array:24 [ "pii" => "S2173579420302462" "issn" => "21735794" "doi" => "10.1016/j.oftale.2020.06.023" "estado" => "S300" "fechaPublicacion" => "2021-03-01" "aid" => "1809" "copyright" => "Sociedad Española de Oftalmología" "copyrightAnyo" => "2020" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Arch Soc Esp Oftalmol. 2021;96:127-32" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "Traduccion" => array:1 [ "es" => array:19 [ "pii" => "S0365669120303439" "issn" => "03656691" "doi" => "10.1016/j.oftal.2020.06.028" "estado" => "S300" "fechaPublicacion" => "2021-03-01" "aid" => "1809" "copyright" => "Sociedad Española de Oftalmología" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Arch Soc Esp Oftalmol. 2021;96:127-32" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "es" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Artículo original</span>" "titulo" => "Estudio de la fiabilidad y la validez de los videooculógrafos VOG Perea® y GazeLab® y cálculo de los márgenes de variabilidad" "tienePdf" => "es" "tieneTextoCompleto" => "es" "tieneResumen" => array:2 [ 0 => "es" 1 => "en" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "127" "paginaFinal" => "132" ] ] "titulosAlternativos" => array:1 [ "en" => array:1 [ "titulo" => "Study of reliability and validity of VOG Perea® and GazeLab® and calculation of the variability of their measurements" ] ] "contieneResumen" => array:2 [ "es" => true "en" => true ] "contieneTextoCompleto" => array:1 [ "es" => true ] "contienePdf" => array:1 [ "es" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:7 [ "identificador" => "fig0025" "etiqueta" => "Figura 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 510 "Ancho" => 905 "Tamanyo" => 21536 ] ] "descripcion" => array:1 [ "es" => "<p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">Diagrama de cajas y bigotes de la 1.ª y 2,ª medida realizada con VP.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "C. Narváez Palazón, Á. Sánchez Ventosa, M. Nieves Moreno, A. Redondo Ibáñez, R. Gómez de Liaño Sánchez" "autores" => array:5 [ 0 => array:2 [ "nombre" => "C." "apellidos" => "Narváez Palazón" ] 1 => array:2 [ "nombre" => "Á." "apellidos" => "Sánchez Ventosa" ] 2 => array:2 [ "nombre" => "M." "apellidos" => "Nieves Moreno" ] 3 => array:2 [ "nombre" => "A." "apellidos" => "Redondo Ibáñez" ] 4 => array:2 [ "nombre" => "R." "apellidos" => "Gómez de Liaño Sánchez" ] ] ] ] ] "idiomaDefecto" => "es" "Traduccion" => array:1 [ "en" => array:9 [ "pii" => "S2173579420302462" "doi" => "10.1016/j.oftale.2020.06.023" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "en" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173579420302462?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0365669120303439?idApp=UINPBA00004N" "url" => "/03656691/0000009600000003/v1_202102280701/S0365669120303439/v1_202102280701/es/main.assets" ] ] "itemSiguiente" => array:19 [ "pii" => "S2173579420302450" "issn" => "21735794" "doi" => "10.1016/j.oftale.2020.07.020" "estado" => "S300" "fechaPublicacion" => "2021-03-01" "aid" => "1808" "copyright" => "Sociedad Española de Oftalmología" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Arch Soc Esp Oftalmol. 2021;96:133-40" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Multimodal imaging in phototoxic maculopathy: Description of findings in a series of 12 patients" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "133" "paginaFinal" => "140" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Imagen multimodal en la maculopatía fototóxica: descripción de hallazgos en una serie de 12 pacientes" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 2637 "Ancho" => 2917 "Tamanyo" => 511912 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0010" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">OCT detail of all patients. Figure A; patients 1–5: laser pointer maculopathies. Figure B; patients 6-12: solar maculopathy. Disruption of ellipsoid layer is observed in all cases. Figure 5RE, 5LE, 10RE and to a lesser extent 9RE, 9LE show the RPE hyperreflectivity sign. Centrifugal hyperreflective lesions are distinguished in 2RE and 5RE.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "M. Ortiz Salvador, J. Montero Hernández, V. Castro Navarro, E. Cervera Taulet, C. Navarro Palop, C. Monferrer Adsuara, L. Remolí Sargues, N. Gonzalez Girón" "autores" => array:8 [ 0 => array:2 [ "nombre" => "M." "apellidos" => "Ortiz Salvador" ] 1 => array:2 [ "nombre" => "J." "apellidos" => "Montero Hernández" ] 2 => array:2 [ "nombre" => "V." "apellidos" => "Castro Navarro" ] 3 => array:2 [ "nombre" => "E." "apellidos" => "Cervera Taulet" ] 4 => array:2 [ "nombre" => "C." "apellidos" => "Navarro Palop" ] 5 => array:2 [ "nombre" => "C." "apellidos" => "Monferrer Adsuara" ] 6 => array:2 [ "nombre" => "L." "apellidos" => "Remolí Sargues" ] 7 => array:2 [ "nombre" => "N." "apellidos" => "Gonzalez Girón" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0365669120303427" "doi" => "10.1016/j.oftal.2020.07.029" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0365669120303427?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173579420302450?idApp=UINPBA00004N" "url" => "/21735794/0000009600000003/v1_202102280652/S2173579420302450/v1_202102280652/en/main.assets" ] "itemAnterior" => array:19 [ "pii" => "S2173579420302541" "issn" => "21735794" "doi" => "10.1016/j.oftale.2020.08.002" "estado" => "S300" "fechaPublicacion" => "2021-03-01" "aid" => "1826" "copyright" => "Sociedad Española de Oftalmología" "documento" => "article" "crossmark" => 1 "subdocumento" => "fla" "cita" => "Arch Soc Esp Oftalmol. 