metricas
covid
Buscar en
Archivos de la Sociedad Española de Oftalmología (English Edition)
Toda la web
Inicio Archivos de la Sociedad Española de Oftalmología (English Edition) Dry eye is matched by increased intrasubject variability in tear osmolarity as c...
Journal Information
Vol. 94. Issue 7.
Pages 337-342 (July 2019)
Share
Share
Download PDF
More article options
Visits
2
Vol. 94. Issue 7.
Pages 337-342 (July 2019)
Original article
Dry eye is matched by increased intrasubject variability in tear osmolarity as confirmed by machine learning approach
El ojo seco está relacionado a un aumento intrasujeto de la variabilidad de osmolaridad lagrimal confirmado por tecnología de aprendizaje de máquinas
Visits
2
C. Cartesa, D. Lópeza, D. Salinasa, C. Segoviab, C. Ahumadab, N. Pérezb, F. Valenzuelac, N. Lanzad, R.O. López Solíse, V.L. Perezf, P. Zegersg, A. Fuentesg, C. Alarcónh, L. Traipea,
Corresponding author
ltraipe@gmail.com

Corresponding author.
a Centro de la Visión, Filial Clínica Las Condes, Santiago, Chile
b School of Medical Technology, Faculty of Medicine, University of Chile, Independencia, Santiago, Chile
c Fundación Oftalmológica Los Andes, Vitacura, Santiago, Chile
d Bascom Palmer Eye Institute, University of Miami, Miami, FL, United States
e Institute for Biomedical Sciences (Cellular and Molecular Biology), Faculty of Medicine, University of Chile, Independencia, Santiago, Chile
f Duke Eye Center for Ocular Immunology, Duke University School of Medicine, Durham, NC, United States
g College of Engineering and Applied Sciences, Universidad de los Andes, Santiago, Chile
h Private Practice, Santiago, Chile
This item has received
Article information
Abstract
Full Text
Bibliography
Download PDF
Statistics
Tables (3)
Table 1. Demographics of the study population.
Table 2. Comparison of clinical characteristics and ocular surface parameters in control vs. DED subjects.
Table 3. Comparison of osmolarity measurements in control vs. DED subjects.
Show moreShow less
Abstract
Objective

Because of high variability, tear film osmolarity measures have been questioned in dry eye assessment. Understanding the origin of such variability would aid data interpretation. This study aims to evaluate osmolarity variability in a clinical setting.

Material and methods

Twenty dry eyes and 20 control patients were evaluated. Three consecutive osmolarity measurements per eye at 5min intervals were obtained. Variability was represented by the difference between both extreme readings per eye. Machine learning techniques were used to quantify discrimination capacity of tear osmolarity for dry eye.

Results

Mean osmolarities in the control and dry eye groups were 295.1±7.3mOsm/L and 300.6±11.2mOsm/L, respectively (p=0.004). Osmolarity variabilities were 7.5±3.6mOsm/L and 16.7±11.9mOsm/L, for the control and dry eye groups, respectively (p<0.001). Based on osmolarity, a logistic classifier showed an 85% classification accuracy.

Conclusions

In the clinical setting, both mean osmolarity and osmolarity variability in the dry eye group were significantly higher than in the control group. Machine learning techniques showed good classification accuracy. It is concluded that higher variability of tear osmolarity is a dry eye feature.

Keywords:
Dry eye
Osmolarity
Variability
Machine learning
Resumen
Objetivo

La medición de la osmolaridad lagrimal en pacientes con ojo seco ha sido cuestionada debido a su alta variabilidad. El entendimiento del origen de dicha variabilidad ayudaría a la interpretación clínica de los valores obtenidos. Esta investigación evalúa la medición de la variabilidad lagrimal en la práctica clínica.

Material y métodos

Veinte pacientes con ojo seco y 20 controles fueron evaluados. Fueron realizadas 3 mediciones consecutivas de osmolaridad a intervalos de 5min. La variabilidad fue definida como la diferencia entre las mediciones más extremas obtenidas en cada ojo. Se utilizaron técnicas de aprendizaje de máquinas para evaluar la capacidad discriminadora de la osmolaridad lagrimal.

Resultados

La osmolaridad promedio en el grupo control y ojo seco fueron 295,1±7,3mOsm/L y 300,6±11,2mOsm/L, respectivamente (p=0,004). La variabilidad de la osmolaridad lagrimal fue 7,5±3,6mOsm/L en el grupo control y 16,7±11,9mOsm/L en los pacientes con ojo seco (p<0,001). Basado en la osmolaridad, un clasificador logístico obtuvo un 85% de precisión.

Conclusiones

La osmolaridad promedio y la variabilidad fueron significativamente más altas en pacientes con ojo seco. Por otra parte, las técnicas de aprendizaje de máquina demostraron buena precisión para clasificar a los pacientes. Por tanto, la alta variabilidad parece ser característica propia de la enfermedad de ojo seco.

Palabras clave:
Ojo seco
Osmolaridad
Variabilidad
Aprendizaje de máquinas

Article

These are the options to access the full texts of the publication Archivos de la Sociedad Española de Oftalmología (English Edition)
Subscriber
Subscriber

If you already have your login data, please click here .

If you have forgotten your password you can you can recover it by clicking here and selecting the option “I have forgotten my password”
Subscribe
Subscribe to

Archivos de la Sociedad Española de Oftalmología (English Edition)

Purchase
Purchase article

Purchasing article the PDF version will be downloaded

Price 19.34 €

Purchase now
Contact
Phone for subscriptions and reporting of errors
From Monday to Friday from 9 a.m. to 6 p.m. (GMT + 1) except for the months of July and August which will be from 9 a.m. to 3 p.m.
Calls from Spain
932 415 960
Calls from outside Spain
+34 932 415 960
E-mail
Article options
es en pt

¿Es usted profesional sanitario apto para prescribir o dispensar medicamentos?

Are you a health professional able to prescribe or dispense drugs?

Você é um profissional de saúde habilitado a prescrever ou dispensar medicamentos