleHsp" style=""></span> Malay, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0022"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">111 (56.6) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0023"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">12 (38.7) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0024"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">99 (60) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0025"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.076 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0026"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top"><span class="elsevierStyleHsp" style=""></span> Chinese, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0027"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">54 (27.6) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0028"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">13 (41.9) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0029"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">41 (24.8) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0030"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0031"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top"><span class="elsevierStyleHsp" style=""></span> Indian, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0032"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">31 (15.8) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0033"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">6 (19.4) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0034"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">25 (15.2) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0035"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0036"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">History of type 2 diabetes, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0037"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">90 (45.9) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0038"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">25 (80.6) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0039"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">65 (39.4) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0040"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0041"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">History of hypertension, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0042"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">113 (57.7) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0043"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">27 (87.1) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0044"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">86 (52.1) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0045"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0046"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">History of dyslipidemia, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0047"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">156 (79.6) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0048"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">29 (93.5) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0049"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">127 (77) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0050"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.049 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0051"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">BMI, kg per m<span class="elsevierStyleSup">2</span> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0052"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">29.8 ± 4.5 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0053"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">30.8 ± 5.7 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0054"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">29.7 ± 4.3 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0055"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.292 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0056"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Obesity, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0057"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">169 (86.2) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0058"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">27 (87.1) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0059"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">142 (86.1) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0060"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">1.000 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0061"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Waist circumference, cm \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0062"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">98 ± 10 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0063"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">100 ± 11 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0064"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">97 ± 10 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0065"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.219 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0066"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Central obesity, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0067"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">183 (93.4) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0068"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">31 (100) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0069"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">152 (92.1) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0070"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.228 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0071"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">SBP, mmHg \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0072"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">139 ± 17 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0073"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">138 ± 19 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0074"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">139 ± 17 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0075"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.651 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0076"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">DBP, mmHg \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0077"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">86 ± 13 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0078"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">83 ± 10 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0079"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">86 ± 13 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0080"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.109 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0081"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Hypertension, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0082"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">147 (75) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0083"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">23 (74.2) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0084"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">124 (75.2) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0085"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.910 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0086"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Fasting glucose, mmol/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0087"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">5.7 (5.0 – 6.9) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0088"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">6.8 (5.5 – 8.3) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0089"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">5.6 (4.9 – 6.6) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0090"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0091"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">HbA1c, % \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0092"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">6.0 (5.5 – 6.9) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0093"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">6.9 (5.8 – 7.5) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0094"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">5.9 (5.5 – 6.7) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0095"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.007 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0096"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Type 2 diabetes<a class="elsevierStyleCrossRef" href="#tb1fn1">*</a>, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0097"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">102 (52.0) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0098"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">25 (80.6) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0099"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">77 (46.7) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0100"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0101"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Elevated glycemia<a class="elsevierStyleCrossRef" href="#tb1fn2"><span class="elsevierStyleSup">⁎⁎</span></a>, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0102"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">126 (64.3) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0103"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">27 (87.1) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0104"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">99 (60.0) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0105"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.004 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0106"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Insulin, mlU/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0107"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">21.1 (15.5 – 32.5) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0108"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">25.6 (18.2 – 40.1) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0109"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">20.1 (14.7 – 31.9) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0110"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.015 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0111"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">HOMA-IR \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0112"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">6.08 (3.87 – 9.38) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0113"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">8.14 (6.40 – 12.15) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0114"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">5.31 (3.63 – 8.84) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0115"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0116"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Triglycerides, mmol/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0117"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">1.6 (1.2 – 2.0) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0118"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">1.5 (1.1 – 1.7) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0119"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">1.6 (1.3 – 2.0) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0120"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.126 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0121"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Elevated triglycerides, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0122"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">84 (42.9) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0123"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">10 (32.3) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0124"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">74 (44.8) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0125"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.194 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0126"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Total cholesterol, mmol/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0127"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">4.9 (4.2 – 5.6) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0128"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">4.9 (4.0 – 5.4) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0129"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">4.9 (4.3 – 5.7) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0130"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.233 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0131"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">HDL cholesterol, mmol/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0132"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">1.2 (1.0 – 1.3) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0133"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">1.2 (1.0 – 1.4) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0134"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">1.2 (1.0 – 1.3) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0135"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.138 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0136"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Low HDL cholesterol, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0137"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">104 (53.1) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0138"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">18 (58.1) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0139"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">86 (52.1) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0140"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.543 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0141"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">LDL cholesterol, mmol/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0142"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">2.9 (2.4 – 3.6) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0143"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">2.6 (2.0 – 3.5) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0144"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">3.0 (2.4 – 3.7) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0145"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.136 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0146"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Metabolic syndrome, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0147"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">174 (88.8) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0148"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">30 (96.8) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0149"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">144 (87.3) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0150"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.211 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0151"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Albumin, g/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0152"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">43 (41 – 46) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0153"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">42 (39 – 46) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0154"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">43 (41 – 46) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0155"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.049 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0156"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Total bilirubin, µmol/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0157"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">11 (8 – 15) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0158"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">11 (9 – 16) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0159"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">11 (8 – 15) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0160"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.369 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0161"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">ALP, U/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0162"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">83 (66 – 96) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0163"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">90 (74 – 104) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0164"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">82 (66 – 96) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0165"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.125 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0166"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">ALT, U/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0167"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">67 (44 – 105) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0168"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">75 (47 – 110) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0169"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">65 (44 – 103) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0170"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.460 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0171"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">AST, U/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0172"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">39 (29 – 61) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0173"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">61 (36 – 78) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0174"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">37 (28 – 54) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0175"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0176"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">GGT, U/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0177"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">77 (41 – 125) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0178"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">116 (79 – 171) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0179"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">68 (40 – 111) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0180"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0181"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Platelet count, x 10<span class="elsevierStyleSup">9</span>/L \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0182"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">278 (232 – 314) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0183"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">225 (188 – 260) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0184"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">283 (248 – 319) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0185"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0186"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Liver biopsy length, mm \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0187"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">15 ± 4 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0188"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">15 ± 3 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0189"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">15 ± 4 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0190"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.324 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0191"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Number of portal tracts, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0192"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">8 ± 3 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0193"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">10 ± 3 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0194"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">8 ± 3 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0195"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0196"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">NASH \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0197"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">133 (67.9) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0198"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">29 (93.5) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0199"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">104 (63) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0200"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0201"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Fibrosis stage \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0202"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0203"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0204"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0205"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0206"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top"><span class="elsevierStyleHsp" style=""></span> 0, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0207"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">68 (34.7) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0208"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0 (0) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0209"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">68 (41.2) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0210"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0211"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top"><span class="elsevierStyleHsp" style=""></span> 1, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0212"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">82 (41.8) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0213"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0 (0) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0214"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">82 (49.7) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0215"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0216"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top"><span class="elsevierStyleHsp" style=""></span> 2, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0217"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">15 (7.7) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0218"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0 (0) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0219"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">15 (9.1) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0220"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0221"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top"><span class="elsevierStyleHsp" style=""></span> 3, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0222"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">25 (12.8) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0223"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">25 (80.6) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0224"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0 (0) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0225"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0226"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top"><span class="elsevierStyleHsp" style=""></span> 4, n (%) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0227"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">6 (3.1) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0228"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">6 (19.4) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0229"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0 (0) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0230"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0231"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Hepamet fibrosis score \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0232"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.10 (0.04 – 0.21) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0233"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.28 (0.21 – 0.48) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0234"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.06 (0.03 – 0.20) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0235"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0236"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Fibrosis-4 score \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0237"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.90 (0.60 – 1.29) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0238"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">1.77 (1.29 – 2.13) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0239"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.82 (0.57 – 1.14) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0240"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0241"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">NAFLD fibrosis score \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0242"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">-2.105 (-3.075 – -1.161) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0243"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">-0.568 (-1.626 – 0.162) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0244"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">-2.271 (-3.270 – -1.484) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0245"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><0.001 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3167469.png" ] ] ] "notaPie" => array:2 [ 0 => array:3 [ "identificador" => "tb1fn1" "etiqueta" => "⁎" "nota" => "<p class="elsevierStyleNotepara" id="notep0001">Type 2 diabetes was considered present when there was a self-reported history of type 2 diabetes, fasting glucose was ≥7.0mmol/L, HbA1c was ≥6.5 %, or when the patient was on anti-diabetic agent.</p>" ] 1 => array:3 [ "identificador" => "tb1fn2" "etiqueta" => "⁎⁎" "nota" => "<p class="elsevierStyleNotepara" id="notep0002">Elevated glycemia includes patients with impaired fasting glucose (fasting glucose ≥5.6 mmol/L) and patients with type 2 diabetes</p> <p class="elsevierStyleNotepara" id="notep0003">BMI, body mass index; HbA1c, glycated hemoglobin; HDL, high-density lipoprotein; LDL, low-density lipoprotein; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma glutamyl transferase; NASH, non-alcoholic steatohepatitis; NAFLD, non-alcoholic fatty liver disease.</p>" ] ] ] "descripcion" => array:1 [ "en" => "<p id="spara004" class="elsevierStyleSimplePara elsevierViewall">Patient characteristics.</p>" ] ] 4 => array:8 [ "identificador" => "tbl0002" "etiqueta" => "Table 2" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0005" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:1 [ "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><a name="en0246"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Hepamet fibrosis score \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0247"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">No advanced fibrosis \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0248"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Advanced fibrosis \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0249"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Total \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><a name="en0250"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><0.12 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0251"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">112 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0252"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">2 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0253"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">114 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0254"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">0.12 – 0.46 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0255"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">43 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0256"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">20 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0257"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">63 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0258"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">≥0.47 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0259"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">10 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0260"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">9 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0261"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">19 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0262"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Total \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0263"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">165 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0264"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">31 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0265"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">196 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0266"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0267"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0268"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0269"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0270"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Fibrosis-4 score \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0271"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">No advanced fibrosis \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0272"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Advanced fibrosis \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0273"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Total \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0274"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><1.3 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0275"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">140 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0276"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">8 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0277"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">148 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0278"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">1.3-2.66 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0279"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">23 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0280"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">22 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0281"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">45 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0282"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">≥2.67 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0283"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">2 