2021;96:117-26" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "en" => array:13 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Use in clinical practice of an automated screening method of diabetic retinopathy that can be derived using a diagnostic artificial intelligence system" "tienePdf" => "en" "tieneTextoCompleto" => "en" "tieneResumen" => array:2 [ 0 => "en" 1 => "es" ] "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "117" "paginaFinal" => "126" ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Uso en la práctica clínica, de un método de cribado automatizado de retinopatía diabética derivable mediante un sistema de inteligencia artificial de diagnóstico" ] ] "contieneResumen" => array:2 [ "en" => true "es" => true ] "contieneTextoCompleto" => array:1 [ "en" => true ] "contienePdf" => array:1 [ "en" => true ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0020" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 1306 "Ancho" => 1300 "Tamanyo" => 133799 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0020" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Example of examination fundus image classified as negative for RDR by human classifiers and as positive for MDR by the AI system.</p>" ] ] ] "autores" => array:1 [ 0 => array:2 [ "autoresLista" => "Cristina Peris-Martínez, Abhay Shaha, Warren Clarida, Ryan Amelon, María C Hernáez-Ortega, Amparo Navea, Jesús Morales-Olivas, Rosa Dolz-Marco, Pablo Pérez-Jordá, Frank Verbraak, Amber A van der Heijden" "autores" => array:11 [ 0 => array:2 [ "nombre" => "Cristina" "apellidos" => "Peris-Martínez" ] 1 => array:2 [ "nombre" => "Abhay" "apellidos" => "Shaha" ] 2 => array:2 [ "nombre" => "Warren" "apellidos" => "Clarida" ] 3 => array:2 [ "nombre" => "Ryan" "apellidos" => "Amelon" ] 4 => array:2 [ "nombre" => "María C" "apellidos" => "Hernáez-Ortega" ] 5 => array:2 [ "nombre" => "Amparo" "apellidos" => "Navea" ] 6 => array:2 [ "nombre" => "Jesús" "apellidos" => "Morales-Olivas" ] 7 => array:2 [ "nombre" => "Rosa" "apellidos" => "Dolz-Marco" ] 8 => array:2 [ "nombre" => "Pablo" "apellidos" => "Pérez-Jordá" ] 9 => array:2 [ "nombre" => "Frank" "apellidos" => "Verbraak" ] 10 => array:2 [ "nombre" => "Amber A" "apellidos" => "van der Heijden" ] ] ] ] ] "idiomaDefecto" => "en" "Traduccion" => array:1 [ "es" => array:9 [ "pii" => "S0365669120303610" "doi" => "10.1016/j.oftal.2020.08.007" "estado" => "S300" "subdocumento" => "" "abierto" => array:3 [ "ES" => false "ES2" => false "LATM" => false ] "gratuito" => false "lecturas" => array:1 [ "total" => 0 ] "idiomaDefecto" => "es" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S0365669120303610?idApp=UINPBA00004N" ] ] "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173579420302541?idApp=UINPBA00004N" "url" => "/21735794/0000009600000003/v1_202102280652/S2173579420302541/v1_202102280652/en/main.assets" ] "en" => array:20 [ "idiomaDefecto" => true "cabecera" => "<span class="elsevierStyleTextfn">Original article</span>" "titulo" => "Study of reliability and validity of VOG Perea® and GazeLab® and calculation of the variability of their measurements" "tieneTextoCompleto" => true "paginas" => array:1 [ 0 => array:2 [ "paginaInicial" => "127" "paginaFinal" => "132" ] ] "autores" => array:1 [ 0 => array:4 [ "autoresLista" => "C. Narváez Palazón, Á. Sánchez Ventosa, M. Nieves Moreno, A. Redondo Ibáñez, R. Gómez de Liaño Sánchez" "autores" => array:5 [ 0 => array:4 [ "nombre" => "C." "apellidos" => "Narváez Palazón" "email" => array:1 [ 0 => "carlos.narvaez1991@gmail.com" ] "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "*" "identificador" => "cor0005" ] ] ] 1 => array:3 [ "nombre" => "Á." "apellidos" => "Sánchez Ventosa" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">b</span>" "identificador" => "aff0010" ] ] ] 2 => array:3 [ "nombre" => "M." "apellidos" => "Nieves Moreno" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] 3 => array:3 [ "nombre" => "A." "apellidos" => "Redondo Ibáñez" "referencia" => array:1 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">d</span>" "identificador" => "aff0020" ] ] ] 4 => array:3 [ "nombre" => "R. Gómez" "apellidos" => "de Liaño Sánchez" "referencia" => array:2 [ 0 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">a</span>" "identificador" => "aff0005" ] 1 => array:2 [ "etiqueta" => "<span class="elsevierStyleSup">c</span>" "identificador" => "aff0015" ] ] ] ] "afiliaciones" => array:4 [ 0 => array:3 [ "entidad" => "Servicio de Oftalmología, Hospital Clínico San Carlos, Madrid, Spain" "etiqueta" => "a" "identificador" => "aff0005" ] 1 => array:3 [ "entidad" => "Hospital La Arruzafa, Córdoba, Spain" "etiqueta" => "b" "identificador" => "aff0010" ] 2 => array:3 [ "entidad" => "Servicio de Oftalmología, Hospital Universitario La Paz, Madrid, Spain" "etiqueta" => "c" "identificador" => "aff0015" ] 3 => array:3 [ "entidad" => "Clínica Gómez de Liaño Oftalmólogos, Madrid, Spain" "etiqueta" => "d" "identificador" => "aff0020" ] ] "correspondencia" => array:1 [ 0 => array:3 [ "identificador" => "cor0005" "etiqueta" => "⁎" "correspondencia" => "<span class="elsevierStyleItalic">Corresponding author</span>." ] ] ] ] "titulosAlternativos" => array:1 [ "es" => array:1 [ "titulo" => "Estudio de la fiabilidad y la validez de los videooculógrafos VOG Perea® y GazeLab® y cálculo de los márgenes de variabilidad" ] ] "resumenGrafico" => array:2 [ "original" => 0 "multimedia" => array:8 [ "identificador" => "fig0040" "etiqueta" => "Fig. 8" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr8.jpeg" "Alto" => 1116 "Ancho" => 1508 "Tamanyo" => 81058 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0040" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">GL Soft-Altman diagram versus CT in primary position of orthotropic patients. SD: standard deviation.</p>" ] ] ] "textoCompleto" => "<span class="elsevierStyleSections"><span id="sec0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0065">Introduction</span><p id="par0005" class="elsevierStylePara elsevierViewall">The cover test (CT) is currently the <span class="elsevierStyleItalic">gold standard</span> technique for measuring (in degrees or prismatic dioptres, PD) the amount of deviation of each eye from the other and from the “normal” axis. CT also enables the evaluation of variability in time of this deviation, the variation that exists when fixing one eye or the other and how the magnitude of strabismus changes between different gaze positions. It has a fundamental value of great impact for the treatment of strabismus patients. However, there are 2 factors that influence this method of measurement. The first is the variation of strabismus itself, as it undergoes changes related to the outer and inner environment, like all biomedical variables. Secondly, the variation that all subjective tests have, that is to say, the intra-observer and inter-observer differences (experience of the examiner, positioning of the examiner and the person examined, dissociative techniques, end point of neutralisation used, magnitude of the deviation, placement and type of prisms used, test distance, age and type of strabismus).</p><p id="par0010" class="elsevierStylePara elsevierViewall">Intra- and interexaminer variation in the assessment of heteroformities by CT in orthotropic patients has been studied<a class="elsevierStyleCrossRefs" href="#bib0005"><span class="elsevierStyleSup">1,2</span></a> and also CT has described margins of variation for strabismic patients<a class="elsevierStyleCrossRefs" href="#bib0015"><span class="elsevierStyleSup">3–5</span></a>, which reach a range de ±11.7 ([±9.9]–[±13.6]).</p><p id="par0015" class="elsevierStylePara elsevierViewall">In recent years, devices have been developed that allow the measurement of these eye positions, i.e. videooculographs. Although widely used by otolaryngologists and neurologists in the measurement of ocular nystagmus for years, the recent development of new programs has allowed the evolution of the diagnostic potential of these tools. To our knowledge, only one study has been published on the validity of a similar device and compared it with CT<a class="elsevierStyleCrossRef" href="#bib0030"><span class="elsevierStyleSup">6</span></a>. The Korean group determined the reliability, validity of the Video Frenzel Goggle® (SLMED, Seoul, Korea) and performed a correlation and concordance study in 30 exotropic patients.</p><p id="par0020" class="elsevierStylePara elsevierViewall">This is the first study carried out to date that evaluates the reliability and validity of the VOG Perea® (VP) (Synapsis, Marseille, France, 2008) (<a class="elsevierStyleCrossRef" href="#fig0005">Fig. 1</a>) and GazeLab® (GL) (BcnInnova, Barcelona, Spain, 2011) (<a class="elsevierStyleCrossRef" href="#fig0010">Fig. 2</a>) videoocculographs and studies their correlation and matches with CT measurements in patients without ocular motility alterations.</p><elsevierMultimedia ident="fig0005"></elsevierMultimedia><elsevierMultimedia ident="fig0010"></elsevierMultimedia></span><span id="sec0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0070">Objectives</span><p id="par0025" class="elsevierStylePara elsevierViewall">The main objective of this study was to determine the reliability and validity of ocular deviation measurements obtained by the VP and GL videooculographs.</p><p id="par0030" class="elsevierStylePara elsevierViewall">The secondary objectives were to determine the correlation of their measurements with those of TC and to study the concordance with the <span class="elsevierStyleItalic">gold standard</span>.</p></span><span id="sec0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0075">Methods</span><p id="par0035" class="elsevierStylePara elsevierViewall">A descriptive, transversal and prospective study was designed. Forty-four subjects without strabismus were selected to attend the ophthalmology consultations at the Hospital Clínico San Carlos and the voluntary companions of the patients, both from the hospital and from a private ophthalmology clinic (Centro Oftalmológico Gómez de Liaño, Madrid). The study protocol was approved by the Ethics Committee of the Hospital Clínico San Carlos and the patients signed an informed consent.</p><p id="par0040" class="elsevierStylePara elsevierViewall">Data were collected on sex, best corrected visual acuity and refraction of each eye. A single expert examiner performed an alternating prism CT with near (33 cm) and far (5 m) correction on all patients, 2 examinations with the Nystagmus programme of the VP at 1.5 m (<a class="elsevierStyleCrossRef" href="#fig0015">Fig. 3</a>) and 2 examinations with programme 9 of the GL gaze-paralysis at 1 m distance (<a class="elsevierStyleCrossRef" href="#fig0020">Fig. 4</a>).</p><elsevierMultimedia ident="fig0015"></elsevierMultimedia><elsevierMultimedia ident="fig0020"></elsevierMultimedia><p id="par0045" class="elsevierStylePara elsevierViewall">Since the VP gives the measurement in degrees, it was converted to PD, taking into account that one degree is 0.57 PD<a class="elsevierStyleCrossRef" href="#bib0035"><span class="elsevierStyleSup">7</span></a>, for all study comparisons. In the analysis of the horizontal component, the positive sign was used for convergent deviations and the negative sign for divergent deviations. For the vertical analysis, the positive sign translates right hypertrophy while the negative sign translates left hypertrophy. For statistical analysis, the SPSS Statistics 25.0 for Windows (IBM SPSS Statistics for Windows, Version 25.0) was used. Armonk, NY: IBM Corp, United States, 2017), and the MedCalc tool version 19.0.7 (MedCalc Software, Ostend, Belgium, 2019).</p><p id="par0050" class="elsevierStylePara elsevierViewall">The mean and standard deviation (SD) of the eye deviation measured at the primary gaze position (PGP) were determined. The reliability of each device was estimated by calculating the intraclass correlation coefficient (ICC) of both devices, and to study the validity a comparison of means of the horizontal deviation obtained by CT and the first measurement of the horizontal component in PGP of each device in orthotropic patients was made. The correlation coefficient (R) was determined and the Bland-Altman method was used for the concordance study, as these were paired data. The margins of variability were established as 95% central to the sample for each videoculograph.