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0284"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">1 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0285"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0286"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Total \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0287"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">165 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0288"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">31 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0289"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">196 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0290"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0291"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0292"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0293"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"> \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0294"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">NAFLD fibrosis score \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0295"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">No advanced fibrosis \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0296"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Advanced fibrosis \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0297"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Total \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0298"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top"><-1.455 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0299"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">125 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0300"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">8 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0301"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">133 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0302"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">-1.455 – 0.675 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0303"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">39 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0304"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">21 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0305"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">60 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0306"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">>0.675 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0307"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">1 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0308"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">2 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0309"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">3 \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0310"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">Total \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0311"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">165 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0312"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">31 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0313"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">196 \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3167468.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spara005" class="elsevierStyleSimplePara elsevierViewall">The distribution of patients in the different diagnostic groups using the Hepamet fibrosis score, the Fibrosis-4 score and the NAFLD fibrosis score.</p>" ] ] 5 => array:8 [ "identificador" => "tbl0003" "etiqueta" => "Table 3" "tipo" => "MULTIMEDIATABLA" "mostrarFloat" => true "mostrarDisplay" => false "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0006" "detalle" => "Table " "rol" => "short" ] ] "tabla" => array:2 [ "leyenda" => "<p id="spara007" class="elsevierStyleSimplePara elsevierViewall">HFS, Hepamet fibrosis score; FIB-4, Fibrosis-4 score; NFS, NAFLD fibrosis score; LSM, liver stiffness measurement.</p>" "tablatextoimagen" => array:1 [ 0 => array:2 [ "tabla" => array:1 [ 0 => """ <table border="0" frame="\n \t\t\t\t\tvoid\n \t\t\t\t" class=""><thead title="thead"><tr title="table-row"><a name="en0314"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black"> \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0315"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Sensitivity, % (n/N) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0316"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Specificity, % (n/N) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0317"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Positive predictive value, % (n/N) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0318"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Negative predictive value, % (n/N) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0319"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Misclassification rate, % (n/N) \t\t\t\t\t\t\n \t\t\t\t\t\t</th><a name="en0320"></a><th class="td" title="\n \t\t\t\t\ttable-head\n \t\t\t\t " align="" valign="top" scope="col" style="border-bottom: 2px solid black">Indeterminate / discordant results, % (n/N) \t\t\t\t\t\t\n \t\t\t\t\t\t</th></tr></thead><tbody title="tbody"><tr title="table-row"><a name="en0321"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">HFS \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0322"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">81.8 (9/11) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0323"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">91.8 (112/122) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0324"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">47.4 (9/19) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0325"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">98.2 (112/114) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0326"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">6.1 (12/196) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0327"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">32.1 (63/196) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0328"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">FIB-4 \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0329"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">11.1 (1/9) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0330"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">98.6 (140/142) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0331"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">33.3 (1/3) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0332"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">94.6 (140/148) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0333"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">5.1 (10/196) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0334"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">23.0 (45/196) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0335"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">NFS \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0336"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">20.0 (2/10) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0337"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">99.2 (125/126) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0338"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">66.7 (2/3) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0339"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">94.0 (125/133) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0340"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">4.6 (9/196) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0341"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">30.6 (60/196) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0342"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Two-step approach with HFS and LSM \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0343"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">70.6% (12/17) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0344"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">98.6 (143/145) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0345"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">85.7 (12/14) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0346"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">96.6 (143/148) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0347"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">3.6 (7/193) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0348"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">16.1 (31/193) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0349"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Two-step approach with FIB-4 and LSM \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0350"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">60.0 (12/20) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0351"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">100.0 (155/155) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0352"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">100.0 (12/12) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0353"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">95.1 (155/163) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0354"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">4.1 (8/193) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0355"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">9.3 (18/193) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0356"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Two-step approach with NFS and LSM \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0357"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">45.0 (9/20) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0358"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">99.3 (149/150) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0359"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">90.0 (9/10) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0360"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">93.1 (149/160) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0361"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">6.2 (12/193) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0362"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">11.9 (23/193) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0363"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Both HFS and LSM \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0364"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">75.0 (12/16) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0365"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">98.4 (125/127) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0366"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">85.7 (12/14) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0367"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">96.9 (125/129) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0368"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">3.1 (6/193) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0369"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">25.9 (50/193) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0370"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Both FIB-4 and LSM \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0371"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">75.0 (12/16) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0372"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">100.0 (130/130) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0373"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">100.0 (12/12) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0374"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">97.0 (130/134) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0375"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">2.1 (4/193) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0376"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">24.4 (47/193) \t\t\t\t\t\t\n \t\t\t\t</td></tr><tr title="table-row"><a name="en0377"></a><td class="td-with-role" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t ; entry_with_role_rowhead " align="" valign="top">Both NFS and LSM \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0378"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">69.2 (9/13) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0379"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">99.2 (131/132) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0380"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">90.0 (9/10) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0381"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">97.0 (131/135) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0382"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">2.6 (5/193) \t\t\t\t\t\t\n \t\t\t\t</td><a name="en0383"></a><td class="td" title="\n \t\t\t\t\ttable-entry\n \t\t\t\t " align="" valign="top">24.9 (48/193) \t\t\t\t\t\t\n \t\t\t\t</td></tr></tbody></table> """ ] "imagenFichero" => array:1 [ 0 => "xTab3167467.png" ] ] ] ] "descripcion" => array:1 [ "en" => "<p id="spara006" class="elsevierStyleSimplePara elsevierViewall">Sensitivity, specificity, positive predictive value, negative predictive value, misclassification rate and proportion of patients with indeterminate / discordants results when using the Hepamet fibrosis score, Fibrosis-4 score and NAFLD fibrosis score alone, or in combination with liver stiffness measurement in a two-step approach or both tests for all patients.</p>" ] ] 6 => array:6 [ "identificador" => "ecom0001" "tipo" => "MULTIMEDIAECOMPONENTE" "mostrarFloat" => false "mostrarDisplay" => true "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0007" "detalle" => "Image, application " "rol" => "short" ] ] "Ecomponente" => array:2 [ "fichero" => "mmc1.pdf" "ficheroTamanyo" => 221171 ] ] 7 => array:6 [ "identificador" => "ecom0002" "tipo" => "MULTIMEDIAECOMPONENTE" "mostrarFloat" => false "mostrarDisplay" => true "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0008" "detalle" => "Image, application " "rol" => "short" ] ] "Ecomponente" => array:2 [ "fichero" => "mmc2.pdf" "ficheroTamanyo" => 217702 ] ] 8 => array:6 [ "identificador" => "ecom0003" "tipo" => "MULTIMEDIAECOMPONENTE" "mostrarFloat" => false "mostrarDisplay" => true "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0009" "detalle" => "Image, application " "rol" => "short" ] ] "Ecomponente" => array:2 [ "fichero" => "mmc3.pdf" "ficheroTamanyo" => 221369 ] ] 9 => array:6 [ "identificador" => "ecom0004" "tipo" => "MULTIMEDIAECOMPONENTE" "mostrarFloat" => false "mostrarDisplay" => true "detalles" => array:1 [ 0 => array:3 [ "identificador" => "alt0010" "detalle" => "Image, application " "rol" => "short" ] ] "Ecomponente" => array:2 [ "fichero" => "mmc4.pdf" "ficheroTamanyo" => 215428 ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "cebibsec1" "bibliografiaReferencia" => array:23 [ 0 => array:3 [ "identificador" => "bib0001" "etiqueta" => "[1]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Global epidemiology of non-alcoholic fatty liver disease—meta-analytic assessment of prevalence, incidence, and outcomes" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "ZM Younossi" 1 => "AB Koenig" 2 => "D Abdelatif" 3 => "Y Fazel" 4 => "L Henry" 5 => "M. Wymer" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/hep.28431" "Revista" => array:6 [ "tituloSerie" => "Hepatology" "fecha" => "2016" "volumen" => "64" "paginaInicial" => "73" "paginaFinal" => "84" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/26707365" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0002" "etiqueta" => "[2]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Increased risk of mortality