</p></span><span id="sec0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0080">Results</span><p id="par0055" class="elsevierStylePara elsevierViewall">A total of 44 individuals were recruited without any alteration in eye mobility, of which 26 (59.09%) were women and 18 (40.91%) were men (p = 0.089). With regard to refraction, 13.63% were short-sighted, with a maximum of −3.75 dioptres, 13.63% were far-sighted (between +1 and +4.00 dioptres) and 72.74% were emmetropic. The best average corrected visual acuity of the right eye was 0.985 and of the left eye was 0.998 as a Snellen fraction.</p><p id="par0060" class="elsevierStylePara elsevierViewall">The horizontal measurement of deviation by CT was −0.571 DP, with a standard deviation of 3.038 DP. In the case of VP, the average of the horizontal deviation in PGP was 0.22 DP with a SD of 2.63. In the case of the vertical deviation in PGP measured by VP was −0.51 DP with a SD of 4.76 DP. For the GL strabometer, the average horizontal deviation in PGP was 0.4 DP, with an SD of 1.02. For the vertical deviation in PGP, the average was −<span class="elsevierStyleBold">0</span>.29 DP with an SD of 1.21 DP. <a class="elsevierStyleCrossRefs" href="#fig0025">Figs. 5 and 6</a> illustrate the data distribution.</p><elsevierMultimedia ident="fig0025"></elsevierMultimedia><elsevierMultimedia ident="fig0030"></elsevierMultimedia><p id="par0065" class="elsevierStylePara elsevierViewall">The ICC was calculated for each device. For GL, the CCI was 0.246 (95% CI [−0.402]−0.595) for the horizontal measurement and 0.483 (95% CI 0.038–0.72) for the vertical measurement. For VP, a CCI of 0.984 (95% CI: 0.970–0.992) and 0.981 (95% CI: 0.965–0.990) was obtained for the horizontal and vertical components, respectively.</p><p id="par0070" class="elsevierStylePara elsevierViewall">For the study of validity, a comparison of means was made between the horizontal measure obtained by CT and the first horizontal measure in PGP obtained by each device. The difference between TC and GL was −0.9286 (95% CI [−1.822]–[−0.0355]; p = 0.042). For the comparison between VP and CT the difference was −0.8423 (95% CI: [−1.7190]−0.03450; p = 0.0593).</p><p id="par0075" class="elsevierStylePara elsevierViewall">The correlation coefficient between CT and each videooculograph was estimated separately. In the case of VP, the correlation coefficient was R = 0.5704 (95% CI: 0.319–0.747; p = 0.0001) and GL obtained a correlation coefficient R = 0.4539 (95% CI: 0.174–0.666; p = 0.0025). In this case only the horizontal components of deviation were analyzed, since the vertical component was not measured by CT in orthotropic patients.</p><p id="par0080" class="elsevierStylePara elsevierViewall">The Bland-Altman graphics between each device and the CT are shown in <a class="elsevierStyleCrossRefs" href="#fig0035">Figs. 7 and 8</a>.</p><elsevierMultimedia ident="fig0035"></elsevierMultimedia><elsevierMultimedia ident="fig0040"></elsevierMultimedia><p id="par0085" class="elsevierStylePara elsevierViewall">In the case of VP, the measure of the horizontal component, the central 95% of the sample was between −4.38 and 6.06 DP, that is, margins of variability de ±5.22 DP. In the case of the vertical component, the central 95% of the sample was between −9.5 and 9.33 PD, i.e. a range de ±9.415 DP.</p><p id="par0090" class="elsevierStylePara elsevierViewall">For the GL, the central 95% of the sample was between −1 and 3 PDs, which corresponds to a range of ±2 PD and vertically the margins of variation were also of ±2 PD (from −3 to 1 PD).</p></span><span id="sec0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0085">Discussion</span><p id="par0095" class="elsevierStylePara elsevierViewall">The aim of the study was to determine the reliability and validity of the VP and GL video recorders and to define a range of normality for each of the devices. This is the first article to date to determine these values.</p><p id="par0100" class="elsevierStylePara elsevierViewall">This is a sample of patients with no alteration in eye mobility. Significant differences were observed in the distribution of the sample by sex, but we do not believe that the sex variable influences the ocular deviation, as there is no study that corroborates this fact. Clearly, there is a predominance of the emmetropic population (visual acuity of the unit without correction), in this case compared to the population with some refractive alteration. Although we know from some studies that certain types of phorias are related to certain types of refractive errors, even in orthotropic patients<a class="elsevierStyleCrossRef" href="#bib0040"><span class="elsevierStyleSup">8</span></a>, no subgroup analysis was done for refractive error. However, the mean and median of the phoria measured by 3 examinations was around 0, with standard deviations of 3.038 PD for CT, 2.63 PD for VP and 1.02 PD for GL, so it seems that the sample was focused on orthophoria, and if phorias were present they were not large. The age variable was not collected; therefore, in this sense, the results cannot be extrapolated to all ages.</p><p id="par0105" class="elsevierStylePara elsevierViewall">The ICC gives an idea of the agreement between 2 observations. Depending on its value, the degree of agreement can be classified as poor (0–0.2), fair (0.2–0.4), moderate (0.4–0.6), good (0.6–0.8) or excellent (0.8–1). In this study, VP obtains an excellent CCI, both for the horizontal and the vertical component in the analysis of the ocular statics in PGP. Therefore, we could conclude that VP is a device with an excellent reproducibility. However, GL obtains CCIs of 0.24 and 0.48 for horizontal and vertical component, which can be qualified as regular and moderate, respectively. However, the CCI involves inherent restrictions to its calculation, since in very homogeneous samples the CCI tends to be low as it compares the variance between patients with the total variance observed. In contrast, with more heterogeneous samples the CCI tends to be high<a class="elsevierStyleCrossRef" href="#bib0045"><span class="elsevierStyleSup">9</span></a>. Looking at the box-and-whisker diagram of the GL data distribution with a median centred on zero and such narrow interquartile ranges, it can be said that the ICC of GL does not give a true idea about the reliability of such a device and is artificially low. In our opinion, it is not an unreliable video camera.