by fibrosis stage in non-alcoholic fatty liver disease: Systematic review and meta-analysis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "PS Dulai" 1 => "S Singh" 2 => "J Patel" 3 => "M Soni" 4 => "LJ Prokop" 5 => "Z Younossi" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/hep.29085" "Revista" => array:6 [ "tituloSerie" => "Hepatology" "fecha" => "2017" "volumen" => "65" "paginaInicial" => "1557" "paginaFinal" => "1565" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28130788" "web" => "Medline" ] ] ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0003" "etiqueta" => "[3]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A novel 2-step approach combining the NAFLD fibrosis score and liver stiffness measurement for predicting advanced fibrosis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "WK Chan" 1 => "NR Nik Mustapha" 2 => "S Mahadeva" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s12072-014-9596-7" "Revista" => array:6 [ "tituloSerie" => "Hepatol Int" "fecha" => "2015" "volumen" => "9" "paginaInicial" => "594" "paginaFinal" => "602" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25788185" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0004" "etiqueta" => "[4]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Optimizing use of nonalcoholic fatty liver disease fibrosis score, fibrosis-4 score, and liver stiffness measurement to identify patients with advanced fibrosis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "WK Chan" 1 => "S Treeprasertsuk" 2 => "GB Goh" 3 => "JG Fan" 4 => "MJ Song" 5 => "P Charatcharoenwitthaya" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cgh.2019.03.006" "Revista" => array:6 [ "tituloSerie" => "Clin Gastroenterol Hepatol" "fecha" => "2019" "volumen" => "17" "paginaInicial" => "2570" "paginaFinal" => "2580" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30876959" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0005" "etiqueta" => "[5]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Development and validation of hepamet fibrosis scoring system-a simple, noninvasive test to identify patients with nonalcoholic fatty liver disease with advanced fibrosis" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J Ampuero" 1 => "R Pais" 2 => "R Aller" 3 => "R Gallego-Duran" 4 => "J Crespo" 5 => "C Garcia-Monzon" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cgh.2019.05.051" "Revista" => array:6 [ "tituloSerie" => "Clin Gastroenterol Hepatol" "fecha" => "2020" "volumen" => "18" "paginaInicial" => "216" "paginaFinal" => "225" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/31195161" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0006" "etiqueta" => "[6]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A randomized trial of silymarin for the treatment of nonalcoholic steatohepatitis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "WK Chan" 1 => "NR Nik Mustapha" 2 => "S Mahadeva" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cgh.2017.04.016" "Revista" => array:6 [ "tituloSerie" => "Clin Gastroenterol Hepatol" "fecha" => "2017" "volumen" => "15" "paginaInicial" => "1940" "paginaFinal" => "1949" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28419855" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0007" "etiqueta" => "[7]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The diagnosis and management of non-alcoholic fatty liver disease: practice guidance from the American association for the study of liver diseases" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "N Chalasani" 1 => "Z Younossi" 2 => "JE Lavine" 3 => "M Charlton" 4 => "K Cusi" 5 => "M Rinella" 6 => "SA Harrison" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/hep.29367" "Revista" => array:6 [ "tituloSerie" => "Hepatology" "fecha" => "2018" "volumen" => "67" "paginaInicial" => "328" "paginaFinal" => "357" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/28714183" "web" => "Medline" ] ] ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0008" "etiqueta" => "[8]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The new BMI criteria for asians by the regional office for the western pacific region of WHO are suitable for screening of overweight to prevent metabolic syndrome in elder Japanese workers" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "E Anuurad" 1 => "K Shiwaku" 2 => "A Nogi" 3 => "K Kitajima" 4 => "B Enkhmaa" 5 => "K Shimono" 6 => "Y. Yamane" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1539/joh.45.335" "Revista" => array:6 [ "tituloSerie" => "J Occup Health" "fecha" => "2003" "volumen" => "45" "paginaInicial" => "335" "paginaFinal" => "343" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/14676412" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0009" "etiqueta" => "[9]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The metabolic syndrome–a new worldwide definition" "autores" => array:1 [ 0 => array:3 [ "colaboracion" => "Group IDFETFC" "etal" => false "autores" => array:3 [ 0 => "KG Alberti" 1 => "P Zimmet" 2 => "J Shaw" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/S0140-6736(05)67402-8" "Revista" => array:6 [ "tituloSerie" => "Lancet" "fecha" => "2005" "volumen" => "366" "paginaInicial" => "1059" "paginaFinal" => "1062" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/16182882" "web" => "Medline" ] ] ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0010" "etiqueta" => "[10]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: executive summary: a report of the american college of cardiology/American heart association task force on clinical practice guidelines" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "PK Whelton" 1 => "RM Carey" 2 => "WS Aronow" 3 => "DE Casey Jr." 4 => "KJ Collins" 5 => "C Dennison Himmelfarb" 6 => "SM DePalma" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1161/HYP.0000000000000065" "Revista" => array:6 [ "tituloSerie" => "Hypertension" "fecha" => "2018" "volumen" => "71" "paginaInicial" => "1269" "paginaFinal" => "1324" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29133354" "web" => "Medline" ] ] ] ] ] ] ] ] 10 => array:3 [ "identificador" => "bib0011" "etiqueta" => "[11]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Classification and diagnosis of diabetes: standards of medical care in diabetes-2021" "autores" => array:1 [ 0 => array:2 [ "colaboracion" => "American Diabetes A. 2" "etal" => false ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.2337/dc21-S002" "Revista" => array:6 [ "tituloSerie" => "Diabetes Care" "fecha" => "2021" "volumen" => "44" "paginaInicial" => "S15" "paginaFinal" => "S33" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33298413" "web" => "Medline" ] ] ] ] ] ] ] ] 11 => array:3 [ "identificador" => "bib0012" "etiqueta" => "[12]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Consensus statement by the american association of clinical endocrinologists and american college of endocrinology on the management of dyslipidemia and prevention of cardiovascular disease algorithm - 2020 executive summary" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "Y Handelsman" 1 => "PS Jellinger" 2 => "CK Guerin" 3 => "ZT Bloomgarden" 4 => "EA Brinton" 5 => "MJ Budoff" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.4158/CS-2020-0490" "Revista" => array:6 [ "tituloSerie" => "Endocr Pract" "fecha" => "2020" "volumen" => "26" "paginaInicial" => "1196" "paginaFinal" => "1224" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33471721" "web" => "Medline" ] ] ] ] ] ] ] ] 12 => array:3 [ "identificador" => "bib0013" "etiqueta" => "[13]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparison of noninvasive markers of fibrosis in patients with non-alcoholic fatty liver disease" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:7 [ 0 => "AG Shah" 1 => "A Lydecker" 2 => "K Murray" 3 => "BN Tetri" 4 => "MJ Contos" 5 => "AJ Sanyal" 6 => "N. Nash Clinical Research" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.cgh.2009.05.033" "Revista" => array:6 [ "tituloSerie" => "Clin Gastroenterol