</p><p id="par0110" class="elsevierStylePara elsevierViewall">Within the concept of reliability, a distinction should be made between reproducibility, which measures the agreement between observers, and repeatability, which measures the intra-observer agreement in repeated shots. The examinations with videooculography were carried out indiscriminately by several observers, so we cannot analyse these 2 indicators separately.</p><p id="par0115" class="elsevierStylePara elsevierViewall">With regard to the validity or veracity of the videooculographs, it was studied by comparing means with CT measurements, as this is the reference or <span class="elsevierStyleItalic">gold standard</span> method. The differences were small and in none of the 2 devices this difference reached statistical significance. Therefore, since it cannot be concluded that they are different from CT, we can state that VP and GL are devices that are not only reproducible but also true.</p><p id="par0120" class="elsevierStylePara elsevierViewall">Correlation coefficients remained low, albeit with statistical significance. The correlation coefficient assesses the trend of the relationship between 2 quantitative variables. However, very different series can have high correlations if, for example, the amount measured by one instrument is always twice as much as the other. In general, the calculation of correlation coefficients is discouraged when comparing 2 measurement methods of the same variable<a class="elsevierStyleCrossRef" href="#bib0050"><span class="elsevierStyleSup">10</span></a>.</p><p id="par0125" class="elsevierStylePara elsevierViewall">The Bland-Altman diagrams of each device against CT show some differential features. Both have an average centred on zero, so in general they do not present great differences with TC and also the 2 videooculographs have a range of around 10 PD of variation margins. However, in the case of PV it is the same as in the previous case: the further patients move away from absolute orthotropy, the greater the differences between PV and CT seem to be more or less at the rate of one dioptre of difference between devices for each dioptre of phoria. However, GL maintains more stable differences, regardless of the amount of patient actual phoria.</p><p id="par0130" class="elsevierStylePara elsevierViewall">In general, it can be said that the more orthophoric a patient is, the more congruent the 3 measurement methods will be.</p><p id="par0135" class="elsevierStylePara elsevierViewall">The P2.5 and P97.5 percentiles were determined. In this way, the central 95% of the sample was determined. All patients had been rated as orthotropic by the CT, i.e. with a manifest deviation of 0°. The measures taken for this study were the deviations that the videooculographers marked in PGP of gazing with both eyes fixed, so they must also be orthotropic. Accordingly, the aim was to discern the range that these devices usually determined in most orthotropic patients and therefore the ranges within which we should not consider the measurements determined by the video-occupulographers as pathological.</p><p id="par0140" class="elsevierStylePara elsevierViewall">Taking into account this central 95% of the patient sample (from −4 to 6PD in VP and from −3 to 1 PD in GL), the margins of variation would be ±5.22 PD and ±2 PD, respectively. These margins of measurement are imperceptible deviations. This also means that we must be more permissive when interpreting the result offered by the VP, as it offers wider margins of variation. This may be due to the fact that the device calibrates and measures the deviation in tenths of degrees, a much smaller unit of measurement than a PD, so that fine-tuning with such precision can be a source of greater variation.</p></span><span id="sec0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0090">Conclusion</span><p id="par0145" class="elsevierStylePara elsevierViewall">Alternating CT with prisms is the <span class="elsevierStyleItalic">gold standard</span> and the main method for assessing and quantifying deviation in patients with strabismus. However, it depends on the subjectivity of the scanner and up to 10 PD interobserver difference may occur in subjects with strabismus. The GL and VP videooculographs have emerged as tools for analysing ocular statics and dynamics and may be helpful in quickly quantifying the measurement of ocular deviation. In orthotropic patients and for PGP, these 2 devices have good reliability and validity. Both videooculographs detect orthotropic patients very precisely and their margins of variation are ±5.22 PD in VP and ±2 PD in GL for a horizontal measurement. This will allow these values to be used as a starting point for future studies with videooculographs for different strabological diseases.</p></span><span id="sec0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0095">Conflict of interest</span><p id="par0150" class="elsevierStylePara elsevierViewall">The authors of this article declare that they have no conflict of interest with regard to the devices evaluated in this study.</p><p id="par0155" class="elsevierStylePara elsevierViewall">The authors of this article declare that they have no commercial interest in the devices examined in this study.</p></span></span>" "textoCompletoSecciones" => array:1 [ "secciones" => array:12 [ 0 => array:3 [ "identificador" => "xres1472798" "titulo" => "Abstract" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Objective" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusion" ] ] ] 1 => array:2 [ "identificador" => "xpalclavsec1341209" "titulo" => "Keywords" ] 2 => array:3 [ "identificador" => "xres1472799" "titulo" => "Resumen" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Objetivo" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Método" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusiones" ] ] ] 3 => array:2 [ "identificador" => "xpalclavsec1341210" "titulo" => "Palabras clave" ] 4 => array:2 [ "identificador" => "sec0005" "titulo" => "Introduction" ] 5 => array:2 [ "identificador" => "sec0010" "titulo" => "Objectives" ] 6 => array:2 [ "identificador" => "sec0015" "titulo" => "Methods" ] 7 => array:2 [ "identificador" => "sec0020" "titulo" => "Results" ] 8 => array:2 [ "identificador" => "sec0025" "titulo" => "Discussion" ] 9 => array:2 [ "identificador" => "sec0030" "titulo" => "Conclusion" ] 10 => array:2 [ "identificador" => "sec0035" "titulo" => "Conflict of interest" ] 11 => array:1 [ "titulo" => "References" ] ] ] "pdfFichero" => "main.pdf" "tienePdf" => true "fechaRecibido" => "2020-05-15" "fechaAceptado" => "2020-06-18" "PalabrasClave" => array:2 [ "en" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Keywords" "identificador" => "xpalclavsec1341209" "palabras" => array:5 [ 0 => "Video-oculography" 1 => "Video-oculographer" 2 => "VOG Perea" 3 => "GazeLab" 4 => "Cover test" ] ] ] "es" => array:1 [ 0 => array:4 [ "clase" => "keyword" "titulo" => "Palabras clave" "identificador" => "xpalclavsec1341210" "palabras" => array:5 [ 0 => "Video-oculografía" 1 => "Video-oculógrafo" 2 => "VOG Perea" 3 => "GazeLab" 4 => "Cover test" ] ] ] ] "tieneResumen" => true "resumen" => array:2 [ "en" => array:3 [ "titulo" => "Abstract" "resumen" => "<span id="abst0025" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0035">Objective</span><p id="spar0065" class="elsevierStyleSimplePara elsevierViewall">To determine the reliability and validity of VOG Perea® (VP) and GazeLab® (GL), their correlation and concordance with cover test (CT), and define the margins of variability of the measurement of angle deviation in primary position.</p></span> <span id="abst0030" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0040">Methods</span><p id="spar0070" class="elsevierStyleSimplePara elsevierViewall">Forty-four orthotropic patients were included. Alternating prism CT, an examination with VP, and GL were performed. Intraclass correlation coefficient (ICC) was calculated to determine the reliability, and mean comparison was used to study validity. Correlation coefficient (R) between CT and each video-oculographer was calculated. Bland-Altman diagrams were used to determine concordance. All measurements were expressed in prismatic dioptres (PD).</p></span> <span id="abst0035" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0045">Results</span><p id="spar0075" class="elsevierStyleSimplePara elsevierViewall">The mean horizontal deviation was −0.571 PD with CT; 0.22 PD with VP and 0.4 PD with GL. ICC was 0.246 [95% CI (−0.402–0.595)] in GL and 0.984 [95% CI (0.970–0.992)] in VP. Mean comparison between CT and GL was −0.9286 [CI 95% (−1.822 −0.0355)] (<span class="elsevierStyleItalic">P</span> = .042) and −0.8423 [95% CI (−1.7190–0.03450)] (<span class="elsevierStyleItalic">P</span> = .0593) for CT-VP. Correlation coefficient for VP was R = 0.5704 [95% CI (0.319–0.747)] (<span class="elsevierStyleItalic">P</span> = .0001) and R = 0.4539 [95% CI (0.174–0.666)] (<span class="elsevierStyleItalic">P</span> = .0025) for GL. Margins of variability for a single horizontal measurement in primary position with VP were ±5.22 PD and ±2 DP for GL.</p></span> <span id="abst0040" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0050">Conclusion</span><p id="spar0080" class="elsevierStyleSimplePara elsevierViewall">Both VP and GL are reliable and valid devices. Margins of variability for a horizontal measurement are 5.22 PD in VP and ±2 PD in GL.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0025" "titulo" => "Objective" ] 1 => array:2 [ "identificador" => "abst0030" "titulo" => "Methods" ] 2 => array:2 [ "identificador" => "abst0035" "titulo" => "Results" ] 3 => array:2 [ "identificador" => "abst0040" "titulo" => "Conclusion" ] ] ] "es" => array:3 [ "titulo" => "Resumen" "resumen" => "<span id="abst0005" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0010">Objetivo</span><p id="spar0045" class="elsevierStyleSimplePara elsevierViewall">Determinar la fiabilidad y la validez de los video-oculógrafos VOG Perea® (VP) y GazeLab® (GL), su correlación y concordancia con cover test (CT) y definir cuáles son los márgenes de variabilidad de las medidas de desviación ocular en posición primaria.</p></span> <span id="abst0010" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0015">Método</span><p id="spar0050" class="elsevierStyleSimplePara elsevierViewall">Se incluyeron 44 participantes ortotrópicos. A todos los pacientes se les realizó un CT alternante prismado, un examen con VP y un examen con GL. Se calculó el coeficiente de correlación intraclase (CCI) de ambos dispositivos para determinar la fiabilidad. Para establecer la validez se realizó una comparación de medias entre CT y cada dispositivo. Además, se calculó el coeficiente de correlación (R) entre cover test y cada video-oculógrafo y se determinó la concordancia mediante diagramas de Bland-Altman. Todas las medidas se realizaron en dioptrías prismáticas (DP).</p></span> <span id="abst0015" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0020">Resultados</span><p id="spar0055" class="elsevierStyleSimplePara elsevierViewall">La desviación media horizontal fue de −0,571 DP con CT, 0,22 DP con VP y 0,4 DP con GL. El CCI fue de 0,246 [IC 95% (−0,402–0,595)] en GL y de 0,984 [IC 95% (0,970–0,992)] en VP. La comparación de medias entre CT y GL fue de −0,9286 [IC 95% (−1,822 −0,0355)] (p = 0,042). En el caso de la comparación entre VP y CT la diferencia fue de −0,8423 [IC 95% (−1,7190–0,03450)] (p = 0,0593). En el caso de VP, el coeficiente de correlación fue R = 0,5704 [IC95% (0,319–0,747)](p = 0,0001) y GL obtuvo un coeficiente de correlación R = 0,4539 [IC95% (0,174–0,666)] (p = 0,0025). Los márgenes de variabilidad para una medida horizontal con VP son de ±5,22 DP y en GL ± 2 DP.