Hepatol" "fecha" => "2009" "volumen" => "7" "paginaInicial" => "1104" "paginaFinal" => "1112" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19523535" "web" => "Medline" ] ] ] ] ] ] ] ] 13 => array:3 [ "identificador" => "bib0014" "etiqueta" => "[14]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The NAFLD fibrosis score: a noninvasive system that identifies liver fibrosis in patients with NAFLD" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "P Angulo" 1 => "JM Hui" 2 => "G Marchesini" 3 => "E Bugianesi" 4 => "J George" 5 => "GC Farrell" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/hep.21496" "Revista" => array:6 [ "tituloSerie" => "Hepatology" "fecha" => "2007" "volumen" => "45" "paginaInicial" => "846" "paginaFinal" => "854" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/17393509" "web" => "Medline" ] ] ] ] ] ] ] ] 14 => array:3 [ "identificador" => "bib0015" "etiqueta" => "[15]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Design and validation of a histological scoring system for non-alcoholic fatty liver disease" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "DE Kleiner" 1 => "EM Brunt" 2 => "M Van Natta" 3 => "C Behling" 4 => "MJ Contos" 5 => "OW Cummings" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/hep.20701" "Revista" => array:6 [ "tituloSerie" => "Hepatology" "fecha" => "2005" "volumen" => "41" "paginaInicial" => "1313" "paginaFinal" => "1321" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15915461" "web" => "Medline" ] ] ] ] ] ] ] ] 15 => array:3 [ "identificador" => "bib0016" "etiqueta" => "[16]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Reliability of the non-alcoholic steatohepatitis clinical research network and steatosis activity fibrosis histological scoring systems" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "HH Leung" 1 => "P Puspanathan" 2 => "AW Chan" 3 => "NR Nik Mustapha" 4 => "VW Wong" 5 => "WK Chan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/jgh.15843" "Revista" => array:6 [ "tituloSerie" => "J Gastroenterol Hepatol" "fecha" => "2022" "volumen" => "37" "paginaInicial" => "1131" "paginaFinal" => "1138" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/35362158" "web" => "Medline" ] ] ] ] ] ] ] ] 16 => array:3 [ "identificador" => "bib0017" "etiqueta" => "[17]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Determination of reliability criteria for liver stiffness evaluation by transient elastography" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J Boursier" 1 => "JP Zarski" 2 => "V de Ledinghen" 3 => "MC Rousselet" 4 => "N Sturm" 5 => "B Lebail" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1002/hep.25993" "Revista" => array:6 [ "tituloSerie" => "Hepatology" "fecha" => "2013" "volumen" => "57" "paginaInicial" => "1182" "paginaFinal" => "1191" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/22899556" "web" => "Medline" ] ] ] ] ] ] ] ] 17 => array:3 [ "identificador" => "bib0018" "etiqueta" => "[18]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Hepamet fibrosis score in nonalcoholic fatty liver disease patients in Mexico: lower than expected positive predictive value" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:7 [ 0 => "F Higuera-de-la-Tijera" 1 => "J Cordova-Gallardo" 2 => "E Buganza-Torio" 3 => "B Barranco-Fragoso" 4 => "A Torre" 5 => "S Parraguirre-Martinez" 6 => "ME Rojano-Rodriguez" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1007/s10620-020-06821-2" "Revista" => array:6 [ "tituloSerie" => "Dig Dis Sci" "fecha" => "2021" "volumen" => "66" "paginaInicial" => "4501" "paginaFinal" => "4507" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/33428035" "web" => "Medline" ] ] ] ] ] ] ] ] 18 => array:3 [ "identificador" => "bib0019" "etiqueta" => "[19]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "MACK-3 (combination of hoMa, Ast and CK18): a promising novel biomarker for fibrotic non-alcoholic steatohepatitis" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:6 [ 0 => "KH Chuah" 1 => "WNI Wan Yusoff" 2 => "P Sthaneshwar" 3 => "NR Nik Mustapha" 4 => "S Mahadeva" 5 => "WK Chan" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/liv.14084" "Revista" => array:6 [ "tituloSerie" => "Liver Int" "fecha" => "2019" "volumen" => "39" "paginaInicial" => "1315" "paginaFinal" => "1324" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/30825254" "web" => "Medline" ] ] ] ] ] ] ] ] 19 => array:3 [ "identificador" => "bib0020" "etiqueta" => "[20]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Optimal cut-offs of homeostasis model assessment of insulin resistance (HOMA-IR) to identify dysglycemia and type 2 diabetes mellitus: a 15-year prospective study in Chinese" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "CH Lee" 1 => "AZ Shih" 2 => "YC Woo" 3 => "CH Fong" 4 => "OY Leung" 5 => "E Janus" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1371/journal.pone.0163424" "Revista" => array:3 [ "tituloSerie" => "PLoS One" "fecha" => "2016" "volumen" => "11" ] ] ] ] ] ] 20 => array:3 [ "identificador" => "bib0021" "etiqueta" => "[21]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Sampling variability of liver biopsy in non-alcoholic fatty liver disease" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "V Ratziu" 1 => "F Charlotte" 2 => "A Heurtier" 3 => "S Gombert" 4 => "P Giral" 5 => "E Bruckert" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1053/j.gastro.2005.03.084" "Revista" => array:6 [ "tituloSerie" => "Gastroenterology" "fecha" => "2005" "volumen" => "128" "paginaInicial" => "1898" "paginaFinal" => "1906" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15940625" "web" => "Medline" ] ] ] ] ] ] ] ] 21 => array:3 [ "identificador" => "bib0022" "etiqueta" => "[22]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Suboptimal reliability of liver biopsy evaluation has implications for randomized clinical trials" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "BA Davison" 1 => "SA Harrison" 2 => "G Cotter" 3 => "N Alkhouri" 4 => "A Sanyal" 5 => "C Edwards" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.jhep.2020.06.025" "Revista" => array:6 [ "tituloSerie" => "J Hepatol" "fecha" => "2020" "volumen" => "73" "paginaInicial" => "1322" "paginaFinal" => "1332" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/32610115" "web" => "Medline" ] ] ] ] ] ] ] ] 22 => array:3 [ "identificador" => "bib0023" "etiqueta" => "[23]" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Percutaneous liver biopsy in clinical practice" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:2 [ 0 => "B Al Knawy" 1 => "M Shiffman" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1111/j.1478-3231.2007.01592.x" "Revista" => array:5 [ "tituloSerie" => "Liver Int" "fecha" => "2007" "volumen" => "27" "paginaInicial" => "1166" "paginaFinal" => "1173" ] ] ] ] ] ] ] ] ] ] "agradecimientos" => array:1 [ 0 => array:2 [ "identificador" => "xack665640" "vista" => "all" ] ] ] "idiomaDefecto" => "en" "url" => "/16652681/0000002800000002/v2_202305072346/S1665268122002307/v2_202305072346/en/main.assets" "Apartado" => array:4 [ "identificador" => "78265" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original Articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/16652681/0000002800000002/v2_202305072346/S1665268122002307/v2_202305072346/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S1665268122002307?idApp=UINPBA00004N" ]
Year/Month | Html | Total | |
---|---|---|---|
2024 November | 13 | 1 | 14 |
2024 October | 113 | 13 | 126 |
2024 September | 115 | 4 | 119 |
2024 August | 71 | 8 | 79 |
2024 July | 114 | 7 | 121 |
2024 June | 69 | 8 | 77 |
2024 May | 76 | 9 | 85 |
2024 April | 107 | 17 | 124 |
2024 March | 118 | 9 | 127 |
2024 February | 116 | 7 | 123 |
2024 January | 107 | 7 | 114 |
2023 December | 99 | 5 | 104 |
2023 November | 100 | 4 | 104 |
2023 October | 115 | 13 | 128 |
2023 September | 63 | 5 | 68 |
2023 August | 32 | 0 | 32 |
2023 July | 23 | 1 | 24 |
2023 June | 42 | 1 | 43 |
2023 May | 49 | 3 | 52 |
2023 April | 42 | 5 | 47 |
2023 March | 5 | 2 | 7 |
2023 February | 12 | 10 | 22 |
2023 January | 0 | 5 | 5 |
2022 December | 0 | 2 | 2 |