</p></span> <span id="abst0020" class="elsevierStyleSection elsevierViewall"><span class="elsevierStyleSectionTitle" id="sect0025">Conclusiones</span><p id="spar0060" class="elsevierStyleSimplePara elsevierViewall">VP y GL son dispositivos con una buena fiabilidad y validez. Los márgenes de variabilidad son de ±5,22 DP en VP y ±2 DP en GLpara una medida horizontal.</p></span>" "secciones" => array:4 [ 0 => array:2 [ "identificador" => "abst0005" "titulo" => "Objetivo" ] 1 => array:2 [ "identificador" => "abst0010" "titulo" => "Método" ] 2 => array:2 [ "identificador" => "abst0015" "titulo" => "Resultados" ] 3 => array:2 [ "identificador" => "abst0020" "titulo" => "Conclusiones" ] ] ] ] "NotaPie" => array:1 [ 0 => array:2 [ "etiqueta" => "☆" "nota" => "<p class="elsevierStyleNotepara" id="npar1005">Please cite this article as: Narváez Palazón C, Sánchez Ventosa Á, Nieves Moreno M, Redondo Ibáñez A, de Liaño Sánchez RG. Estudio de la fiabilidad y la validez de los videooculógrafos VOG Perea® y GazeLab® y cálculo de los márgenes de variabilidad. Arch Soc Esp Oftalmol. 2021;96:127–132.</p>" ] ] "multimedia" => array:8 [ 0 => array:8 [ "identificador" => "fig0005" "etiqueta" => "Fig. 1" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr1.jpeg" "Alto" => 1662 "Ancho" => 905 "Tamanyo" => 91222 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0005" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0005" class="elsevierStyleSimplePara elsevierViewall">Complete VP unit, comprising a video projection system and a support unit with chinrest and front support, with recording system and infrared lighting.</p>" ] ] 1 => array:8 [ "identificador" => "fig0010" "etiqueta" => "Fig. 2" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr2.jpeg" "Alto" => 605 "Ancho" => 805 "Tamanyo" => 54179 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0010" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0010" class="elsevierStyleSimplePara elsevierViewall">Unit of the GL. Helmet incorporating the recording and video-projection system.</p>" ] ] 2 => array:8 [ "identificador" => "fig0015" "etiqueta" => "Fig. 3" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr3.jpeg" "Alto" => 452 "Ancho" => 905 "Tamanyo" => 42351 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0015" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0015" class="elsevierStyleSimplePara elsevierViewall">Summary of VP results. Biocular balance chart showing the angular values between the 2 eyes and the positions of visual stimulus and deviations measured in degrees. The positive values refer to endodeviation, the negative ones to exodeviation and, in the case of the vertical, blue is translated as left hypertrophy and red as right hypertrophy.</p>" ] ] 3 => array:8 [ "identificador" => "fig0020" "etiqueta" => "Fig. 4" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr4.jpeg" "Alto" => 306 "Ancho" => 877 "Tamanyo" => 53243 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0020" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0020" class="elsevierStyleSimplePara elsevierViewall">Summary of GL results. The numerical tables show the amount of deviation measured in prismatic dioptres for each gaze position.</p>" ] ] 4 => array:8 [ "identificador" => "fig0025" "etiqueta" => "Fig. 5" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr5.jpeg" "Alto" => 510 "Ancho" => 905 "Tamanyo" => 23563 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0025" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0025" class="elsevierStyleSimplePara elsevierViewall">Box and whiskers diagram of the 1st and 2nd measurement made with VP.</p>" ] ] 5 => array:8 [ "identificador" => "fig0030" "etiqueta" => "Fig. 6" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr6.jpeg" "Alto" => 508 "Ancho" => 905 "Tamanyo" => 22839 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0030" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0030" class="elsevierStyleSimplePara elsevierViewall">Box and whiskers diagram of the 1st and 2nd measurement made with GL.</p>" ] ] 6 => array:8 [ "identificador" => "fig0035" "etiqueta" => "Fig. 7" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr7.jpeg" "Alto" => 680 "Ancho" => 905 "Tamanyo" => 46300 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0035" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0035" class="elsevierStyleSimplePara elsevierViewall">Bland-Altman diagram of VP versus CT in primary position of orthotropic patients. SD: standard deviation.</p>" ] ] 7 => array:8 [ "identificador" => "fig0040" "etiqueta" => "Fig. 8" "tipo" => "MULTIMEDIAFIGURA" "mostrarFloat" => true "mostrarDisplay" => false "figura" => array:1 [ 0 => array:4 [ "imagen" => "gr8.jpeg" "Alto" => 1116 "Ancho" => 1508 "Tamanyo" => 81058 ] ] "detalles" => array:1 [ 0 => array:3 [ "identificador" => "at0040" "detalle" => "Fig. " "rol" => "short" ] ] "descripcion" => array:1 [ "en" => "<p id="spar0040" class="elsevierStyleSimplePara elsevierViewall">GL Soft-Altman diagram versus CT in primary position of orthotropic patients. SD: standard deviation.</p>" ] ] ] "bibliografia" => array:2 [ "titulo" => "References" "seccion" => array:1 [ 0 => array:2 [ "identificador" => "bibs0005" "bibliografiaReferencia" => array:10 [ 0 => array:3 [ "identificador" => "bib0005" "etiqueta" => "1" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "The intraexaminer and iterexaminer repeatability of the alternate cover test using different prism neutralization endpoints" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "A.H. Johns" 1 => "R.E. Manny" 2 => "K. Fern" 3 => "Y.S. Hu" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Optom Vis Sci" "fecha" => "2004" "volumen" => "81" "numero" => "12" "paginaInicial" => "939" "paginaFinal" => "945" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/15592119" "web" => "Medline" ] ] ] ] ] ] ] ] 1 => array:3 [ "identificador" => "bib0010" "etiqueta" => "2" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Comparison of alternate cover test reliability at near in non-strabismus between experienced and novice examiners" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "P.K. Hrynchak" 1 => "C. Herriot" 2 => "E.L. Irving" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Ophthal Physl Opt" "fecha" => "2010" "volumen" => "30" "paginaInicial" => "304" "paginaFinal" => "309" ] ] ] ] ] ] 2 => array:3 [ "identificador" => "bib0015" "etiqueta" => "3" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Defining real change in prism-cover test measurements" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "J.M. Holmes" 1 => "D.A. Leske" 2 => "G.G. Hohberger" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1016/j.ajo.2007.09.012" "Revista" => array:6 [ "tituloSerie" => "Am. J. Ophthalmol" "fecha" => "2008" "volumen" => "145" "paginaInicial" => "381" "paginaFinal" => "385" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/18045567" "web" => "Medline" ] ] ] ] ] ] ] ] 3 => array:3 [ "identificador" => "bib0020" "etiqueta" => "4" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Inter-examiner variability and agreement of the alternate prism cover test (APCT) measurements of strabismus performed by 4 examiners" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:4 [ 0 => "E. Jongh" 1 => "C. Leach" 2 => "M.J. Tjon-Fo-Sang" 3 => "M. Bjerre" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.3109/09273972.2014.972521" "Revista" => array:7 [ "tituloSerie" => "Strabismus" "fecha" => "2014" "volumen" => "22" "numero" => "4" "paginaInicial" => "158" "paginaFinal" => "166" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/25360761" "web" => "Medline" ] ] ] ] ] ] ] ] 4 => array:3 [ "identificador" => "bib0025" "etiqueta" => "5" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Inter-observer Reliability of the Prism and Alternate Cover Test in Children with Esotropia" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "Pediatric Eye Disease Investigator Group" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1001/archophthalmol.2008.548" "Revista" => array:7 [ "tituloSerie" => "Arch Ophthalmol" "fecha" => "2009" "volumen" => "127" "numero" => "1" "paginaInicial" => "59" "paginaFinal" => "65" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19139339" "web" => "Medline" ] ] ] ] ] ] ] ] 5 => array:3 [ "identificador" => "bib0030" "etiqueta" => "6" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "A quantitative analysis method for comitant exotropia using video- oculography with alternate cover" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:5 [ 0 => "N. Park" 1 => "B. Park" 2 => "M. Oh" 3 => "S. Moon" 4 => "M. Kim" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1186/s12886-018-0747-9" "Revista" => array:6 [ "tituloSerie" => "BMC Ophthalmol" "fecha" => "2018" "volumen" => "18" "paginaInicial" => "80" "paginaFinal" => "88" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/29566654" "web" => "Medline" ] ] ] ] ] ] ] ] 6 => array:3 [ "identificador" => "bib0035" "etiqueta" => "7" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Tecnología óptica: Lentes oftálmicas, diseño y adaptación" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "J. Caum Aregay" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Libro" => array:3 [ "fecha" => "2001" "editorial" => "Edicions UPC" "editorialLocalizacion" => "Barcelona" ] ] ] ] ] ] 7 => array:3 [ "identificador" => "bib0040" "etiqueta" => "8" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Prevalence of heterophoria and associations with refractive error, heterotropia and ethnicity in Australian school children" "autores" => array:1 [ 0 => array:2 [ "etal" => true "autores" => array:6 [ 0 => "J.F. Leone" 1 => "E. Cornell" 2 => "I.G. Morgan" 3 => "P. Mitchell" 4 => "A. Kifley" 5 => "J.J. Wang" ] ] ] ] ] "host" => array:1 [ 0 => array:2 [ "doi" => "10.1136/bjo.2009.163709" "Revista" => array:7 [ "tituloSerie" => "Br J Ophthalmol" "fecha" => "2009" "volumen" => "94" "numero" => "5" "paginaInicial" => "542" "paginaFinal" => "546" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/19850581" "web" => "Medline" ] ] ] ] ] ] ] ] 8 => array:3 [ "identificador" => "bib0045" "etiqueta" => "9" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "La evaluación de la fiabilidad en las observaciones clínicas: el coeficiente de correlación intraclase" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:3 [ 0 => "L. Prieto" 1 => "R. Lamarca" 2 => "A. Casado" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:5 [ "tituloSerie" => "Med Clin (Barc)" "fecha" => "1998" "volumen" => "110" "paginaInicial" => "142" "paginaFinal" => "145" ] ] ] ] ] ] 9 => array:3 [ "identificador" => "bib0050" "etiqueta" => "10" "referencia" => array:1 [ 0 => array:2 [ "contribucion" => array:1 [ 0 => array:2 [ "titulo" => "Statistics corner: A guide to appropriate use of correlation coefficient in medical research" "autores" => array:1 [ 0 => array:2 [ "etal" => false "autores" => array:1 [ 0 => "M.M. Mukaka" ] ] ] ] ] "host" => array:1 [ 0 => array:1 [ "Revista" => array:7 [ "tituloSerie" => "Malawi Med. J." "fecha" => "2012" "volumen" => "24" "numero" => "3" "paginaInicial" => "69" "paginaFinal" => "71" "link" => array:1 [ 0 => array:2 [ "url" => "https://www.ncbi.nlm.nih.gov/pubmed/23638278" "web" => "Medline" ] ] ] ] ] ] ] ] ] ] ] ] ] "idiomaDefecto" => "en" "url" => "/21735794/0000009600000003/v1_202102280652/S2173579420302462/v1_202102280652/en/main.assets" "Apartado" => array:4 [ "identificador" => "5816" "tipo" => "SECCION" "en" => array:2 [ "titulo" => "Original articles" "idiomaDefecto" => true ] "idiomaDefecto" => "en" ] "PDF" => "https://static.elsevier.es/multimedia/21735794/0000009600000003/v1_202102280652/S2173579420302462/v1_202102280652/en/main.pdf?idApp=UINPBA00004N&text.app=https://www.elsevier.es/" "EPUB" => "https://multimedia.elsevier.es/PublicationsMultimediaV1/item/epub/S2173579420302462?idApp=UINPBA00004N" ]
Journal Information
Share
Download PDF
More article options
Original article
Study of reliability and validity of VOG Perea® and GazeLab® and calculation of the variability of their measurements
Estudio de la fiabilidad y la validez de los videooculógrafos VOG Perea® y GazeLab® y cálculo de los márgenes de variabilidad